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A B S T R A C T   

Introduction: High levels of immunity to SARS-CoV-2 in the community correlate with protection from COVID-19 
illness. Measuring COVID-19 antibody seroprevalence and persistence may elucidate the level and length of 
protection afforded by vaccination and infection within a population. 
Methods: We measured the duration of detectable anti-spike antibodies following COVID-19 vaccination in a 
multistate, longitudinal cohort study of almost 13,000 adults who completed daily surveys and submitted 
monthly dried blood spots collected at home. 
Results: Overall, anti-spike antibodies persisted up to 284 days of follow-up with seroreversion occurring in only 
2.4% of the study population. In adjusted analyses, risk of seroreversion increased with age (adults aged 55–64: 
adjusted hazard ratio [aHR] 2.19 [95% confidence interval (CI): 1.22, 3.92] and adults aged > 65: aHR 3.59 
[95% CI: 2.07, 6.20] compared to adults aged 18–39). Adults with diabetes had a higher risk of seroreversion 
versus nondiabetics (aHR 1.77 [95% CI: 1.29, 2.44]). Decreased risk of seroreversion was shown for non- 
Hispanic Black versus non-Hispanic White (aHR 0.32 [95% CI: 0.13, 0.79]); college degree earners versus no 
college degree (aHR 0.61 [95% CI: 0.46, 0.81]); and those who received Moderna mRNA-1273 vaccine versus 
Pfizer-BioNTech BNT162b2 (aHR 0.35 [95% CI: 0.26, 0.47]). An interaction between healthcare worker occu
pation and sex was detected, with seroreversion increased among male, non-healthcare workers. 
Conclusion: We established that a remote, longitudinal, multi-site study can reliably detect antibody durability 
following COVID-19 vaccination. The survey platform and measurement of antibody response using at-home 
collection at convenient intervals allowed us to explore sociodemographic factors and comorbidities and iden
tify predictors of antibody persistence, which has been demonstrated to correlate with protection against disease. 
Our findings may help inform public health interventions and policies to protect those at highest risk for severe 
illness and assist in determining the optimal timing of booster doses. 
Clinical trials registry: NCT04342884.  
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Introduction 

Vaccine-induced immunity has been associated with reduced risk of 
SARS-CoV-2 infection, hospitalizations, and death [1–9]. The SARS- 
CoV-2 spike protein, the target of approved SARS-CoV-2 vaccines, is a 
viral transmembrane glycoprotein required for binding, fusion, and cell 
entry [3,10,11]. Shortly after exposure to SARS-CoV-2 infection or 
COVID-19 vaccination, the majority of individuals generate anti-spike 
protein antibody responses [10,12,13]. Anti-spike protein antibody ti
ters correlate with neutralizing antibody titers, which studies have 
shown are capable of blocking viral entry and correspond with protec
tion from SARS-CoV-2 infection [1,8]. Over time, in the absence of 
repeated infection or vaccination, anti-spike protein antibodies appear 
to wane [10,14,15] but can still be detectable for several months 
[1,14,15]. Data from clinical trials and observational studies suggest 
that the seroprevalence of anti-spike antibodies in the community cor
relates with protection from symptomatic COVID-19 illness [14]. Thus, 
capturing longitudinal seroprevalence data may contribute to our un
derstanding of the durability of protection afforded by vaccination and 
infection within a population. Ultimately, seroprevalence information 
could be useful for informing public health policies and infection control 
measures at the community, state, and national levels. 

In a multistate, longitudinal SARS-CoV-2 cohort study, adult par
ticipants from six healthcare systems completed daily electronic surveys, 
allowed access to their health care records, and submitted monthly dried 
blood spot specimens that were tested for anti-SARS-CoV-2 antibodies 
[16]. To examine anti-spike antibody durability after vaccination and 
associated predictors of antibody persistence versus seroreversion (loss 
of anti-spike antibodies), we analyzed anti-spike antibody responses in 
vaccinated participants and their relationship to previous COVID-19 
illness, demographic characteristics, healthcare occupation status, 
presence of certain comorbidities, and vaccine product received. 

