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Abstract
Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic
brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative
diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive
methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic
imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a
rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical
metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast
alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI
vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates
the potential of metabolic imaging to improve detection, classification and outcome prediction of
previously undetected rTBI.

INTRODUCTION
Individuals subject to frequent concussions such as career athletes (e.g. football players, boxers),
accidental head trauma victims, domestic abuse victims, or active military are some of the population at
risk for mild repetitive traumatic brain injury (rTBI). Indeed, rTBI is being steadily recognized as a risk
factor for the development of epilepsy and neurodegenerative diseases, particularly chronic traumatic
encephalopathy (CTE)1, 2, 3. However, to date, non-invasive diagnostic biomarkers of rTBI are lacking. In
particular, clinical computed tomography (CT) and magnetic resonance imaging (MRI), the standard
imaging methods for trauma patients, are unable to detect rTBI-induced pathology4, 5, 6. This lack of
imaging techniques hampers proper diagnosis and appropriate clinical care, as a result new approaches
are critically needed.

To further our understanding of rTBI, several models were developed over the past years7, 8. The closed-
head impact model of engineered rotational acceleration (CHIMERA) device was designed to deliver
multiple subconcussive mild TBI in a controlled and reproducible manner9. CHIMERA-induced rTBI has
been shown to lead to reproducible pathological and behavioral changes up to several months following
impacts10, mirroring the long-term effects of rTBI seen in the clinic (review by McNamara et al.11). Only a
few studies have investigated the use of magnetic resonance imaging (MRI) to detect CHIMERA-induced
rTBI. Diffusion MRI, which is sensitive to water diffusion in tissue and changes in tissue microstructure,
detected subtle differences in rTBI animals at 7 days following injury and in the optic tract, brachium of
the superior colliculus, corpus callosum and hippocampus regions12, 13; however, long-lasting changes
were not studied. T2-weighted MRI, which is sensitive to changes in tissue microstructure, edema, and

myelination, did not detect signs of brain injury at 7 days and 40 days post-injury10, 12. All these studies
are in line with clinical findings, and further highlight the need for more sensitive approaches to detect
and monitor long-term brain changes after rTBI.
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Metabolic impairment following TBI has been well documented in patients and animal models in the
hours following TBI using 13C-labelled substrates infusion and metabolomics approaches (reviews by
Jalloh, Dermers-Marcil, and Carpenter14, 15, 16). Notably, cerebral microdialysis studies have identified that
the lactate / pyruvate ratio (Lac/Pyr) parameter is associated with poor outcome17, 18. However, as
cerebral microdialysis is an invasive method, its use at chronic timepoints following TBI, or in closed
head injury and concussion is not feasible. Hyperpolarized 13C magnetic resonance spectroscopic
imaging (HP 13C MRSI) is a unique technology that allows to measure metabolic fluxes in vivo, and to
compute lactate / pyruvate ratio values as well. HP 13C MRSI applications have been extensively
described in the oncology field19, 20, and its use is emerging to probe brain metabolism in health and
diseases21. HP 13C MRSI of [1-13C]pyruvate enables to monitor the conversion of this key metabolite into
its product(s) [1-13C]lactate and/or [13C]bicarbonate in the brain, which provides unprecedented metabolic
information22, 23. Prior studies of moderate TBI have shown changes in the HP 13C lactate / pyruvate
ratio (HP 13C Lac/Pyr), and HP 13C bicarbonate / lactate ratio at early timepoints (4 hours up to 7 days)
following injury in preclinical models and in patients24, 25, 26, demonstrating the potential value of this
technique. Furthermore, recent studies have combined injection of HP [1-13C]pyruvate with HP [13C]urea, a
metabolically inactive probe, to simultaneously evaluate the pyruvate to lactate flux and tissue perfusion,
respectively27, 28, 29, 30, 31. However, it remains to be determined whether HP 13C MRSI of HP [1-
13C]pyruvate might be useful to the detection of rTBI at chronic timepoints, and inform on potential
mechanism of metabolic injury. Furthermore, co-injection of HP [1-13C]pyruvate and HP [13C]urea has
never been tested in any TBI model or patient.

Here, we questioned if advanced imaging approaches that have never been applied to the study of rTBI
could detect long-lasting alterations following rTBI in the CHIMERA model. In addition to the above
described HP 13C MRSI of HP [1-13C]pyruvate and HP [13C]urea, we also evaluated Susceptibility-weighted
imaging (SWI) and T1 mapping. SWI is an MRI method particularly sensitive to iron that can inform on
venous deoxygenated blood and iron deposition in tissue, and which has proven very valuable to identify
microbleeds in TBI, but has not yet been investigated in the CHIMERA model32, 33. Recent reports have
highlighted the potential of T1 mapping to detect oxidative stress in the rodent brain34, and thus this
technique holds great potential to detect the production of reactive oxygen species that may occur
following diffuse axonal injury and inflammatory processes observed in the CHIMERA model11.

As shown in Fig. 1, we induced rTBI in two-month old male mice using the CHIMERA apparatus, tested
risk-taking behavior 3 months post rTBI, and performed four MRI-based scans. We investigated the
potential of 13C MRSI of HP [1-13C]pyruvate and [13C]urea to detect metabolic and tissue perfusion
impairment, T2-weighted MRI to assess structural changes (as clinical standard of MR imaging), T1-
mapping to evaluate tissue microstructure alterations and oxidative stress, and SWI MRI to detect
changes in tissue microstructure, microbleed and tissue oxygenation following rTBI. Last, brain tissue
was collected to evaluate changes in enzymes activity and transporter protein expression. Given the
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multidimensional nature of the data, we used a Machine Learning (ML) approach to identify how
measured parameters could best predict changes in risk-taking behavior and HP 13C MRSI.

