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A B S T R A C T   

Co-cultivation is an effective method of inducing the production of specialized metabolites (SMs) in microbial 
strains. By mimicking the ecological interactions that take place in natural environment, this approach enables to 
trigger the biosynthesis of molecules which are not formed under monoculture conditions. Importantly, micro-
bial co-cultivation may lead to the discovery of novel chemical entities of pharmaceutical interest. The experi-
mental efforts aimed at the induction of SMs are greatly facilitated by computational techniques. The aim of this 
overview is to highlight the relevance of computational methods for the investigation of SM induction via mi-
crobial co-cultivation. The concepts related to the induction of SMs in microbial co-cultures are briefly intro-
duced by addressing four areas associated with the SM induction workflows, namely the detection of SMs formed 
exclusively under co-culture conditions, the annotation of induced SMs, the identification of SM producer strains, 
and the optimization of fermentation conditions. The computational infrastructure associated with these areas, 
including the tools of multivariate data analysis, molecular networking, genome mining and mathematical 
optimization, is discussed in relation to the experimental results described in recent literature. The perspective on 
the future developments in the field, mainly in relation to the microbiome-related research, is also provided.   

1. Introduction 

The drug discovery initiatives are based on two fundamental ap-
proaches to find novel lead compounds. The first strategy relies on the 
generation of structural diversity through high-throughput methods of 
chemical synthesis, whereas the alternative option relies on the explo-
ration of biosynthetic landscapes hidden in natural sources, including 
bacteria, fungi and plants [1–3]. The demand for new drugs remains 
unabated, being fueled by the emerging microbial and viral threats, as 
exemplified by the Covid-19 pandemic [4,5] and the antibiotic-resistant 
bacterial strains [6,7]. It is thus not surprising that even now, almost a 
century after Fleming’s discovery of penicillin [8], microbial meta-
bolism continues to be perceived as a promising reservoir of bioactive 
molecules. For instance, the widely investigated bacterial genus Strep-
tomyces, mostly recognized for its remarkable capability to biosynthesize 
various antibiotics, remains an exciting research subject for chemists 
and microbiologists [9]. Even though drawing the clear boundary be-
tween primary and specialized metabolism (also referred to as second-
ary metabolism in the previous literature reports) may in some cases be 
problematic, and the roles of specialized metabolites (hereafter referred 
to as SMs), are often a matter of speculation, the widely accepted view is 

that these molecules are not directly involved in cellular growth and 
energy generation. Instead, they provide the producing strain with 
certain advantages over its competitors in an ecological niche [10–12]. 
The bioactivity exhibited by SMs can be tested in a medical context and, 
in the case of promising results, given further consideration during the 
drug development projects [13]. Importantly, the fact that a given mi-
crobial strain is genetically equipped to biosynthesize a particular SM 
does not guarantee that the metabolite will be produced under labora-
tory conditions. The activation of biosynthetic gene clusters (BGCs), i.e., 
genomic regions that encode the machinery responsible for SM biosyn-
thesis, requires specific environmental signals associated with nutrient 
availability, cellular stress, elicitors, growth conditions, and other fac-
tors [14–16]. Microbial co-cultivation is a popular approach applied for 
the activation of BGCs and “awakening” cryptic biosynthetic pathways. 
Co-cultures are inexpensive and do not require the involvement of ge-
netic engineering. This unconventional method of laboratory cultivation 
aims to mimic the conditions experienced by microbial strains while 
interacting with other organisms in natural environments. The idea 
behind the co-cultivation approach is to influence SM production ca-
pabilities via the physical and/or chemical interactions between mi-
croorganisms [17,18]. There are several possible outcomes of 
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co-cultures as far the biosynthesis of SMs is concerned: (a) the produc-
tion of a given SM may be observable both in mono- and co-cultures at 
comparable levels, (b) the metabolite may be present both in mono- and 
co-cultures albeit at significantly different levels (i.e., up- or 
down-regulated), (c) the production may be recorded exclusively in 
monocultures, or (d) the SM is induced (de novo induced or “awaken”) 
due to co-cultivation and observed solely under the conditions of 
co-culture [19]. Additionally, if the induced SMs have not been previ-
ously described, they are regarded as newly discovered chemical entities 
and can be further characterized. Importantly, the relevance of micro-
bial co-cultures is observed far beyond the subject of SM discovery. This 
strategy is also employed for the investigation of microbial communities 
[20,21] and the development of synthetic microbial consortia [22,23]. 
Progressing from studying the axenic cultures (i.e., the monocultures) 
towards exploring the complexity of co-cultures can be perceived as a 
“paradigm shift” in microbiological sciences [24]. It is important to note 
that microbial co-cultures are associated with several bioprocess-related 
issues [25–30]. The difference in growth rates may lead to the scenario 
in which the faster-growing species outcompetes its co-culture partner 
and, as a result, the slower-growing microbe is eventually eliminated. 
Several methods were tested to address this problem. For example, the 
initial inoculation ratio of two species can be optimized by considering 
the relative growth rates and product titers [25]. It is also possible to 
fine-tune the co-culture dynamics by adjusting abiotic factors, e.g., 
medium osmolality or agitation conditions [26]. Designing the 
co-culture initiation method is particularly challenging in the case of 
filamentous microorganisms, since their co-cultivation can be started 
with the use of spore suspensions or precultures and these two inocu-
lation approaches may lead to markedly different outcomes in terms of 
SM production [27]. Furthermore, the production of SMs in co-cultures 
is greatly dependent on time. While for some SMs the titers increase 
continuously over the course of co-cultivation, it is possible that a given 
SM is detectable over a relatively short time interval, as was already 
demonstrated in several studies related to microbial co-cultures [26,28, 
29]. 