Methods 

Study participants 

The COVID-19 Community Research Partnership (CCRP) was a 
prospective, multistate, and multisite surveillance platform for the study 
of SARS-CoV-2 epidemiology funded by the US Centers for Disease 
Control and Prevention [16]. From April 2020 through October 2021, 
we enrolled adults 18 years of age and older affiliated with six health
care systems and institutions located throughout the Mid-Atlantic and 
Southern United States: Wake Forest Baptist Health, Atrium Health, 
Tulane University Medical Group and affiliated local networks, Uni
versity of Mississippi Medical Center, University of Maryland Medical 
System, and Medstar Health. Persons affiliated with the participating 
healthcare systems were invited to enroll in the study, including patients 
and staff based at clinical facilities; other community members were 
invited to participate via patient portals, public websites, or community 
outreach. 

The CCRP study was conducted remotely. Study methods including 
participant recruitment, daily symptom surveys, infection and at-home 
antibody testing, vaccination frequency and product type, use of per
sonal protective equipment, supplemental surveys, and access to 
participant Electronic Health Care Records (EHR) have been described 
previously[16]. Briefly, adult enrollment included email or text 
messaging via the health systems’ patient communication portals (e.g., 
MyChart); social media and public relations campaigns led by individual 
sites; virtual and in-person community outreach; and a publicly acces
sible website. Each participant interested in joining the study completed 
a web-based informed consent and a survey to collect demographic and 
occupational information. Following enrollment, each participant was 
asked to complete a daily symptom survey (Oracle Patient Monitoring 
System provided by Oracle Corporation, Redwood Shores, California or 
SneezSafe application provided by Sneez, LLC, Winston Salem, NC, 

USA). Participants completed the surveys via an internet-accessible 
computer or smartphone. Surveys included information on COVID-19 
symptoms, mask use, care-seeking behaviors, known COVID-19 expo
sures, and self-reported SARS-CoV-2 testing results. A question about 
COVID-19 vaccination dose, dates, and vaccine product was added in 
December 2020, as described previously [16,17]. The following EHR 
data were extracted quarterly: health service utilization, diagnoses, 
medications, procedures, and laboratory test results. An additional 
supplemental survey was administered once per participant that queried 
participants’ occupation and industry, allowing for free-text responses 
(Supplementary Materials). 

A subset of participants were selected for repeat, longitudinal, at- 
home serologic sampling. Selection criteria aimed to mimic the overall 
demographics (sex, race/ethnicity, age) of the service area based on the 
2017 American Community Survey census [18]. Participants were 
eligible to receive at least six tests over the 12-month period. 

The study was reviewed and approved by the Wake Forest Institu
tional Review Board (IRB), which served as the central IRB for this 
study. The study is registered with ClinicalTrials.gov, NCT04342884. 

Laboratory assay characteristics 

Serology testing utilized at-home collection of blood on a Whatman 
5-spot dried blood spot (DBS) specimen card. A study-branded kit was 
mailed to each participant with instructions for specimen collection, two 
lancets, and a self-addressed return envelope with instructions to return 
test kits monthly for analysis. Capillary blood was collected by finger 
prick. All specimens with sufficient dried blood were evaluated for anti- 
spike antibody using a EuroImmun qualitative enzyme-linked immu
nosorbent assay (ELISA) targeting SARS-CoV-2 anti-spike immuno
globulin G (IgG). This test has been granted Emergency Use 
Authorization from the U.S. Food and Drug Administration for testing on 
venous blood [19]. Any DBS card with a positive EuroImmun result was 
reflexed to test for anti-nucleocapsid antibody using a qualitative Roche 
pan-Ig assay targeting the nucleocapsid protein [19]. Given that all 
approved SARS-CoV-2 vaccinations target the spike protein, a positive 
anti-spike result could be associated with either infection or vaccination, 
but a positive anti-nucleocapsid result would only be expected after 
infection. Both serologic assays were internally validated for use with 
DBS cards; evaluation of DBS using the EuroImmun assay was previously 
reported [19,20]. Laboratory Corporation of America (LabCorp, www.la 
bcorp.com) conducted all kit shipping, receipt of DBS cards, serology 
testing, and reporting. 