RESULTS

HP 13C MRSI detects long-lasting metabolic alterations
following rTBI
We investigated whether HP 13C MRSI could be used as a non-invasive tool to detect rTBI-induced long-
lasting changes, and specifically to question whether metabolic alterations are present at chronic time
points following injury.

Following intravenous co-injection of HP [1-13C]pyruvate and HP [13C]urea, we observed signals from both
substrates, as well as from the metabolic product HP [1-13C]lactate in the cortex (Fig. 2.a) and subcortex
(Fig. 2.b) of Sham and rTBI mice at 3.5 months post-injury. Upon quantification, we observed significant
metabolic differences between the cortex of rTBI compared to Sham mice: HP [1-13C]lactate levels were
1.09 fold lower in rTBI (Fig. 3.a, p = 0.0073), HP [1-13C]pyruvate levels were 1.05 fold higher (Fig. 3.b, p = 
0.0073), and HP 13C Lac/Pyr was 1.15 fold lower (Fig. 3.c, p = 0.0071). No significant differences in HP
[13C]urea levels were observed in the cortical area (Fig. 3.c), although a trend towards lower HP [13C]urea
levels in rTBI was observed (p = 0.0794). In subcortical areas, we did not detect any differences in HP [1-
13C]lactate, HP [1-13C]pyruvate, HP 13C Lac/Pyr and HP [13C]urea between rTBI and Sham mice (Fig. 3.e-
h). In agreement with the metabolic quantifications, HP 13C heatmaps clearly show lower HP [1-
13C]lactate, higher HP [1-13C]pyruvate and lower HP 13C Lac/Pyr in the cortex of rTBI mice (Fig. 3.i).
Altogether, our results indicate that HP 13C MRSI can detect region-specific long-lasting metabolic
changes following mild rTBI.

Multimodal MRI does not detect long-lasting effect of injury in rTBI
We evaluated whether a comprehensive multimodal MRI approach could detect changes between rTBI
and Sham mice at 3.5 months post-injury, when metabolic alterations where detected by HP 13C MRSI.

We first used T2-weighted MRI, the clinical standard of MRI approach, that is sensitive to inflammation
and/or changes in myelin content. We found that T2 signal intensities were not different between rTBI
and Sham mice in any of the regions studied (prefrontal cortex, cortex, hippocampus and thalamus
(subcortex)) (Fig. 4.a-b). In addition, we did not detect any differences in brain region volumes between
groups (Supplementary Fig. 1). Next, we used a T1 mapping sequence that was shown to be sensitive to
changes in microstructure or alterations related to oxidative stress. Similar to the T2 intensities, we did
not observed any differences in the T1 values in any of the region studied between rTBI and Sham mice
(Fig. 4.c-d). Lastly, a SWI sequence was used, as it is capable of detecting microbleeds as well as
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potential changes in oxygenation following injury. Once again, no differences in SWI values were
observed between rTBI and Sham mice in any region (Fig. 4.e-f). We did not detect any microbleed lesions
in any of the studied animals.

Altogether, our results indicate that a comprehensive multimodal MRI approach combining T2-weighted
MRI, T1 mapping and SWI was not able to detect any signs of injury in rTBI mice at 3.5 months post-

injury, unlike HP 13C MRSI.

Disrupted enzymatic activity, but not transporter expression,
is observed at chronic time points after rTBI
To further investigate potential underlying mechanisms responsible for the observed changes in HP 13C
MRSI readouts, we evaluated the activity of enzymes responsible for pyruvate conversion into its
downstream metabolites and the expression of transporters that control the entry of pyruvate into cells
and the efflux of metabolites outside of the cells.

In the brain, lactate dehydrogenase (LDH) converts pyruvate into lactate, and pyruvate dehydrogenase
(PDH) controls pyruvate entry into the tricarboxylic cycle and its conversion into acetyl-coA. We observed
that PDH was 1.6 fold lower in the prefrontal cortex and 1.7 fold lower in the cortex of rTBI compared to
Sham mice (Table 1, p = 0.0044 and p = 0.0375, respectively). No differences in PDH were observed in
subcortical areas that include the hippocampus and thalamus. The activity of LDH was not significantly
different between rTBI and Sham mice for cortical and subcortical areas.

Table 1
PDH and LDH enzyme activity.

    PDH activity LDH activity

mean ± SD P-value mean ± SD P-value

Prefrontal cortex rTBI 0.0007 ± 0.0001 0.0044 (**) 0.0070 ± 0.0007 0.3345

Sham 0.0011 ± 0.0003   0.0078 ± 0.0020  

Cortex rTBI 0.0012 ± 0.0005 0.0375 (*) 0.0022 ± 0.0004 0.5837

Sham 0.002 ± 0.0008   0.0023 ± 0.0003  

Hippocampus rTBI 0.0074 ± 0.003 0.4171 0.0020 ± 0.0002 0.1602

Sham 0.0091 ± 0.005   0.0023 ± 0.0005  

Thalamus rTBI 0.00013 ± 0.00003 0.6509 0.0023 ± 0.0004 0.1282

Sham 0.00014 ± 0.00006   0.0021 ± 0.0002  

Unpaired t-test. *p ≤ 0.05, **p ≤ 0.01.
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As levels of HP metabolites and HP 13C Lac/Pyr also depend on HP [1-13C]pyruvate intake by cells and on
the efflux of HP [1-13C]lactate, we evaluated the expression of monocarboxylate transporters (MCTs).
MCT1 is primarily responsible for pyruvate entry into the cell, and MCT4 is principaly involved in the efflux
of lactate outside of the cell. Protein quantification of MCT1 and MCT4 performed for the prefrontal
cortex, cortex, hippocampus and thalamus did not show any differences between rTBI and Sham mice
(Table 2), indicating that the differences observed with HP 13C MRSI are likely not due to MCT1 and
MCT4 expression.