Since the development of modern experimental tools relies heavily 
on mathematics and computer science, it is not surprising that the ad-
vancements in the field of co-cultivation-based SM discovery are also 
catalyzed by the application of computational methodologies. Building 
biological knowledge based on the omics datasets requires rigorous and 
high throughput approaches [31] and this fact is greatly exemplified by 
the co-culture-related research. As discussed in the present review, 
computational tools are employed not only in the interpretation of omics 
data but they also complement the efforts of metabolite annotation, the 
optimization of fermentation conditions and, finally, the identification 
and characterization of BGCs in producer strains. 

This review briefly introduces the fundamental aspects of SM in-
duction in microbial co-cultures and gives an overview of computation- 
aided research studies in the field. The goal is to provide conceptual 
primer and a “bird’s eye view” on the subject without focusing on the 
underlying mathematical intricacies. The text also highlights the rele-
vance of computational methods for the investigation of SM induction in 
co-cultures. 

2. Statistics-based detection of specialized metabolites induced 
in co-cultures 

The fundamental task of SM discovery is to use the available 
experimental tools to activate the production of novel microbial SMs, 
identify the newly discovered chemical entities and determine their 
bioactivities and potential use. In this context, the reason for applying 
the co-culture approach is to induce (or “awake”) the production of the 
otherwise non-produced molecules. When the necessary condition of SM 
production is met and the levels of metabolites are above the detection 
limits, the next task is to differentiate between the metabolic repertoires 
displayed in mono- and co-cultures. The common approach used to 

investigate the metabolic fingerprints of the samples is to apply mass 
spectrometry (MS), which is typically coupled with liquid (LC-MS) or 
gas (GC-MS) chromatography to provide an upstream separation of 
molecules prior to their MS analysis [19]. In principle, for the 
well-defined peaks and relatively strong signals it may be possible to 
detect the de novo induction of SMs manually, i.e., use the recorded mass 
chromatograms to notice the fact that a given metabolite is bio-
synthesized exclusively under co-culture conditions. However, in most 
cases it is not feasible due to the relatively small amounts of metabolites 
in the sample, peak overlapping, data noise and, most importantly, a 
large number of analyzed datasets originating from numerous experi-
mental replicates. To address these difficulties and extract biologically 
relevant information from large datasets, a rigorous procedure of data 
processing and analysis is required. In the field of metabolomics, i.e., the 
large-scale study of the metabolic composition of the cell [32], the key 
findings regarding the SM induction are expected to be supported by 
thorough statistical analysis and reported in a transparent way with the 
aid of graphical visualization [33]. The importance of computational 
framework associated with the data analysis step of metabolomics 
experiment cannot be overstated [34]. Chemometric tools [35], typi-
cally embedded within the metabolomics software [36], are used to 
extract the meaningful information from the multidimensional datasets 
involving the metabolite m/z values, signal intensities, peak areas, 
retention times, fragmentation patterns, etc., for numerous experi-
mental variants and replicates. To detect the “mono- vs. co-culture” 
differences in terms of SM production within the sets of metabolomics 
data, the statistical tools of multivariate data analysis are applied [37], 
such as principal component analysis (PCA) [38], partial least squares 
coupled to a discriminant analysis (PLS-DA) [39,40], and orthogonal 
projections to latent structures coupled to a discriminant analysis 
(OPLS-DA) [41]. Generally, the mathematical transformation leading to 
dimensionality reduction of data is performed and the score plots are 
used to illustrate the groupings and outliers. In other words, the data is 
transformed into a lower-dimensional space in a way that aims to pre-
serve the information represented by the original dataset and the dif-
ferences between the samples are then assessed. Finally, the SMs 
responsible for these differences are detected, possibly revealing the SMs 
which are produced in co-culture but not in the corresponding mono-
cultures [42]. It is important to note that the pattern-recognition 
methods of multivariate data analysis can be divided into two cate-
gories, namely the unsupervised and supervised methods, as explained 
in the previous review of Alonso et al. [43]. If the unsupervised 
approach is followed, the direct identification of similarity patterns is 
performed in the original data without considering the types or classes of 
study samples. This type of analysis is often performed as a first 
exploratory step in metabolomics studies [19]. Among the unsupervised 
methods, PCA is a commonly used chemometric approach capable of 
providing an overview of complex experimental data [44]. In PCA, the 
metabolic features are transformed into a set of linearly uncorrelated 
variables called principal components. This transformation is carried out 
in a way that maximizes the variance represented by the first compo-
nent, while the subsequent components are associated with an increas-
ingly reduced variance [43]. By contrast, the supervised methods, e.g., 
PLS-DA or OPLS-DA, involve the use of sample labels to identify the 
metabolic patterns associated with the variables of interest, while 
down-weighing the variance associated with the features that are not 
associated with these variables [43]. As pointed out by Gromski et al. 
[39], the PLS-DA approach is suitable for the analysis of noisy and highly 
collinear data, which is often recorded over the course of metabolomics 
studies. In addition, it offers the statistic measures (e.g., loading weight 
or regression coefficient) that can be employed to identify the key 
phenotypic variables. In the OPLS-DA method, developed as an exten-
sion to the PLS-DA approach, an integrated orthogonal signal correction 
filter (OSC) allows for separating the predictive from non-predictive 
variation [41]. Finally, it should be mentioned that rigorous valida-
tion is always required to avoid statistically unreliable conclusions when 
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analyzing metabolomics data, therefore, employing multiple data 
analysis methods in a single study is not an uncommon practice [45]. 

For clarity, the overview of studies that employed the multivariate 
statistics to analyze the production of metabolites in microbial co- 
cultures [46–69] is listed in Table 1. 