Measures and definitions 

Self-reported demographic variables collected at enrollment or 
through supplemental surveys included age, sex (male, female), race/ 
ethnicity (Hispanic, non-Hispanic Black, non-Hispanic White, and non- 
Hispanic other), education (college degree, no college degree), and 
whether employed as a healthcare worker (yes, no). The category, non- 
Hispanic other, included American Indian or Alaskan Native, Asian or 
Pacific Islander, and mixed race/ethnicity. We classified county of 
residence as rural, suburban, or urban based on population density 
[16,18]. History of diabetes (ICD10 codes: E08-E11) and obesity (ICD10 
codes: E66, Z68 BMI ≥ 30 kg/m2) diagnoses, collected from the EHR, 
were included in the analyses since these comorbidities were found to 
correlate with SARS-CoV-2 infection in a separate CCRP study [21] and 
because our sample size for these comorbidities was large enough for 
meaningful analysis. No distinction was made between type I and type II 
diabetes. 

Vaccination status was ascertained using a combination of self- 
reported data from the daily survey beginning in December 2020. The 
survey included date, dose, and product of any COVID-19 vaccine 
received. If vaccination data was missing from the survey, but available 
in the EHR, then the EHR information for that dose was included [17]. 
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Vaccine brand received was defined as the brand of first dose of mRNA 
vaccine if more than one brand was received. 

Among a subset of participants who completed a supplemental sur
vey, we also evaluated self-reported healthcare worker occupation from 
the free-text responses to a question regarding the participants’ primary 
occupation. Free-text responses were assigned a six-digit Standard 
Occupational Classification (SOC) code using the NIOSH Industry and 
Occupation Computerized Coding System (NIOCCS) auto-coder [22]. 
The hierarchical six-digit SOC codes were transformed into two-digit 
codes. Healthcare worker occupation was defined as having a two- 
digit SOC code of 29 or 31 or a six-digit SOC code of 11–9111. 

Participant inclusion and exclusion 

Participants were eligible for the analysis if the following criteria 
were met: age ≥ 18 years; participated in the daily questionnaire 
component of the study; did not self-report a previous COVID-19 diag
nosis prior to enrolling in the study; returned at least 2 serology test kits 
during the follow-up period; and had evidence of primary vaccination 
with two doses of a COVID-19 vaccine of which at least one dose was a 
mRNA vaccine outside of a clinical trial. Participants were excluded if 
they had no evidence of a positive anti-spike result during the duration 
of their follow-up, developed infection between vaccine doses one and 
two, or had an uninterpretable serology result prior to vaccination. A 
positive spike and negative nucleocapsid antibody result before vacci
nation was deemed uninterpretable because it could represent a false 
positive spike antibody test, a false negative nucleocapsid antibody test, 
incorrect vaccination dates, or unreported/asymptomatic infection with 
seroreversion of nucleocapsid antibody. 

Statistical methods 

We used time-to-event analyses—time to seroreversion—to explore 
the duration of anti-spike serum antibody detection in participants 
following COVID-19 vaccination. Follow-up time was from the day 
following receipt of the second vaccine dose to the date of documented 
seroreversion (a negative anti-spike antibody test following a previous 
positive anti-spike antibody test), last serological test, receipt of a third/ 
booster dose of vaccine, infection (if infection followed vaccination), 
whichever came first. Previous infection was determined by self-report, 
documentation of a positive viral test in the EHR, or positive anti- 
nucleocapsid result prior to the first dose of vaccine. Participant char
acteristics analyzed were previous infection status, age group, sex, race/ 
ethnicity, healthcare worker occupation (yes or no) as reported at 
enrollment, study site, county classification, education level, vaccine 
product, and presence of select comorbidities. 