Table 2
MCT1 and MCT4 protein expression.

    MCT1 MCT4

mean ± SD P-value mean ± SD P-value

Prefrontal cortex rTBI 1.3 ± 0.31 0.0685 1.59 ± 0.72 0.1109

Sham 1 ± 0.32   1 ± 0.54  

Cortex rTBI 1 ± 0.14 0.6399 0.72 ± 0.35 0.1502

Sham 1 ± 0.07   1 ± 0.33  

Hippocampus rTBI 0.91 ± 0.31 0.5090 1 ± 0.77 0.9147

Sham 1 ± 0.17   1 ± 0.58  

Thalamus rTBI 0.89 ± 0.34 0.4891 0.75 ± 0.59 0.3361

Sham 1 ± 0.24   1 ± 0.27  

Unpaired t-test.

Altogether, our results indicate that PDH activity is decreased in the cortical areas following rTBI, while
LDH activity, MCT1 and MCT4 expression are not significantly different compared to Sham at 3.5 months
post-injury.

Machine learning identifies rTBI/Sham classifiers, and
predictors of behavior and HP 13C readouts
The machine learning (ML) analysis included all the data described above, as well as behavioral data we
previously reported in Krukowski et al.35, which showed that mild rTBI leads to increased risk-taking
behavior in male mice at 100 days post-injury.

Given n = 20 (10 for rTBI and 10 for Sham) mice along with 44 measured variables (see Table 3 for list of
variables and abbreviations), we used ML to perform two types of analyses. First, we wanted to identify
the best classifying variables allowing for separation of the two groups (rTBI vs Sham). Second, we
aimed to find the best predictors of changes in risk-taking behavior, as it recapitulates a key behavioral
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component observed in rTBI patients, and of cortical HP 13C Lac/Pyr, due to its potential to serve as a
novel biomarker for long-lasting consequences of rTBI.
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Table 3
List of variables used for ML analyses.

Variable abbreviation Variable description

EPM frequency extreme Number of entries into the extreme zones on the EPM

EPM duration extreme Time (sec) in the extreme zones on the EPM

EPM frequency openandcenter Number of entries in the Open + Center on EPM

EPM duration openandcenter Time (sec) in the open + Center on the EPM

EPM totaldistance centerpoint Total distance traveled on EPM, measured by centerpoint, units = 
cm

EPM averagevelocity
centerpoint

Average animal velocity on the EPM, units = cm/sec

HP 13C Urea Ctx Hyperpolarized [13C]urea level in cortical area

HP 13C Lac/Pyr Ctx Hyperpolarized lactate/pyruvate ratio in cortical area

HP 13C Urea Subctx Hyperpolarized [13C]urea level in subcortical area

HP 13C Lac/Pyr Subctx Hyperpolarized lactate/pyruvate ratio in subcortical area

PDH Pfc PDH activity in prefrontal cortex

PDH Ctx PDH activity in cortex

PDH Hp PDH activity in hippocampus

PDH Thal PDH activity in thalamus

nT2 Ctx Normalized T2 intensity value in cortex

nT2 Hp Normalized T2 intensity value in hippocampus

nT2 Pfc Normalized T2 intensity value in prefrontal cortex

nT2 Subctx Normalized T2 intensity value in subcortical areas

Volume Ctx Volume of cortex calculted from T2w MRI

Volume Hp Volume of hippocampus calculated from T2w MRI

Volume Pfc Volume of prefrontal cortex calculated from T2w MRI

Volume Subctx Volume of subcortical areas calculated from T2w MRI

Volume Ventricle Volume of ventricles calculated from T2w MRI

Volume Brain Volume of whole brain calculated from T2w MRI
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Variable abbreviation Variable description

T1 Ctx T1 value in cortex

T1 Hp T1 value in hippcampus

T1 Pfc T1 value in prefrontal cortex

T1 Subctx T1 value in subcortex

MCT1 Thal MCT1 expression in thalamus

MCT1 Hp MCT1 expression in hippocampus

MCT1 Ctx MCT1 expression in cortex

MCT1 Pfc MCT1 expression in prefrontal cortex

MCT4 Thal MCT4 expression in thalamus

MCT4 Hp MCT4 expression in hippocampus

MCT4 Ctx MCT4 expression in cortex

MCT4 Pfc MCT4 expression in prefrontal cortex

LDH Thal LDH activity in thalamus

LDH Hp LDH activity in hippocampus

LDH Ctx LDH activity in cortex

LDH Pfc LDH activity in prefrontal cortex

SWI Ctx SWI value in cortex

SWI Hp SWI value in hippcampus

SWI Pfc SWI value in prefrontal cortex

SWI Subctx SWI value in subcortex

Various classification and feature extraction methods were implemented to identify the best classifying
variables between Sham and rTBI mice. Consequently, we identified five triplets of variables that could
accurately distinguish between either group and ranked them based on their feature importance scores
computed using various feature extraction algorithms (see methods). The top two triplets with high
feature scores are presented in Fig. 5.a and the others are shown in Supplementary Fig. 2. The top two
triplets are: 1) PDH Pfc, LDH Thal, and LDH Hp, and 2) PDH Ctx, LDH Thal, and HP 13C Lac/Pyr Ctx.
These findings suggest that although one single feature is not sufficient to identify the difference
between rTBI and Sham, the combined PDH and LDH activity, as well as HP 13C imaging readouts can
help distinguish differences between the two conditions. The three lower-tier triplets consisted of the
subsequent variables: 3) PDH Pfc, EPM duration openandcenter, and LDH Thal, 4) PDH Pfc, EPM duration
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openandcenter, and HP 13C Lac/Pyr Ctx, and 5) PDH Pfc, MCT1 Pfc, and HP 13C Lac/Pyr Ctx. These three
last triplets further idenfy the risk-taking behavior and MCT1 expression in the prefrontal cortex as
important variables to classify Sham and rTBI.