Even though the aforementioned methods of multivariate analysis, 
namely PCA, PLS-DA and OPLS-DA, are the most frequently used sta-
tistical tools in the co-culture studies related to the induction of SMs 
[70], the alternative strategies are also available, including the ANOVA 
Multiblock OPLS method (AMOPLS) [71]. Apart from revealing the 
biologically relevant findings, the co-culture-related studies also provide 
important methodological insights. For instance, Adnani et al. [47] used 
the co-cultures of Verrucosispora sp. (strain WMMB-224) with Myco-
bacterium sp. and Rhodococcus sp. to evaluate the influence of data 
scaling on the results of co-culture analysis by using PCA. In the absence 
of scaling, the analysis was reported to be dominated by high intensity 
signals, while the unique yet low-intensity ones went undetected. While 
the application of unit variance scaling led to the unwanted effect of 
removing the intensity variable, the Pareto scaling proved to be a 
well-balanced approach that ultimately allowed to detect a unique SM in 
one of the investigated co-cultures [47]. In a different study, Swift et al. 
[59] encountered the case in which the separation between the analyzed 
datasets was apparent in a three-dimensional but not in the 
two-dimensional PCA scores plot. Such nuances must be approached 
individually in each study to avoid the misinterpretation of data. 

Notably, the statistical methods mentioned so far are universally 
employed in metabolomics even outside the topic of microbial co- 
cultivation. By contrast, the chemometric tool known as projected 
orthogonalized chemical encounter monitoring (POCHEMON) was 
developed specifically for the purpose of studying microbial interactions 
and metabolite production in co-cultures [48]. The co-culture of Tri-
chophyton rubrum and Fusarium solani, isolated from the infection known 
as onychomycosis, was used as a model to demonstrate the advantages 
of the POCHEMON approach over PCA, PLS-DA and ANOVA in terms of 
representing the microbial interactions in co-cultures while taking into 
the consideration the systematic variability between the co-cultures 
replicates [48]. Later, the combined methodology known as 
ANOVA-POCHEMON was developed by Geurts et al. [50] to address 
interaction dynamics in co-cultures. Considering the published reports, 
however, the traditional multivariate analysis methods, such as PCA and 
PLS-DA, are still predominantly applied in the co-culture/SM-focused 
studies (Table 1). The popularity of these approaches may be associ-
ated with their long history of use and the universal applicability across 
the spectrum of metabolomics topics. So far, the use of POCHEMON has 
been reported among the researchers responsible for the development of 
this methodology and the documented applications of POCHEMON [48, 
50,66] are still rare. Nevertheless, the statistical methods tailored spe-
cifically to be applied in co-culture studies, such as POCHEMON, can be 
expected to be used more and more frequently in the upcoming SM in-
vestigations. It is important to mention that POCHEMON can be 
downloaded and run in the freely available R environment (https://gi-
tlab.univ-nantes.fr/bertrand-s-1/pochermon). Sharing the source code 
with the scientific community is a prerequisite for the successful use of 
novel computational solutions. 

It should be noted that metabolomics is not the sole approach applied 
for the discrimination between the metabolic profiles exhibited in mono- 
and co-cultures. Since it is based on the ionization of molecules prior to 
their detection, mass spectrometry is effective provided the analyzed 
metabolites are ionizable [72]. Complementing metabolomics with nu-
clear magnetic resonance (NMR) was demonstrated by Nguyen et al. 
[55], who employed PCA and PLS-DA in the analysis of metabolites in 
the co-cultures of Fusarium verticillioides with Streptomyces sp. strain 
AV05. In a different study, the approach of NMR-based metabolomics 
coupled with multivariate data analysis led to the identification of 
several metabolites formed by Aspergillus niger in response to Strepto-
myces coelicolor [73]. Finally, metabolomics can be employed in concert 

with transcriptomics to investigate the biosynthetic response of micro-
organisms to co-cultivation [74]. 

3. Annotation of specialized metabolites with the use of 
molecular networking 

Sorting out the MS data corresponding to the SMs produced exclu-
sively under co-cultivation conditions should ideally be followed by the 
structural characterization of the detected molecules. This task is far 
from trivial, as it generates substantial expenses, consumes time and, 
most importantly, requires analytical expertise and specialized equip-
ment. Prior to entering the laborious efforts of structural elucidation, it 
is now possible to automatically annotate SMs by comparing the 
experimental MS results with the library-deposited datasets. As 
reviewed by de Jonge et al. [33], the computational metabolite anno-
tation tools typically rely on the assignment of similarity scores between 
the mass fragmentation spectra (MS/MS). The calculation of similarity 
scores is in turn based on the chosen similarity metrics. The most 
common scoring approach, referred to as the cosine score, involves the 
transformation of MS/MS spectra into vectors and subsequently calcu-
lating their dot-product. However, there are many alternative scoring 
metrics available, including the variations of the cosine score and the 
entropy-based score. Currently, the comparison of MS/MS datasets can 
be also performed with the use of machine learning approaches. Finally, 
the MS/MS spectra can be organized into groups to facilitate their 
annotation [33]. Applying the computational approach is a convenient 
way of starting the identification of SMs by formulating the data-driven 
hypotheses regarding the structural characteristics of the investigated 
molecules. One can notice an analogy between the genome sequencing 
projects and the exploration of chemical space in microbial cultures. 
Once the genome sequence is known, the automatic annotation based on 
bioinformatics is routinely performed to assign the putative functions to 
identified genes [75–79]. Using the computational pipelines is easy, fast 
and inexpensive, as opposed to the laborious manual corrections and 
community-driven curation that follow the step of algorithmic genome 
annotation. The philosophy behind the automatic functional annotation 
is that sequence similarity between the genes suggests their functional 
similarity. In other words, the higher the similarity scores, the higher the 
probability that the two compared genes are functionally related [80]. 
Such comparisons are possible due to the availability of biological da-
tabases that can be used as references whenever a newly sequenced 
genome is analyzed. A similar comparison-based approach can be 
employed in metabolomics to facilitate the SM discovery workflows. The 
concept of community-wide sharing of mass spectra and other experi-
mental datasets within the publicly available repositories is exemplified 
by the development of Global Natural Products Social Molecular 
Network (GNPS) [81,82], an open-access knowledge base of MS/MS 
data. Developing and analyzing the MS libraries within the GNPS opens 
the door for the fast and automated annotation of SMs based on MS/MS 
data. Importantly, it can also be employed for the dereplication of 
known molecules from the analyzed mixtures [83]. Identification of 
previously discovered chemical entities is performed to avoid investing 
time and resources on SM rediscovery. Among several available GNPS 
capabilities, molecular networking (MN) is a popular computational tool 
frequently used in the studies on SM production in microbial co-cultures. 
While the functional similarity of genes is usually reflected by the 
sequence similarity, the idea behind MN is that the structurally similar 
molecules exhibit similarities in terms of their fragmentation patterns. 
These patterns are represented by the MS/MS spectra of investigated 
molecules, which can be algorithmically compared and scored, leading 
to a network representation of their relatedness. As a result, the families 
of structurally similar SMs are depicted visually as clusters within the 
network [84,85]. MN can be thus perceived as a way of translating the 
chemical similarity information (reflected by MS/MS patterns) into a 
network representation, in which mass spectra are represented by nodes 
and related nodes are connected by edges. Hence, MN provides a 
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Table 1 
Overview of studies on the production of metabolites in microbial co-cultures involving multivariate analysis of metabolomics data.  