To explore the distribution of participant characteristics at baseline, 
we used univariate analyses to compare participants who did not 
serorevert to those who did serorevert. To calculate the person-time 
incidence of seroreversion for all participants, the number of seror
everters was divided by the person-years of follow-up. The overall 
incidence was stratified by participant characteristics and the number of 
seroreverters, person-years of follow-up, and incidence calculated. We 
used Cox proportional hazard models to identify the crude hazard for 
seroreversion for each characteristic and obtained adjusted Hazard Ra
tios [aHR] by fitting all patient characteristics in a multivariable Cox 
Model. We assessed the interaction between statistically significant 
variables including sex, education, healthcare worker occupation, age 
group, race/ethnicity, and vaccine brand. Following the identification of 
a statistically significant interaction, investigators presented the aHR 
stratified by the interaction terms. Two-sided significance was at p less 
than 0.05 without adjustment made for multiple comparisons. All sta
tistical analyses were performed using R Statistical Software (version 
4.0.3; R Foundation for Statistical Computing, Vienna, Austria). 

Results 

Study participants 

Of 19,072 participants enrolled in the CCRP with available antibody 
tests, 12,947 met inclusion criteria with regards to COVID-19 vaccina
tion for this analysis (Fig. 1). Of the included participants, most were 55 
years of age or older (57%), female (64%), non-Hispanic White (84%), 
resided in urban areas (51%), and held a college degree (81%) (Table 1). 
Participants were primarily from the Wake Forest Baptist Health System 
in North Carolina (29%) or MedStar Health System in Maryland (38%). 
By design, all participants were vaccinated, with most receiving the 
Pfizer-BioNTech BNT162b2 vaccine (63%). Slightly less than 4% of 
participants reported a SARS-CoV-2 infection during the study period. 

Among a subset of participants (n = 1,818) that reported being a 
healthcare worker, using NIOSH employment cross-classification, the 
largest group of participants was nursing staff (45%), 26% were physi
cians, and the remaining came from a variety of medical and health care 
professions (e.g., dentists, nutritionists or dietitians, paramedics, 
therapists). 

Seroreversion after COVID-19 vaccination 

The vast majority of our study population, 12,631 (97.6%) main
tained their post-vaccination antibody responses throughout follow-up 
(up to date of last serology test, booster vaccination, or subsequent 
infection). Seroreverters (n = 316) differed statistically from those who 
did not serorevert for several characteristics (Table 1). Seroreverters 
were older (67 vs. 56 years), more likely to be male (56% vs. 35%), more 
likely to be non-Hispanic White (93% vs. 84%), and less likely to have a 
college degree (76% vs. 81%), compared to those who did not seror
evert. Seroreverters were also more likely to have received a Pfizer- 
BioNTech BNT162b2 vaccine (79% vs. 62%), had a shorter time be
tween doses (23 vs. 25 days), were more likely to have diabetes (19% vs. 
9%), and were less likely to report a previous SARS-CoV-2 infection (1% 
vs. 4%). The two groups, those who seroreverted and those who main
tained anti-spike antibodies, did not differ statistically by healthcare 
worker occupation, county of residence (i.e., urban, rural, suburban), 
enrollment site, or obesity. 

The analytic follow-up time for participants ranged from 1 to 284 
days with a median follow-up time per participant of 167 days [Inter
quartile Range: 130, 202 days]. The overall incidence during that period 
was 5.4 seroreversions per 100 person-years (5.4/100py) of follow-up 
(Table 2). The incidence and risk of seroreversion increased stepwise 
by age group starting with 1.6/100py for those 18 to 39 years old and 
peaking at 9.2/100py for participants ≥ 65 years old. Relative to the 
youngest age group (18–39 years), the aHR for seroreversions was 1.25 
(95%CI: 0.67 to 2.31), 2.19 (95%CI: 1.22 to 3.92), and 3.59 (95%CI: 
2.07 to 6.20) for ages 40 to 54, 55 to 64, and ≥ 65 years, respectively 
(Fig. 2). 