Next, we identified the best predictors of the changes in risk-taking behavior and HP 13C Lac/Pyr Ctx
presented in Fig. 5.b and 5.c, respectively. Interestingly, four variables, namely EPM frequency
openandcenter, MCT1 Pfc, nT2 Pfc, and HP 13C Lac/Pyr Ctx, were sufficient to predict risk-taking behavior
(Fig. 5.b bottom panel) with similar accuracy than when all variables were used for prediction (Fig. 5.b
top panel). This result shows that a systems approach comprising behavioral, transporter expression,
structural and HP 13C imaging measures yields a tangible prediction for changes in risk-taking behavior.
Similarly, four variables, namely EPM duration openandcenter, HP 13C Lac/Pyr Subctx, PDH Hp, and SWI
Hp, were enough to predict the HP 13C Lac/Pyr Ctx (Fig. 5.c bottom panel) with similar accuracy than
when all the variables were used for prediction (Fig. 5.c top panel). This result demonstrates that using a
systemic combination of behavioral, enzyme activity, and advanced MRI measures best predicts the HP
13C Lac/Pyr Ctx.

DISCUSSION
In this study, we demonstrated that HP 13C MRSI of [1-13C]pyruvate can detect metabolic changes 3.5
months following rTBI when structural T2 MRI, T1 mapping, SWI MRI and HP 13C MRSI of [13C]urea did

not. Specifically, we measured a significantly lower HP 13C Lac/Pyr in the mouse cortex 3.5 months post-
injury, which was associated with lower PDH activity. Using a ML approach, we further validated that the
HP 13C Lac/Pyr is among the best classifiers of rTBI and Sham groups, and is a predictor of the risk-
taking behavior observed in this rTBI model. Our findings demonstrate the ability of HP 13C MRSI of [1-
13C]pyruvate to detect rTBI-induced damages and highlight promising potential to improve diagnosis and
monitoring of rTBI patients at chronic time points when other imaging techniques are insufficient.

Cerebral metabolism has been probed using HP [1-13C]pyruvate both in preclinical and clinical settings in
healthy and diseased brain (see Le Page & al. for recent literature review21). Prior studies performed in
moderate TBI preclinical models of contusion injury have reported increased HP 13C Lac/Pyr at early
timepoints following injury (4 hours up to 7 days following injury), but no significant changes at chronic
timepoints (28 days post-injury)24, 25. In contrast, in this study we observed a decreased HP 13C Lac/Pyr
at chronic timepoints, suggesting different underlying pathological changes between contusion injury
and rTBI. Studies performed using positron emission tomography (PET) imaging with the glucose
analogue 18F-fluorodeoxyglucose (18F-FDG) have detected long-term brain hypometabolism following
TBI4, 5, 36, which is in line with the lower HP 13C Lac/Pyr measured here at chronic timepoints. To the best
of our knowledge, 18F-FDG PET imaging has never been applied to CHIMERA rTBI model. Furthermore, the
use of this method for TBI is limited by ionizing radiations, and the high background of 18F-FDG PET
signal in the brain tissue, hampering the detection of small changes in glucose uptake.
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Decreased HP 13C bicarbonate / lactate ratio was found in moderate TBI models25, and decreased HP 13C
bicarbonate levels were found in TBI patients26, highlighting possible changes in mitochondrial function
and aerobic versus anaerobic respiration following trauma. In agreement with these findings, a decreased
of PDH activity after injury has been previously described24, 37, including in our current findings in rTBI. In
this study, we were not able to detect 13C bicarbonate, likely due to the low signal to noise and the fast T1

relaxation rate of this metabolite at ultra-high field (14.1 Tesla). HP 13C Lac/Pyr can be influenced by the
activity of LDH and/or PDH, the availability of their cofactors38, 39, 40, as well as by MCTs expression,
where increased MCT1 expression leads to increased HP 13C Lac/Pyr in selected cell lines41. In this study,
we did not find any significant differences in MCT1 and MCT4 between rTBI and Sham mice, suggesting
that they do not play a prominent role in the changes observed in the HP 13C Lac/Pyr at this late time
post injury.

It has previously been shown that the blood-brain-barrier (BBB) limits the entry of HP probes, which could
in turn influence the measured HP 13C Lac/Pyr42, 43. To evaluate potential changes in perfusion and
delivery, we co-injected [1-13C]pyruvate with HP [13C]urea, a metabolically inactive probe. Although
decreased cerebral blood flow alteration has been reported following rTBI44, 45, we did not observe any
differences in HP [13C]urea levels between Sham and rTBI, indicating that perfusion was likely unaltered
at 3.5 months post-injury. To the best of our knowledge, this is the first study reporting the use of HP
[13C]urea in a rTBI model. Additional studies at earlier timepoints following injury, and in other TBI
models, are needed to evaluate the full potential of HP [13C]urea in detecting BBB alterations and/or
vasculature changes following brain injury.