Co-cultivated microorganisms Type of co-culture Employed methods 
of multivariate 
analysis 

Selected highlights of the study Reference 

Plant-derived, clinical or soil fungal isolates, (mainly 
Fusarium sp.) co-cultured in various combinations 

fungus vs. fungus PCA, PLS-DA Development and validation of high-throughput 
metabolomics methodology for the analysis of fungal co- 
cultures; Screening of more than 600 co-cultures. 
Demonstration that many fungi produce SMs in response 
to co-cultivation 

[46] 

Micromonosporaceae vs. Mycobacterium sp. strain WMMA- 
183 or Rhodococcus sp. strain WMMA-185 

bacterium vs. 
bacterium 

PCA Induction of SMs in co-cultures involving 12 strains of 
Micromonosporaceae 

[47] 

Trichophyton rubrum vs. Fusarium solani fungus vs. fungus POCHEMON Development and assessment of POCHEMON 
methodology 

[48] 

Pseudomonas aeruginosa ATCC 27853 vs. Aspergillus 
fumigatus AZN 8196 (a clinical isolate) 

bacterium vs. 
fungus 

PLS-DA Demonstration that the volatile organic compound 
(VOC) profiles in the co-cultures of P. aeruginosa and 
A. fumigatus are markedly different from the ones 
exhibited in the corresponding monocultures 

[49] 

Pseudomonas aeruginosa ATCC 27853 vs. Aspergillus 
fumigatus AZN 8196 (a clinical isolate); Aspergillus 
clavatus Sin141, (soil isolate) vs. Fusarium sp. PS54743 

bacterium vs. 
fungus; fungus vs. 
fungus 

ANOVA- 
POCHEMON 

Development and assessment of ANOVA-POCHEMON 
methodology 

[50] 

Eutypa lata vs. Botryosphaeria obtusa fungus vs. fungus AMOPLS Induction of several volatile and non-volatile 
metabolites; Demonstration of antifungal activity of 2- 
nonanone 

[51] 

21 marine-adapted fungal isolates vs. Pseudomonas 
syringae or Ralstonia solanacearum or Magnaporthe 
oryzae or Botrytis cinerea 

bacterium vs. 
fungus; fungus vs. 
fungus 

PCA, PLS-DA Annotation of molecular clusters of metabolites induced 
via co-cultivation 

[52] 

Ganoderma applanatum CGMCC No. 5.249 vs. Trametes 
versicolor CGMCC No. 12241 

fungus vs. fungus PCA Identification of a novel phenyl polyketide up-regulated 
in co-cultures 

[53] 

110 fungal pairs involving 16 wood-decaying 
basidiomycetes (including Trametes robiniophila Murr 
and Pleurotus ostreatus) 

fungus vs. fungus PCA Induction of a family of novel sesterterpenes 
(postrediene A, B and C) produced by P. ostreatus in co- 
cultures 

[54] 

Streptomyces sp. strain AV05 vs. Fusarium verticillioides 
strain 1163 

bacterium vs. 
fungus 

PCA, PLS-DA Examination of the influence of co-cultivation on the 
endometabolome of F. verticillioides; Recorded 
overproduction of several metabolites in co-cultures 

[55] 

Streptomyces lunalinharesii A54A vs. Rhizoctonia solani 
CMAA 1589 

bacterium vs. 
fungus 

PCA Induction of SM production in S. lunalinharesii via the co- 
cultivation approach; Inhibition of R. solani growth in 
co-cultures with S. lunalinharesii 

[56] 

Streptomyces sp. WU20 vs. Aspergillus sclerotiorum DX9 vs. bacterium vs. 
fungus 

PCA, OPLS-DA Enhancement of notoamides biosynthesis in 
A. scletotiorum due to the production of cyclo(Pro-Trp) 
by Streptomyces sp. 