Among race/ethnicity groups, non-Hispanic Whites had the highest 
incidence of seroreversion, 5.9/100py, followed in descending order by 
non-Hispanic other (3.7/100py), Hispanic/Latino (2.7/100py), and 
non-Hispanic Black (1.6/100py). The adjusted risk of seroreversion for 
non-Hispanic Blacks was statistically lower compared to non-Hispanic 
Whites (aHR 0.32: 95% CI: 0.13 to 0.79). Participants with a college 
degree had a lower incidence of seroreverting than participants with less 
education (5.0/100py vs. 7.0/100py) and reduced risk of seroreversion 
(aHR 0.61, 95%CI: 0.46–0.81). 

The highest incidence of seroreversion among any population cate
gory was for participants with diabetes with an incidence of 11.3/ 
100py. In contrast, participants without diabetes had an incidence of 
5.2/100py. The aHR associated with having diabetes was 1.77 (95%CI: 
1.29 to 2.44) compared to those without diabetes. A COVID-19 infection 
before vaccination showed a tendency toward protection (aHR 0.33, 
95% CI: 0.11 to 1.04) but was not statistically significant. 
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Interaction 

A statistically significant interaction was detected in this analysis: 
healthcare worker occupation by sex (Table 2). Compared to male non- 
healthcare workers, risk of seroreversion was reduced for male health
care workers (aHR: 0.29, 95%CI: 0.15–0.56) and for all females 
regardless of being a healthcare worker (aHR 0.33, 95%CI: 0.22–0.51) 
or not (aHR 0.39, 95% CI: 0.3–0.51) (Table 3). All of the other in
teractions assessed for combinations between sex, education, healthcare 
worker occupation, age group, race/ethnicity, and vaccine brand were 

not statistically significant. 

Discussion 

In this longitudinal, multi-state cohort study of nearly 13,000 adults, 
participants maintained detectable anti-spike antibodies until dropout 
or censoring that occurred at booster vaccination or subsequent infec
tion, reflecting a highly durable antibody response to COVID-19 vacci
nation. Still, we detected higher rates of seroreversion in some 
subgroups. We found the risk of seroreversion increased with age group 

Fig. 1. Flow diagram for participant enrollment and analysis Notes: Vaccination status was confirmed with electronic health record data when available [17].  
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and the oldest adults were several times more likely to serorevert than 
the youngest adults. This finding is consistent with prior studies that 
showed that immune responses to vaccination are often weaker in older 
adults [23,24]. A diagnosis of diabetes was identified as an independent 
risk factor for seroreversion. This aligns with a prior study showing a 
poorer IgG anti-spike response to mRNA vaccination in persons with 
diabetes [25], thought to arise because of an impaired immune system 
with metabolic abnormalities [26]. 

Two sociodemographic factors, race/ethnicity and education, were 
associated with protection from seroreversion. Racial and ethnic mi
norities have been at higher risk of SARS-CoV-2 exposure and disease 
[23,27,28], so the higher antibody durability we saw among non- 
Hispanic Blacks relative to non-Hispanic Whites may have been due to 
more frequent asymptomatic boosting of spike antibody responses from 
those exposures. However, this would imply SARS-CoV-2 exposures 
during participant follow-up that were significant enough to boost spike 

antibody responses but not enough to result in a positive anti- 
nucleocapsid antibody response. Investigators have previously re
ported an association between higher education and lower risk of SARS- 
CoV-2 infection and disease [27,28]. This may imply protection from 
seroreversion observed in those who were more highly educated may be 
due to socioeconomic status factors such as income (not evaluated in this 
study) that could contribute to overall better states of health and 
therefore, better immune responses to vaccination. 

Based on previous findings [29–31], we expected to see a decreased 
risk of seroreversion in those who had a confirmed COVID-19 infection 
prior to vaccination. We observed a non-statistically significant reduced 
hazard in those with confirmed infection prior to vaccination. Lack of 
statistical significance may be due to insufficient statistical power to 
detect a difference given the small sample population that reported a 
previous infection. Other researchers have shown an association with 
stronger serological responses from receiving the Moderna mRNA-1273 

Table 1 
Participant Characteristics by Seroreversion Status.   