Conventional and advanced anatomical MRI did not detect any differences between Sham and rTBI at
3.5 months post-injury. In agreement with these findings, Haber et al. and our group previously reported
no differences using T2 MRI at 7 days and 40 days post-injury, respectively10, 12. These results suggest
that conventional T2 MRI may not be able to detect rTBI patholology-induced using the CHIMERA device,
either at early or late timepoints following injury. Using T1 mapping we investigated whether we could
detect changes in tissue microstructure and reactive oxygen species production, but found no differences
between Sham and rTBI34. Oxidative stress and reactive oxygen species have been shown to play an
important role in TBI pathogenesis and in mediating axonal degeneration46, 47, 48. However it remains
unclear if these events may predominantly occur at early timepoints following injury and would have
resolved by the time we performed our imaging study (3.5 months injury), or whether T1 mapping was not

able to detect these events in this rTBI model. HP [1-13C]dehydroascorbic acid (DHA) and HP [1-13C]N-
acetyl cysteine (NAC) have been shown to be sensitive probes to investigate redox changes in vivo49, 50,
and therefore represent attractive probes to further interrogate the involvement of oxidative stress using
HP 13C MRSI. We also included SWI MRI exams as this method has been shown to improve the detection
of microbleeds and hemorrhagic diffusive axonal injury after TBI, which was associated with neurologic
deficits and long-term outcome in human TBI51, 52. However, we did not detect any differences in SWI MRI
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between Sham and rTBI. As for T1 mapping, it remains to be determined whether no microbleeds or
oxygenation changes occurs in this model at early timepoints, or whether potential changes have
resolved by the time we conducted our imaging exams.

We took a systems approach to measure behavior outcomes using ML analyses. We found that sets of
variables were able to classify rTBI and Sham mice. These variables are linked to cognitive abilities (risk-
taking behavior), metabolism and molecule transport (PDH and LDH activity, HP 13C Lac/Pyr, and MCT1),
highlighting the importance of long-term metabolic impairment in rTBI and suggesting their potential as
injury biomarkers. Interestingly, ML was able to identify that enzymatic changes in the thalamus and
hippocampus regions, which were not statistically significant using conventional unpaired t-test in
isolation, became important variables to classify rTBI and Sham when considered together. This is in
agreement with changes in hippocampal function that have been previously reported in rTBI up to 6
months post-injury53. Future HP 13C imaging studies will aim to also include the thalamus and
hippocampus to determine whether in vivo metabolic changes can be detected in these regions. ML was
also used to determine which variables are best predictors of the risk-taking behavior. We found that the
changes in risk-taking behavior were best predicted by variables from the cortical areas, including HP 13C
Lac/Pyr, MCT1 expression, structural MRI, and behavioral parameters. Similarly, cerebral microdialysis
studies have shown that the Lac/Pyr is an important variable associated to clinical outcome. High
Lac/Pyr within the first days after injury was associated to poor clinical outcome 6 months later18, while
here we show that a lower HP 13C Lac/Pyr is associated to higher risk-taking behavior 3.5 months after
injury. This discrepancy might be explained by different timing of the Lac/Pyr measurement (days versus
months after injury), and the injury severity (severe TBI versus mild rTBI). Nonetheless, our study provides
further evidence that the Lac/Pyr is a useful marker to predict behavioral outcome, which can now be
measured in a non-invasive manner using HP 13C MRSI, thus opening new avenues to evaluate metabolic
alterations months after trauma. Last, ML was used to determine the best predictors of the HP 13C
Lac/Pyr in the cortex, and identified subcortical variables, including PDH activity, SWI MRI and metabolic
MRSI, as well as risk-taking behavior. Altogether, these results demonstrate the importance of multimodal
approaches to detect rTBI pathology and associated long-lasting changes.

Thanks to the recent efforts of the community to enable easy data sharing though data repository54,
future studies with higher sample size will become possible, which in turn can lead to improvement of our
understanding of biological and functional pathway involved in rTBI, and help identify novel biomarkers.

In summary, our findings demonstrate the potential of HP [1-13C]pyruvate to detect long-lasting metabolic
alterations in a mouse model of rTBI. In addition, ML identified HP 13C MRSI as a key parameter to predict
long-term rTBI-induced behavioral outcomes. Over the past few years, the use of HP 13C MRSI in clinical
trials worldwide has been rapidly expanding, and the injection of HP [1-13C]pyruvate has proven feasible
and safe, with no reported side effects55. In this study, we were able to measure changes in HP 13C MRS
parameters from two regions, the cortex which is closest to the impact, and the subcortex, which is more
remote. We were not able to differentiate between smaller brain regions (e.g. prefrontal cortex,
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hippocampus, thalamus) due to the large voxel size used in this study relative to the size of the mouse
brain. Current sequences available on clinical scanners can achieve up to 1 cm3 spatial resolution and
cover the entire human brain, thus providing metabolic information from brain areas close and remote to
the site of injury. With the growing availability of the HP 13C MRS technology, our findings provide a
strong rationale to translate its use in patients suffering from rTBI, with the aim to improve the detection
of rTBI-induced damages, help in understanding metabolic pathways involved in rTBI pathogenesis, and
eventually aid the development of treatment strategies.