[57] 

Bacillus subtilis vs. Aspergillus sydowii bacterium vs. 
fungus 

PLS-DA Induction of 25 metabolites via co-cultivation, including 
4 novel molecules 

[58] 

Fibrobacter succinogenes strain UWB7 vs. Anaeromyces 
robustus or Caecomyces churrovis 

bacterium vs. 
fungus 

PCA Enrichment of fungal metabolites in co-culture; 
Indication that anaerobic gut fungi may produce 
antimicrobials in co-cultures with rumen bacteria 

[59] 

Cophinforma mamani E224 vs. Fusarium solani PLR2 fungus vs. fungus PLS-DA Induction of 5 metabolites via co-cultivation [29] 
Bacillus subtilis BR4 vs. Pseudomonas aeruginosa ATCC 

27853 
bacterium vs. 
bacterium 

PCA Demonstration that B. subtilis BR4 inhibits quorum- 
sensing in P. aeruginosa ATCC 27853 

[60] 

Lacticaseibacillus casei Zhang vs. Lactiplantibacillus 
plantarum P8 

bacterium vs. 
bacterium 

PCA, PLS-DA Induction of 4 metabolites, including mangiferin, via the 
co-cultivation approach 

[61] 

Bacillus subtilis CGMCC 13141 vs. Aspergillus sydowii 
CPCC 401353 

bacterium vs. 
fungus 

PLS-DA Induction of 15 SMs in optimized co-cultures [62] 

Aspergillus oryzae vs. Zygosaccharomyces rouxii fungus vs. fungus PCA, OPLS-DA Demonstrated the metabolic differences between the co- 
cultures and the corresponding monocultures of 
A. oryzae and Z. rouxii (grown on solid medium) 

[63] 

Aspergillus oryzae vs. Zygosaccharomyces rouxii fungus vs. fungus PCA, OPLS-DA Demonstrated the metabolic differences between the co- 
cultures and the corresponding monocultures of 
A. oryzae and Z. rouxii (grown in liquid medium) 

[64] 

Chlorella pyrenoidosa vs. Ganoderma lucidum alga vs. fungus PLS-DA, OPLS-DA Enhancement of triterpenoids biosynthesis via co- 
cultivation 

[65] 

Prorocentrum lima vs. Aspergillus pseudoglaucus dinoflagellate vs. 
fungus 

PCA, OPLS-DA, 
POCHEMON 

Demonstration of the co-culture-related up-regulation of 
the dinoflagellate toxins okadaic acid and 
dinophysistoxin 1 

[66] 

Bacillus sp. strain LPPC170 vs. Fusarium kalimantanense 
strain LPPC130 

bacterium vs. 
fungus 

PLS-DA Identification of volatile organic compaounds (VOCs) 
responsible for the inhibition of growth of 
F. kalimantanense 

[67] 

Alternaria alternata or Alternaria tenuissima vs. 
Trichoderma harzianum JF309 or Trichoderma koningii 
GIM3.137 or Trichoderma harzianum GIM3.442 or 
Trichoderma harzianum Q710613 or Trichoderma 
atroviride Q710251 or Trichoderma asperellum Q710682 
or Trichoderma virens Q710925 

fungus vs. fungus PCA, OPLS-DA Demostration that Trichoderma spp. affect the 
metabolome of Alternaria and that T. atroviride Q710251 
is capable of biotransforming alternariol into its less 
toxic hydroxylated form 

[68] 

Bacillus licheniformis GZ241 or Bacilllus subtilis GZ237 or 
Bacillus amyloliquefaciens GZ121 vs. Eurotium 
amstelodami GZ23 

bacterium vs. 
fungus 

PCA, PLS-DA Co-culture-related enhancement of the production of 
several SMs, including nummularine B, lucidenic acid 
E2, elatoside G, aspergillic acid, copaene, and pipecolic 
acid 

[69] 
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structure-related perspective for the annotation of newly discovered SMs 
prior to performing the time-consuming and costly structural studies. 
Importantly, the MN approach complements the multivariate data 
analysis in the detection of co-culture-unique metabolites. For example, 
in the study involving the use of GNPS platform, Asamizu et al. [86] 
described the unique clade of metabolites found in the co-cultures of 
Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis 
TP-B0596 but not in the corresponding monocultures. In a different 
study, Oppong-Danquah et al. [52] challenged a set of marine-adapted 
fungal isolates originating from the Windebyer Noorgainst lake with 
phytopathogenic fungi (Magnaporthe oryzae, Botrytis cinerea) or bacteria 
(Pseudomonas syringae, Ralstonia solanacearum). The GNPS-based MN 
procedure resulted in the annotation of several molecular clusters 
(involving polyketides, terpenes, alkaloids and other classes of SMs), 
some of which were recorded solely for the co-cultures. Importantly, a 
number of the analyzed chemical entities were regarded as “putatively 
new metabolites”, as they did not exhibit fragmentation pattern simi-
larities with the deposited database spectra [52]. This topic was further 
explored in a recent work focused on the co-cultures of M. oryzae with a 
marine fungus representing the Cosmospora genus [87]. The 
MN-involving investigation showed that, compared with the mono-
cultures, the confrontation of fungal strains led to the expansion of 
chemical space, as reflected by the increased size of several clusters in 
the assembled molecular network. In addition, the co-culture-related 
induction of isochromanones was recorded [87]. Sun et al. included 
the GNPS tools into their computational workflow aimed at the identi-
fication of metabolites in “Aspergillus sydowii vs. Bacillus subtilis” 
co-cultures and the accuracy of the suggested in silico approach was 
verified by NMR analysis [58,62]. Notably, as many as 25 metabolites 
were detected exclusively in co-cultures and 4 of these molecules were 
marked as novel chemical entities [58]. The utilization of computational 
workflow for metabolite annotation in co-cultivation experiments was 
also reported by Maimone et al., who studied the co-cultures of Strep-
tomyces lunalinharesii A54A with the phytopathogenic species Rhizoc-
tonia solani and employed the GNPS library for the putative 
identification of desferrioxamines and anisomycin [56]. The examples of 
studies involving the application of GNPS tools and MN analysis include 
the co-cultures of Pleurotus ostreatus vs. Trametes robiniophila Murr [54], 
Aspergillus sclerotiorum DX9 vs. Streptomyces sp. WU20 [57], Aspergillus 
terreus C23–3 vs. Aspergillus unguis DLEP2008001 [88], Trametes versi-
color vs. Ganoderma applanatum [53], Cophinforma mamani E224 vs. 
Fusarium solani PLR2 [29], Aspergillus spp. NCA257 vs. Cladosporium sp. 
NCA273 or Aspergillus sp. NCA276 [30], and Eurotium amstelodami vs. 
three species of Bacillus [69]. It should be mentioned, however, that the 
application of network-based analysis of mass spectra was demonstrated 
by the developers of GNPS in the context of SM/co-culture research even 
before the formal introduction of the GNPS infrastructure. Traxler et al. 
[89] employed spectra clustering and spectral network assembly for the 
investigation of interactions of Streptomyces coelicolor with other Acti-
nomycetes during their co-cultivation on agar medium. Briefly, spectral 
networking led to the discovery of a family of acylated desferrioxamines, 
which were produced and secreted by S. coelicolor in response to the 
siderophores generated by the accompanying Actinomycete. It was also 
demonstrated that the repertoire of SMs biosynthesized by S. coelicolor 
was dependent on the neighboring bacterium [89]. All in all, consid-
ering the above-referenced examples, it is evident that MN and the 
GNPS-based computational tools are relevant for the annotation of SMs 
in microbial co-cultures. Currently, the toolbox of MN methods is under 
constant development and incorporates more and more functionalities 
yet to be tested in the context of SM production in co-cultures [90,91]. 
As the MN approach relies on automated workflows, publicly available 
databases and freely accessible web-based services, its popularity among 