Overall Did not Serorevert Seroreverted p-value 

N 12,947 12,631 316  
Age (years, mean + SD) 56.0 ± 15.3 55.7 ± 15.3 66.8 ± 12.8  <0.0011 

Age (years)     <0.0012 

18–39 2,527 (19.5%) 2,510 (19.9%) 17 (5.4%)  
40–54 3,016 (23.3%) 2,980 (23.6%) 37 (11.4%)  
55–64 2,595 (20.0%) 2,588 (20.2%) 46 (14.6%)  
65 + 4,809 (37.1%) 4,592 (36.4%) 218 (68.7%)  
Sex     <0.0013 

Female 8,317 (64.2%) 8,177 (64.7%) 140 (44.3%)  
Male 4,630 (35.8%) 4,454 (35.3%) 177 (55.7%)  
Race and ethnicity     <0.0012 

Hispanic 450 (3.5%) 445 (3.5%) 5 (1.6%)  
Non-Hispanic Black 888 (6.9%) 882 (7.0%) 6 (1.9%)  
Non-Hispanic Other 677 (5.2%) 666 (5.3%) 11 (3.5%)  
Non-Hispanic White 10,932 (84.4%) 10,638 (84.2%) 297 (93.0%)  
Healthcare worker     0.1733 

No 10,450 (80.7%) 10,185 (80.6%) 265 (83.9%)  
Yes 2,497 (19.3%) 2,446 (19.4%) 51 (16.1%)  
County of residence     0.7642 

Rural 2,881 (22.3%) 2,812 (22.3%) 69 (21.8%)  
Suburban 3,495 (27.0%) 3,404 (26.9%) 91 (28.8%)  
Urban 6,571 (50.8%) 6,415 (50.8%) 156 (49.4%)  
Enrollment Site4     0.9502 

Atrium (NC) 1,970 (15.2%) 1,921 (15.2%) 49 (15.5%)  
Univ. of Maryland (MD) 2,246 (17.3%) 2,195 (17.4%) 51 (16.1%)  
MedStar (MD) 4,868 (37.6%) 4,753 (37.6%) 115 (36.4%)  
Univ. of Mississippi (MS) 93 (0.7%) 91 (0.7%) 2 (0.6%)  
Tulane (LA) 55 (0.4%) 54 (0.4%) 1 (0.3%)  
Wake Forest (NC) 3,715 (28.7%) 3,617 (28.6%) 98 (31.0%)  
Received Influenza Vaccine     
No 1,346 (10.6%) 1,322 (10.7%) 24 (7.7%)  0.1143 

Yes 11,311 (89.45) 11,025 (89.3%) 286 (92.3%)  
Education level     0.0313 

College Degree 10,183 (80.5%) 9,949 (80.6%) 234 (75.5%)  
No College Degree 2,474 (19.5%) 2,398 (19.4%) 76 (24.5%)  
Vaccine Product     <0.0013 

Moderna mRNA-1273 4,854 (37.5%) 4,789 (37.9%) 65 (20.6%)  
Pfizer BNT162b2 8,093 (62.5%) 7,842 (62.1%) 251 (79.4%)  
Days between doses 24.8 ± 6.1 24.8 ± 6.2 22.9.0 ± 4.7  <0.0011 

Previous COVID-19 Infection     0.0123 

No 12,461 (96.2%) 12,148 (96.2%) 313 (99.1%)  
Yes 486 (3.8%) 483 (3.8%) 3 (0.9%)  
Diabetes     
No 10,241 (90.4%) 10,001 (90.6%) 240 (81.4%)  <0.0013 

Yes 1,087 (9.6%) 1,032 (9.4%) 55 (18.6%)  
Obesity     
No 9,478 (83.7%) 9,237 (83.7%) 241 (81.7%)  0.3963 

Yes 1850 (16.3%) 1,796 (16.3%) 54 (18.3%)   

1 Welch Two Sample t-test. 
2 Pearson’s Chi-squared test. 
3 Pearson’s Chi-squared test with Yates’ continuity correction. 
4 Full names of enrollment sites: Atrium Health (NC), University of Maryland Medical System (MD), Medstar Health (MD), University of Mississippi Medical Center 

(UMMC), Tulane University (LA), Wake Forest Baptist Health (NC). 
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vaccine compared with the Pfizer-BioNTech BNT162b2 vaccine 
[31–33]. Our data also suggested a similar difference by vaccine 
product. 