METHODS

Animals and rTBI model induction
All animal research was approved by the Institutional Animal Care and Use Committee of the University of
California, San Francisco. Mice were given one week of acclimation and housed with a reversed 12-h
light/12-h dark cycle and provided food and water ad libitum. At 8 weeks of age, mice were randomly
assigned to the rTBI or sham control group. Animals were anesthetized using isoflurane (2–3%) in
oxygen 1 L/min during the procedure. rTBI animals were subjected to multiple, mild, closed-head injuries
using the CHIMERA device as previously reported10, 35. Briefly, rTBI animals were placed supinely into an
angled holding platform without any shaving of the head or incision into the skin so that the head was
level with the piston target hole while aligning the eyes, ears, and nose such that the impact was centered
on the dorsal convexity of the skull, targeting a 5-mm area surrounding bregma. A nose cone delivering
isoflurane was removed just prior to the impact. Impact was initiated using RealTerm software, which
was connected to a system including air tank, pressure regulator, digital pressure gauge, two-way
solenoid valve, and piston. The impact was administered with a velocity range of 3.9–4.5 m/sec,
resulting in an impact energy of 0.5 J from the 5 mm, 50 g piston10, 35. Animals were moved to an
incubator immediately after the impact and monitored until fully recovered. rTBI animals received an
injury once per day for 5 days with a 24 h interval in between impacts. Five repeated hits were chosen to
specifically focus on the effects of repeated exposure to TBI, as athletes, veterans and sometimes trauma
victims are exposed to constant and repeated blows, even without experiencing concussive symptoms.
Sham mice were exposed to the same isoflurane anesthesia paradigm without sustaining an impact.
Skull fractures, seizures, apnea, or mortality were not observed in any animals, and no animals were
excluded from the study due to injury parameters.

Risk-taking behavioral test
For all behavioral assays, the experimenters were blinded to surgery. Before behavioral analysis, animals
were inspected for gross motor impairments. Animals were inspected for whisker loss, limb immobility
(including grip strength), and eye occlusions. If animals displayed any of these impairments, they were
eliminated from the study. Behavioral tests were recorded and scored using a video tracking and analysis
setup (Ethovision XT 8.5, Noldus Information Technology). If tracking was unsuccessful, videos were
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scored by two individuals blinded to surgery. Risk-taking behavioral phenotype was evaluated using the
Elevated Plus Maze (EPM) at ~ 100 days (3 months) post-injury (counted from the day of the first injury)
as described previously10, 35. The EPM consists of two exposed, open arms (35 cm) opposite each other
and two enclosed arms (30.5 cm) also across from each other. The four arms are attached to a center
platform (4.5 cm square), and the entire maze is elevated 40 cm off the floor. Bright white lights
illuminated both ends of the open arm. Mice were placed individually onto the center of the maze and
allowed to explore the maze for 5 min, and their activity was recorded. The maze was cleaned with 70%
ethanol between animals. Risk-taking behavior was measured by changes in time spent in the open arms 
+ center of the EPM. We also measured the number of entries into the extremes zones on the EPM, the
time spent in the extreme zons on the EPM, the number of entries in the open arms + center on the EPM,
the total distance traveled on EPM measured by centerpoint, and the average animal velocity on the EPM.
These behavioral data were previously reported in Krukowski et al.35.

Magnetic resonance imaging
Mice were anesthetized using isoflurane (1.5-2% in O2) and a 27-gauge catheter was placed in the tail
vein to allow for intravenous (i.v.) injection. Next, animals were placed in a dedicated cylindrical cradle
allowing for reproducible positioning of the mouse head; which was subsequently inserted inside a dual
tune 1H-13C volume coil (ØI = 40 mm) or a single tuned 1H proton coil (ØI = 40 mm) in a 14.1 T vertical MR
system (Agilent Technologies). Respiration rate was continuously monitored through the PC-sam
software interface (SA Instrument, NY, USA).

First, T2-weighted images from the entire brain were acquired for adequate positioning of the grid used

for hyperpolarized 13C acquisitions using the following parameters: repetition time (TR) = 1200 ms, echo
time (TE) = 20 ms, slice thickness 1.8 mm, 2 averages, matrix 256 × 256, field of view (FOV) 30 × 30 mm².
For HP 13C MRSI acquisitions, 24 µL of [1-13C]pyruvate and 55 µL [13C]urea preparation were co-polarized
using a Hypersense DNP polarizer (Oxford Instruments) for one hour. After dissolution, the HP [1-
13C]pyruvate and [1-13C]urea preparation was rapidly dissolved in isotonic buffer (pH ~ 7) to a final
concentration of 80 mM and 78 mM, respectively. A final volume of 300 µL of the HP [1-13C]pyruvate and
[13C]urea solution was then injected i.v. through the tail vein catheter. 2D dynamic chemical shift imaging
13C data were acquired 16 seconds post i.v. injection of the HP [1-13C]pyruvate and [13C]urea solution
using the following parameters: TR = 67 ms, TE = 0.58 ms, spectral width 5000 Hz, 256 points, flip angle
10°; matrix = 16 ×16, field of view (FOV) = 32 × 32 mm²; slice thickness 4 mm.

Next, for T2-weighted MRI, T1 MRI and SWI acquistions, the dual tune 1H-13C volume coil (ØI = 40 mm)

was removed and replaced by a 1H volume only coil (ØI = 40 mm). T2-weighted MRI was acquired using a

2D fast spin-echo, with effective echo time (TEeff)/TR = 11.80/2006 ms, FOV = 25 × 25 mm2, in 256 × 256
array and 0.5 mm slice thickness. T1-mapping data were acquired using fast spin-echo with inversion
recovery: TEeff/ TR = 7.44/10000 ms, 8 inversion times (TI): 100, 170, 310, 530, 940, 1640, 2900, 5000 ms,
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FOV = 30 × 30 mm2, in 128 × 128 array and 1 mm slice thickness. SWI acquisitions were acquired using
TEeff/TR = 4.64/111.29 ms, FOV = 20 × 20 mm2, in a 256 × 256 array and 0.4 mm slice thickness.