the members of SM/co-culture community can be expected to grow. 
Finally, apart from the purpose of metabolite annotation, network rep-
resentation can be used to explore the chemodiversity within a certain 
set of chemical entities. Instead of using the MS/MS spectra, such net-
works can be based on the chosen physicochemical properties of the 
analyzed molecules, e.g., their molecular weight and lipophilicity. This 
was demonstrated in the review of Arora et al. [92], who analyzed 82 
published articles and assembled the structure similarity network based 
on "Tanimoto structure similarity index" for 259 metabolites reported to 
be induced via the co-cultivation approach. 

4. Identification of biosynthetic gene clusters in producer 
strains 

The identification of co-culture-induced SMs is accompanied by the 
identification of their microbial source. In the case of molecules pro-
duced solely in co-cultures, finding the producer among the interacting 
strains is not straightforward. This task can be accomplished via genetic 
analysis, i.e., proving that the genetic inventory required for the 
biosynthesis of the metabolite is present in the genome of the strain 
suspected of being the producer [42]. In this context, the approach 
known as genome mining is widely used to detect and annotate the BGCs 
present in microbial genomes by using computational tools [93–95]. As 
far as the studies on SM induction in co-cultures are concerned, the 
platform known as antiSMASH (antibiotics & Secondary Metabolite 
Analysis Shell) is routinely chosen as the software tool for putative BGCs 
identification and analysis [96]. It uses profile hidden Markov models 
(pHMMs) to identify the biosynthetic functions represented by the BGCs 
and defines these functions within the sets of “rules”. These manually 
curated “rules” enable the in silico identification of BGCs within the 
analyzed genomic segments. The current version of antiSMASH en-
compasses the “rules” for 81 types of BGCs, including the ones encoding 
non-ribosomal peptide synthetases (NRPSs) and polyketide synthases 
(PKSs) [96]. An example of antiSMASH application was presented by 
Asamizu et al. [86] in relation to the co-cultivation of S. hygroscopicus 
HOK021 and T. pulmonis TP-B0596. The co-cultivation approach led to 
the induction of several SMs, including enterobactin, platensimycin, 
thioplatensimycin, and harundomycin A. Afterwards, the antiSMASH 
analysis was performed and the BGCs for enterobactin and platensi-
mycin were identified in the genome of S. hygroscopicus HOK021. Since 
no similar BGCs were detected in the genome of T. pulmonis TP-B0596, it 
was concluded that S. hygroscopicus HOK021 was the source of enter-
obactin and platensimycin induced in the co-cultures [86]. In a different 
study, Shin et al. [97] discovered a novel cyclic peptide, dentigerumycin 
E, in the co-cultures of Bacillus sp. GN1 and Streptomyces sp. JB5, the 
strains which had been previously isolated from an intertidal mudflat. 
The authors expected Streptomyces sp. JB5 to be the producer of denti-
gerumycin E based on previous literature reports. To support this hy-
pothesis, they employed antiSMASH to identify a putative BGC 
associated with the production of dentigerumycin E in the sequenced 
genome of Streptomyces sp. JB5. As a result, a PKS-NRPS gene cluster was 
found, which was predicted to generate a cyclic peptide with a sequence 
consistent with the structure of a newly discovered SM [97]. Recently, 
interesting results related to BGCs and co-cultures were reported by 
Ninomiya et al. [98], who employed antiSMASH as a component of their 
experimental workflow. The BGCs were first identified within the ge-
nomes and then the transcriptomic analysis was conducted to determine 
the clusters that were upregulated in co-cultures relative to the mono-
culture controls. It was noted that the main product of the ors cluster in 
Aspergillus nidulans was different in the “A. nidulans vs. A. fumigatus” and 
“A. nidulans vs. Streptomyces rapamycinicus” co-cultures. In the former 
case, the production of diphenyl ether was recorded, whereas in the 