We noted a statistical interaction suggesting that time to seror
eversion differed by sex and occupation. Increased durability of anti
body responses to vaccination in females compared to males has been 
described previously [34–36], and our findings suggested the same. 
However, in this study, we found the durability of antibody response 
between sexes was largely due to relatively shorter antibody durability 
among male non-healthcare workers. The differences between males by 
healthcare worker occupation may be due to differences in occupational 
SARS-CoV-2 exposures and/or differences in risk prevention behaviors 
such as mask use or social distancing. 

Our study design allowed for the capture of subclinical infections 
that were not reported by the volunteers as illnesses because all positive 
tests for anti-spike antibody were further tested for the presence of anti- 
nucleocapsid antibodies, which are elicited by natural infection but not 
by either of the mRNA vaccines. Nonetheless, participants could have 

had subclinical infections that were anti-nucleocapsid antibody negative 
(e.g., due to low test sensitivity) but that “boosted” spike antibody re
sponses. Also, Tutukina et al. suggested [37] that some SARS-CoV-2 
infections are accompanied by a rise in anti-spike antibody responses 
without a detectable rise in anti-nucleocapsid antibodies. Failure to 
detect subclinical infections could have led to bias in our study if the 
groups compared have different risk of infection. For example, if 
healthcare workers are at higher risk of occupational exposure and had 
subclinical infections, their antibody responses could have been boosted 
by the subclinical infections. 

The strengths of our study include its size and geographic diversity 
across multiple sites within the mid-Atlantic and Southern United States 
and longitudinal, remote data collection of symptoms and risk behavior. 
Even though COVID-19 antibody responses were qualitative and 
measured at monthly intervals, the ease of home-based sample collec
tion yielded a high frequency of kit return and interpretable results. 
Integration of syndromic surveillance, antibody testing, and electronic 
health records provided robust data from which we were able to 

Table 2 
Incidence, Crude Hazard Ratios, and Adjusted Hazard Ratios by Population Characteristics.   

N Seroreverters/person years of 
follow-up 

Incidence per 100 person-years of 
follow-up 

Crude Hazard 
Ratio 
(95% CI) 

Adjusted Hazard Ratio 
(95% CI) 

Overall 12,947 316/5812 5.4 – – 
Age (years)      
18–39 2,527 17/1031 1.6 REF REF 
40–54 3,016 36/1297 2.8 1.71 (0.96–3.04) 1.25 (0.67–2.31) 
55–64 2,595 46/1139 4 2.81 (1.61–4.91) 2.19 (1.22–3.92) 
65 + 4,809 217/2346 9.2 6.21 (3.74–10.16) 3.59 (2.07–6.20) 
Sex1      

Female 8,317 140/3769 3.7 REF REF 
Male 4,630 176/2042 8.6 2.66 (2.13–3.32) 2.01 (1.58–2.56) 
Race and Ethnicity      
Non-Hispanic White 10,932 294/4961 5.9 REF REF 
Hispanic/Latino 450 5/186 2.7 0.48 (0.2–1.15) 0.81 (0.33–1.98) 
Non-Hispanic Black 888 6/375 1.6 0.29 (0.13–0.65) 0.32 (0.13–0.79) 
Non-Hispanic Other 677 11/290 3.8 0.61 (0.34–1.12) 0.95 (0.5–1.81) 
Healthcare worker1      

No 10,450 265/4502 5.9 REF REF 
Yes 2,497 51/1310 3.9 0.3 (0.22–0.42) 0.59 (0.41–0.87) 
County Classification      
Urban 6,571 156/2906 5.4 REF REF 
Rural 2,881 69/1308 5.3 0.94 (0.71–1.25) 0.98 (0.71–1.34) 
Suburban 3,495 91/1598 5.7 1.01 (0.77–1.29) 1.08 (0.81–1.44) 
Enrollment Site2      