Magnetic resonance imaging data analysis
Brain regions were manually delineated on T1 maps, T2-weighted and SWI magnitude images for each
mouse based on the Allen Adult Mouse Brain atlas (Allen Institute) using the Aedes region of interest
package for MATLAB (Mathworks). For each region, brain volumes were calculated with the T2-weighted
data, as well as the mean T2-weighted values which were normalized to the mean of the cerebrospinal
fluid signal from the ventricles as signal value standard. The mean T1 relaxation times was calculated
from T1 maps generated in VNMRj by pixel-wise fitting according to (Eq. 1).

Where y is the measured signal from fast spin echo with multiple inversion recovery, and the three fit
parameters: relaxation time T1, equilibrium longitudinal magnetization M0, and pre-inversion recovery
longitudinal relaxation M(0). The TI list is used as input for time t.

SWI data were processed as previously described32 with phase images unwrapped by PRELUDE (FSL),
High pass Gaussian filtered with pixel size 32 x 32, and positive phase map scaling used (Eq. 2).

Normalized positive phase map φpos(t), where φ(t) is the filtered, unwrapped phase at location t, and φmax

is the maximum phase of the slice of interest. The positive phase map is a spatial map varying between
zero and one, with higher phase approaching zero and thus increasing contrast on the final merged SWI
data. The phase map is multiplied with the magnitude image four times to create final SWI data56. The
mean SWI intensity was calculated for each mouse for each brain region and normalized to the mean of
the Sham for each region, which corresponds to 1.

HP 13C MRS imaging data was analyzed using the in-house SIVIC software
(http://sourceforge.net/apps/trac/sivic/) and custom-built programs written in MATLAB (MATLAB
R2011b, The MathWorks Inc.). The area under the curve (AUC) of HP [1-13C]pyruvate, AUC of HP [1-
13C]lactate and AUC of HP [13C]urea were measured for each voxel and normalized to the noise level. To
account for variations in polarization levels and delivery, HP [1-13C]pyruvate signal and HP [1-13C]lactate
signal were calculated by dividing each value by the sum of HP [1-13C]pyruvate and HP [1-13C]lactate for
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each voxel. HP [13C]urea signal was obtained by normalizing HP [13C]urea signal from each brain voxel to
the sum of [13C]urea signal from tissue surrounding the brain. HP 13C Lac/Pyr was calculated as the ratio
of the AUC. Next, average from voxels containing cortex or subcortex was calculated, and the obtained
mean values were used to evaluate statistical significance between sham and rTBI groups. Color
heatmaps of HP [1-13C]pyruvate, HP [1-13C]lactate, HP [13C]urea and HP 13C Lac/Pyr were generated
using a linear-based interpolation of the 13C 2D CSI data to the resolution of the anatomical images using
custom-built programs written in MATLAB and SIVIC.

Ex vivo analyses of brain samples

Following the imaging session, mice were transcardially perfused with ice-cold phosphate buffered
saline, and brains were rapidly dissected. Next, prefrontal cortex, cortex, thalamus and hippocampus were
isolated and snap-frozen in liquid nitrogen. Samples were stored at − 80°C until further processing for
activity assays and western blots.

LDH and PDH activities were evaluated using spectrophotometric activity assay kits according to
manufacturer’s guidelines (ab102526 and ab109902; Abcam, respectively), and normalized to protein
concentration determined by the Bradford protein assay method.

For western blot analyses, frozen brain samples were then homogenized with RIPA buffer (Pierce, 89900)
and protease inhibitor Halt TM Protease Inhibitor Cocktail (Thermo Scientific, 1862209) using a
TissueLyser II (Qiagen). Lysate were incubated on ice for 15 minutes and then centrifuged at 14,000 rpm
for 10 min at 4°C. Protein concentration in supernatants was determined using the Bradford protein
assay method. Equal amount of proteins was loaded on Mini-Protean® TGX TM Precast gels 12%
(BioRad, 456–1043) for 34 minutes at 200 V and 400 mA in Tris/Glycine/SDS Buffer, (BioRad, 1610732).
Proteins were transferred onto 0.2 µm PVDF membranes (BioRad, 1704157) using Trans-Blot Turbo
(BioRad) for 7 minutes using the following settings: 1.3 A, 25 V. Next, the membranes were blocked for 1
hour using Tris-buffered saline supplemented with 0.1% Tween 20% and 5% milk (Research Product
International, M17200-500). Membranes were incubated with the primary antibodies: rabbit anti-
MCT1/SLC16A1 pAb (Novus, NBP1-59656, lot C, 1:400), rabbit anti-MCT4 (Bethyl, A304-439A-M, 1:1000),
rabbit mAb anti-beta-tubulin (9F3) (Cell Signaling, 2128S, 1:2000) diluted in Tris-buffered saline
supplemented with 0.1% Tween 20% and 5% milk overnight. An anti-rabbit IgG HRP-linked secondary
antibody (Cell Signaling, 7074S, 1:3000) was used to detect immune-reactive bands using enhanced
chemiluminescence (ECL Western Blotting Substrate, Pierce, 32209) according to the manufacturer
instructions. Quantification of protein bands was done by measuring band intensities using ImageJ
software. MCT1 and MCT4 levels were normalized to beta-tubulin expression and expressed as the levels
relative to the expression of Sham mice, which corresponds to 1.