PCA, principal component analysis; PLS-DA, partial least squares coupled to a discriminant analysis; OPLS-DA, orthogonal projections to latent structures coupled to a 
discriminant analysis; AMOPLS, ANOVA Multiblock OPLS method; POCHEMON, projected orthogonalized chemical encounter monitoring; ANOVA-POCHEMON, 
analysis of variance-projected orthogonalized chemical encounter monitoring 
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latter variant the biosynthesis of orsellinic acid took place. So, the 
product of the cluster depended on the accompanying microorganism 
[98]. Hu et al. [99] investigated the inhibitory effects exerted by Bacillus 
cereus CF4–51 on the plant pathogen Sclerotinia sclerotiorum. The 
co-cultivation experiments revealed that the volatile organic compounds 
(VOCs) generated by B. cereus CF4–51 disturbed the development and 
damaged the hyphal structures of S. sclerotiorum. Fengycin was among 
the SMs identified in the biosynthetic repertoire of B. cereus CF4–51 and 
this finding was further confirmed via the antiSMASH analysis, which 
revealed the presence of a BGC related to fengycin biosynthesis in the 
genome of this bacterium [99]. The use of antiSMASH for the identifi-
cation of candidate BGCs was also reported by Shen et al. [54] and 
Kontomina [100] et al. in their broad-range co-cultivation studies 
encompassing 110 fungal pairs and 5144 bacterial pairs, respectively. 

While the use of antiSMASH in the SM/co-culture studies can be seen 
as widespread, it should be mentioned that the identification of pro-
ducer strains by using the in silico genome mining approach is not free of 
limitations. The first issue, already mentioned by Knowles et al. [42], is 
the necessity of genetic tractability of the co-cultivated strains. In other 
words, one cannot perform the sequence similarity searches unless the 
genetic sequence of the investigated strains is available. The second 
limitation stems from the fact that there are still relatively few reference 
BGCs that have been experimentally characterized and verified in terms 
of their corresponding SMs. Using the automated annotation pipelines is 
always associated with a risk of generating incorrect functional assign-
ments by referring to the unconfirmed data that was not yet manually 
curated. Finally, in the case of newly discovered SMs that have not been 
yet biosynthetically characterized in any microorganism, only the BGCs 
corresponding to the structurally similar compounds (if available) can 
be employed as reference sequences. Alternatively, the computational 
predictions regarding the structure of SMs associated with a given 
cluster can be taken into consideration [97]. If the BGC of a novel SM is 
identified and confirmed, it can be then subjected to further in-
vestigations, e.g., the studies on the regulatory mechanisms behind the 
SM production, the elucidation of the SM biosynthetic pathway or, 
provided there is any interest in producing greater amounts of the new 
SM, heterologous expression in one of the workhorse production strains 
[94]. 

5. Optimization of co-cultivation conditions 

If the co-culture yields novel SMs of potential biotechnological in-
terest and the genetic basis for their biosynthesis is deciphered, the 
methods of heterologous expression and cell factory design may be 
employed to construct the engineered producer strains capable of 
providing industry-level yields and titers of target molecules. As soon as 
the relevant biosynthetic genes are transferred from a natural producer 
to a new microbial host, the incredibly complex regulatory system 
governing the SM biosynthesis in the wild-type strain becomes practi-
cally irrelevant and the expression can be fine-tuned via genetic ma-
nipulations of the engineered microbe. Notably, the methods of 
microbial co-cultivation aided by the computational tools are becoming 
increasingly important in the context of metabolic engineering and 
synthetic biology. Their applicability was demonstrated in the work of 
Jones et al. [101], who used the co-culture of engineered E. coli strains to 
produce flavonoids. The astonishing 970-fold improvement of product 
titer was recorded relative to the previously shared monoculture results. 
The study involved the initial optimization of several factors (e.g., car-
bon source, inoculation ratio, and temperature) and the subsequent 
empirical scaled-Gaussian modelling to fit the data and determine the 
optimum. Since then, the design of artificial microbial consortia [102] 
has gathered much attention, also in the context of developing dedicated 
computational frameworks built to facilitate the experimental efforts 
[103]. While microbial co-cultures may be sometimes perceived as 
“black boxes” that yield novel molecules, the emerging rational 
approach of “co-culture engineering” employs the tools of metabolic 

engineering and synthetic biology to “make use of engineered in-
terdependencies” [23] between the co-cultivated microorganisms. Ac-
cording to Liu et al. [104], co-culture engineering “offers multiple 
environments for enzyme expression, creates physical barriers that 
insulate bioprocesses from one another and distributes the burden of 
heterologous expression between members, imparting advantages to 
produce complex natural products”. A convenient way to classify mi-
crobial communities used in biotechnology is to consider the “nature of 
their assembly”, as described by Ibrahim et al. [105], who defines 
“natural consortia” (i.e., isolated from natural environments), “artificial 
consortia” (i.e., assembled artificially), and “synthetic consortia” (i.e., 
involving genetically modified strains). In addition, the term “engi-
neered microbial consortium” is used to describe a rationally designed 
system in which complex biological tasks (e.g., the biosynthesis of 
metabolic precursors) are distributed among microbial populations 
[106]. While the topic of engineered microbial consortia is beyond the 
scope of this review, it is worth mentioning that mathematical optimi-
zation has also been applied in the context of SM induction resulting 
from the interactions of wild-type strains in co-cultures. An example of 
this type of study was provided by Li et al. [107], who employed 
response surface methodology (RSM) for the optimization of antifungal 
SM production in co-cultures of Trichoderma atroviride and Bacillus sub-
tilis. A statistical model was used to optimize the co-cultivation condi-
tions and medium composition. As a result, the stimulation of the 
production of plant growth promoting and antifungal metabolites was 
observed. Notably, the optimized co-cultivation variant yielded 8 new 
SMs [107]. In a different study, Sun et al. [62] followed the RSM 
approach to optimize the conditions of “Aspergillus sydowii vs. Bacillus 
subtilis” co-culture for the production of antibacterial metabolites. This 
strategy led to the induction of 15 SMs and the increase of inhibition rate 
against Staphylococccus aureus [62]. These two studies demonstrated the 
fact that the outcome of microbial co-cultivation depends on bioprocess 
conditions. In the future studies, the chances of discovering novel SMS 
may be increased by combining the OSMAC (“one strain-many com-
pounds”) approach, which was tested and proven to be effective in the 
context of SM induction in monocultures [108], with the methodology 
of microbial co-cultivation. Using a broad collection of microbiological 
media for the propagation of co-cultures will represent the 
multi-stimulus approach to uncovering the yet unexplored parts of 
specialized metabolic networks. 