Wake Forest 3,715 98/1651 5.9 REF REF 
Atrium 1,970 49/905 5.4 0.81 (0.58–1.15) 1.01 (0.71–1.44) 
Maryland 2,246 51/1085 4.7 0.76 (0.54–1.07) 0.97 (0.67–1.42) 
MedStar 4,868 115/2097 5.5 1.08 (0.83–1.42) 1.33 (0.99–1.79) 
Mississippi 93 2/49 4.1 0.45 (0.11–1.85) 0.35 (0.05–2.58) 
Tulane 55 1/24 4.2 0.69 (0.1–4.94) 1.09 (0.15–7.91) 
Education Level      
No College Degree 2,474 76/1072 7.1 REF REF 
College Degree 10,183 234/4642 5 0.64 (0.5–0.83) 0.61 (0.46–0.81) 
Vaccine Product      
Pfizer BNT162b2 8,093 251/3639 6.9 REF REF 
Moderna mRNA-1273 4,854 65/2173 3 0.48 (0.36–0.63) 0.35 (0.26–0.47) 
Previous COVID-19 

Infection      
No 12,461 313/5619 5.6 REF REF 
Yes 486 3/193 1.6 0.3 (0.1–0.95) 0.33 (0.11–1.04) 
Diabetes      
No 10,241 240/4628 5.2 REF REF 
Yes 1,087 55/484 11.4 2.41 (1.80–3.23) 1.77 (1.29–2.44) 
Obesity      
No 9,478 241/4295 5.6 REF REF 
Yes 1,880 54/817 6.6 1.21 (0.90–1.62) 1.11 (0.81–1.52) 
Interaction: HCW [Y] × Sex 

[M] 
– – – – 0.37 (0.17–0.80)  

1 Variable is present in an interaction (see bottom of table and Table 3). 
2 Full names of enrollment sites: Atrium Health (NC), University of Maryland Medical System (MD), Medstar Health (MD), University of Mississippi (MS), Tulane 

University (LA), Wake Forest Baptist Health (NC). 
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demonstrate durable antibody responses to vaccination and detect dif
ferences in antibody durability across sub-groups of participants. 

Limitations of our study included a lack of racial, ethnic, and soci
odemographic diversity in our study population, with high proportions 
of respondents being female, non-Hispanic White, college degree 
holders. Our population was also highly vaccinated, which limited our 
ability to compare outcomes in vaccinated and unvaccinated groups. We 
are also limited in only being able to describe antibody response rather 
than outcomes of severe disease and hospitalization, which are rare 
events needing an even larger sample size. Our analysis was limited to 
data collected through October 2021 and does not include estimates of 
antibody duration since the emergence of the Omicron variant nor 
following widespread use of vaccine booster doses. Our large effect size 
for non-healthcare worker males having increased risk of seroreversion 
were robust to reanalysis of the data, which lead us to feel strongly that 
the associations, though difficult to explain biologically, are real. 
Nonetheless, we cannot rule out the presence of unmeasured 
confounders. 

In summary, we have established that a longitudinal, multi-site study 
is able to robustly detect differences in antibody durability following 
COVID-19 vaccination. Our results add to our understanding of the ki
netics of serum anti-spike antibodies within the community and poten
tially enhance our understanding of the level and length of protective 
humoral immunity. We expect these predictors of seroreversion may be 
useful to identifying and monitoring populations at risk of breakthrough 
infections and to informing vaccination doses and schedules. Despite 

declarations otherwise, the COVID-19 pandemic continues and despite a 
relatively low incidence time in March 2023 still causes approximately 
500 deaths per day in the U.S [38]. Further work to correlate antibody 
response with neutralizing antibody titers and with protection from 
severe disease and hospitalization will allow serosurveillance to inform 
the targeting of public health interventions to those most at risk for 
severe illness and for determining the timing of booster doses. 
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