Machine Learning analyses
The ML pipeline is summarized in Supplementary Fig. 3. Preprocessing of the raw experimental data was
performed before ML analyses to (i) scale the measurements for fair comparison and (ii) predict the
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missing measurements. The raw measurements were rescaled using Scikit-learn python library’s standard
scaler57 (see Supplementary Fig. 4 for an example of original versus scaled data distributions). For a few
mice, we were not able to measure some of the variables due to tissue isolation (n = 2 rTBI and n = 2
Sham missing for PDH activity, n = 3–4 rTBI and n = 3 Sham missing for LDH activity, MCT1 and MCT4
expression) and low signal to noise of the HP [13C] imaging data (n = 1 rTBI mouse excluded). To impute
the missing measurements we separated the data into rTBI and Sham groups, and within each group the
data was split as training and testing. Mice with all measured variables were used to train a Random
Forrest Regressor (RFR). The trained regressor was then used to predict missing measurements
associated with the testing data.58 To identify the variables that are the best classifiers of Sham and rTBI
groups, and to eliminate sensitivity of the results to different methods, we used multiple Scikit-learn
classifiers and feature selection algorithims that are neural network, logistic regression, recursive feature
elimination (RFE), SelectKBest, feature importance with ExtraTreesClassifier, and LASSO. Using each
method, all the variables were scored based on their importance in the classification of Sham versus rTBI
and a pool of variables with high importance scores was created. From this pool, we created groups of
best classifiers with the minimum number of variables, that is three in this case, and ranked those triplets
of variables based on their individual importance scores across different methods. Similarly, to identify
the best predictors of the risk-taking behavior and HP 13C Lac/Pyr in the cortex, we trained multiple
regression algorithms of Scikit-learn library that are LASSO, RFR, Ridge Regression, Support Vector
Regressor, using the measurements of variable to be predicted as the y-values and all the remaining
variables as the x-values (predictors). Then, the variables with high absolute coefficients were identified
as the most important features that contribute to the prediction of the regressor. After pooling and
grouping the variables with high feature scores across different algorithms, we observed the best
predictor group with the minimum number of variables.

Statistical analysis
Results are expressed as mean ± standard deviation (SD). Statistical analyses of MRI, behavioral, and ex
vivo parameters was performed using unpaired t-test (GraphPad Prism (v 9.1.2), (*p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001).
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Figure 1
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Study outline.

Experimental timeline of the study. Two-month old male mice received a rTBI using the CHIMERA device
or underwent a Sham procedure (no impact). Risk-taking behavior was evaluated at 3 months post-injury
using the Elevated Plus Maze. MR imaging was performed 3.5 months after Sham or rTBI, and included
HP 13C MRSI, T2-weighted MRI, T1 mapping MRI, and SWI MRI. Tissue was collected 4 months after
Sham or rTBI procedures to evaluate PDH and LDH activities, and expression of MCT1 and MCT4. ML
analyses methods were used to identify the best classifiers between rTBI and Sham, and the best
predictors of the risk-taking behavior and HP 13C Lac/Pyr in the cortex.

Figure 2

HP 13C spectra following co-injection of HP [1-13C]pyruvate and [13C]urea.
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Representative T2-weighted MR image overlaid with the grid used for HP 13C MRSI acquisitions.

Representative 13C spectra showing HP [1-13C]pyruvate, HP [13C]urea and HP [1-13C]lactate in the (a)
cortex (red voxel) and (b) subcortex (red voxel) for a Sham and a rTBI mouse.

Figure 3

HP 13C MRSI detects long-lasting metabolic alterations following rTBI.

Quantitative analyses of (a) HP [1-13C]lactate levels, (b) HP [1-13C]pyruvate levels, (c) HP 13C Lac/Pyr, and
(d) HP [13C]urea for the cortex (highlighted red voxels), revealed lower HP [1-13C]lactate levels (p =
0.0073), higher HP [1-13C]pyruvate levels (p = 0.0073), and lower HP 13C Lac/Pyr (p = 0.0071) in rTBI
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compared to Sham mice. In contrast, quantitative analyses of (e) HP [1-13C]lactate levels, (f) HP [1-
13C]pyruvate levels, (g) HP 13C Lac/Pyr, and (h) HP [13C]urea for the subcortex (highlighted red voxels),
did not detect differences between rTBI and Sham mice. (i) Representative HP 13C heatmaps for a Sham
and a rTBI mouse, highlighting lower HP [1-13C]lactate, higher HP [1-13C]pyruvate and lower HP 13C
Lac/Pyr in cortical areas in rTBI mice. N = 9 rTBI and 10 Sham mice. Unpaired t-test (**p ≤ 0.01); data are
expressed as means ± SD.

Figure 4

Multimodal MRI does not detect long-lasting effect of injury in rTBI.

(a) Representative T2-weighted MRI data and corresponding manual brain masking. (b) Quantitative
analyses of T2-weighted signal intensity revealed no significant differences for brain subregions between
Sham and rTBI. (c) Representative T1 map and corresponding manual brain masking. (d) Quantitative
analyses of T1 maps revealed no significant differences for brain subregions between Sham and rTBI. (e)
Representative SWI data and corresponding manual brain masking. (f) Quantitative analyses of SWI
intensity revealed no significant differences for brain subregions between Sham and rTBI. Brain masking
color code: yellow: cortex, green: light blue: prefrontal cortex; hippocampus; dark blue: thalamus. N = 10
rTBI and 10 Sham mice. Unpaired t-test; data are expressed as means ± SD.
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Figure 5

ML analyses identify best rTBI and Sham classifiers and best predictors of changes in risk-taking
behavior and HP 13C Lac/Pyr Ctx.

(a) Top two triplets that can classify rTBI (red) and Sham (black) mice. Here, circles represent the mice for
which all three variables are measured whereas triangles represent mice for which at least one of the



Page 26/26

three variables were missing and predicted by ML algorithms (see Methods). (b-c) Prediction performance
of the best predictors of risk-taking behavior (b, bottom panel), and HP 13C Lac/Pyr Ctx (c, bottom panel)
compared to the prediction performance of the case in which all variables are used (b-c top panel). N = 10
rTBI and 10 Sham mice.
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