The bioprocess-related studies on microbial co-cultures may involve 
the routinely performed data processing steps, e.g., function approxi-
mation and differentiation for the determination of substrate con-
sumption and metabolite production rates, as was done for the 
bioreactor co-cultures of Aspergillus terreus with Streptomyces rimosus 
[109] and A. terreus with Streptomyces noursei [110]. In the case of 
filamentous microorganisms, the quantitative investigation of morpho-
logical development is often employed for the monitoring of microbial 
growth over the course of co-cultivation [111–115]. For this purpose, 
the values of morphological parameters (e.g., projected area, elonga-
tion, or roughness) are determined with the aid of microscopy and 
dedicated software tools [116,117]. So far, the digital image analysis of 
filamentous morphologies has been performed for the co-cultures 
propagated in shake flasks [118,119] and 5-liter stirred tank bio-
reactors [120,121]. 

6. Concluding remarks and outlook 

The traditional approach to SM discovery involves chemical pro-
cedures of extraction, isolation and purification of novel molecules. This 
“find and grind” [96] workflow can be complemented by the use of 
computational techniques and unconventional microbiological 
methods, such as co-cultivation. The present overview focused on four 
areas related to SM induction in co-cultures that were aided by the 
application of computational methods, namely the detection of newly 
induced SMs, their annotation and identification, the search for the 
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BGCs in a producer strain, and the optimization of co-cultivation con-
ditions. It should be mentioned that almost all the computational tools 
employed in the studies referenced here were not tailored specifically 
for co-culture-related applications and can be used both for the mono- 
and co-cultivation experiments. This applies to data analysis methods 
and molecular networking in metabolomics, the mining of BGCs in 
genome sequences and mathematical optimization methods. Expanding 
the toolbox of methodologies capable of addressing the nuances of 
co-culture experiments (with POCHEMON [48] and 
ANOVA-POCHEMON [50] serving as examples) and making the devel-
opment of bioinformatics solutions available for the community would 
accelerate the discoveries in the field and open the door for compre-
hensive and broad-scope investigations. Complementing the SM dis-
covery with the in-depth examination of interspecies communication 
and ecological relations can be expected to take place in concert with the 
development of novel workflows for the in vivo and in silico studies. 

The future developments in the field can also be expected to be 
associated with the analysis of microbiomes and the investigation of SM 
production in multi-species microbial consortia. The rational design of 
co-cultivation studies will be fueled by discoveries related to the 
community-level microbial interactions and the ecology-oriented ana-
lyses. This trend can already be observed in recent literature reports. In 
an important study of Chevrette et al. [122], the three-species bacterial 
model involving Pseudomonas koreensis, Bacillus cereus, and Fla-
vobacterium johnsoniae was employed to demonstrate that the dynamics 
of specialized metabolism “depend on community species composition 
and interspecies interactions”. On a side note, the study involved the use 
of multivariate data analysis, molecular networking and BGC mining 
methods, what proves their relevance for the current and future de-
velopments in the SM-related investigations. 

It may be argued that practically all computational methods 
employed in the areas of microbiology, biochemistry and molecular 
biology are to some extent relevant for the SM/co-culture studies, as 
they facilitate the efforts leading to the improvement of biological 
knowledge and deeper understanding of molecular mechanisms within 
the cell. For instance, the computational pipelines widely used in 
genome sequencing and annotation projects [79] are essential in the 
process of providing high-quality sequence data required for the 
genome-scale analysis of BGCs and the monitoring of transcriptional 
responses to co-cultivation. So, it would be justified to state that the 
importance of computational methods for the investigation of 
co-culture-based SM induction reaches far beyond the applications 
mentioned here. 
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[119] Boruta T, Ścigaczewska A. Enhanced oxytetracycline production by streptomyces 
rimosus in submerged co-cultures with Streptomyces noursei. Molecules 2021;26: 
6036. 
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method on the production of secondary metabolites in bioreactor cocultures of 
Penicillium rubens and Streptomyces rimosus. Molecules 2023;28:6044. 

[122] Chevrette MG, Thomas CS, Hurley A, Rosario-Melendez N, Sankaran K, Tu Y, 
et al. Microbiome composition modulates secondary metabolism in a multispecies 
bacterial community. Proc Natl Acad Sci USA 2022;119:e2212930119. 

T. Boruta                                                                                                                                                                                                                                         

http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref93
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref93
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref94
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref94
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref96
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref96
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref96
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref98
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref98
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref98
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref101
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref101
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref101
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref104
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref104
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref105
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref105
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref105
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref106
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref106
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref107
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref107
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref107
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref108
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref108
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref110
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref110
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref110
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref113
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref113
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref113
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref115
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref115
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref119
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref119
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref119
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref120
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref120
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref120
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref122
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref122
http://refhub.elsevier.com/S2001-0370(23)00286-6/sbref122

	Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An intr ...
	1 Introduction
	2 Statistics-based detection of specialized metabolites induced in co-cultures
	3 Annotation of specialized metabolites with the use of molecular networking
	4 Identification of biosynthetic gene clusters in producer strains
	5 Optimization of co-cultivation conditions
	6 Concluding remarks and outlook
	Funding
	Author statement
	Declaration of Competing Interest
	References


