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Key Points

• Secondary bile acids
interact directly with
hematopoietic
progenitors to promote
myelopoiesis in a VDR-
dependent manner.

• Secondary bile acids
elevated expression of
genes associated with
differentiation and
proliferation in myeloid
progenitors.
Metabolic products of the microbiota can alter hematopoiesis. However, the contribution

and site of action of bile acids is poorly understood. Here, we demonstrate that the

secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone

marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially

expanded immunophenotypic and functional colony-forming unit–granulocyte and

macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted

hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct

exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was

required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing

revealed that DCA significantly upregulated genes associated with myeloid differentiation

and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent

manner suggests microbiome-host interactions could directly affect bone marrow

hematopoiesis and potentially the severity of infectious and inflammatory disease.
Introduction

All circulating mature myeloid cells, such as neutrophils and monocytes, are created via the continuous
differentiation of highly proliferative multipotent hematopoietic progenitor cells (HPCs) during myelopoi-
esis.1,2 Myeloid-biased HPCs are a heterogenous population possessing lineage-restricted common
myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs). Both cell-extrinsic and
-intrinsic signals guide the differentiation of GMPs into either neutrophils or monocytes/macrophages.3-6

This process is fundamental to both tissue immune homeostasis and protection from infection.7,8

Recent literature suggests that the commensal microbiome affects bone marrow hematopoiesis.9,10

Microbiota disruption via antibiotic treatment can result in a decreased capacity for myelopoiesis,
with decreased GMP and granulocyte production.11,12 Dysbiosis resulting from nutritional deficit,
infectious insult, or metabolic disorders can also result in lasting hematologic abnormalities.13-15

Similarly, germ-free animals are hematologically distinct from animals with an intact microbiome, and
defects in hematopoiesis can be rectified with the introduction of intestinal commensal bacteria.10,16
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Although the underlying mechanisms of these observations are not
fully understood, it has been suggested that microbial metabolite
production may affect the bone marrow.17 The short-chain fatty
acid propionate interacts with the bone marrow to direct the dif-
ferentiation of monocytes and dendritic cells during allergic
inflammation.18 Lactate promotes hematopoiesis by regulating the
production of stem cell factor (KIT ligand) via bone marrow stromal
cells.19 Similarly, we demonstrated that animals with elevated
serum concentrations of secondary bile acids, deoxycholic acid
(DCA) and lithocholic acid (LCA), have elevated GMPs.20 How-
ever, the tissue compartment that bile acids function in and the
pathways that mediate marrow GMP expansion and alteration of
myelopoiesis remain unknown.

Primary bile acids are derived from the host via cholesterol meta-
bolism in the liver and then transported to the gut in which they aid
in the emulsification of fats and lipids.21 Members of the intestinal
microbiota, including Clostridium species, further metabolize pri-
mary bile acids into secondary bile acids, such as DCA and
LCA.22,23 Secondary bile acids are potent regulators of the
immune system, interacting with mature intestinal immune cells, via
bile acid receptors, to maintain tissue immune homeostasis and
guide intestinal inflammation.24,25 Although bile acid receptors are
expressed in select nonintestinal tissues, including the bone
marrow, bile signaling in the marrow environment and its contri-
bution to myelopoiesis is not well understood.26,27

In this study, we examined the sufficiency of bile acids to alter
myelopoiesis, and discovered that secondary bile acids can
augment the production of progenitors constituting the GMP and
CMP populations as well as mature myeloid cells. The increased
myelopoiesis occurs via direct communication of bile acids with
bone marrow hematopoietic stem and progenitor cells (HSPCs),
which elevates the expression of myeloid differentiation and cellular
proliferation genes and requires the secondary bile acid sensor, the
vitamin D receptor (VDR).28,29

Methods

Mice

Four- to 8-week-old, male C57BL/6 mice (wild type [WT] and
VDR–/–, The Jackson Laboratories) were housed in a specific
pathogen-free facility and provided with autoclaved food and water ad
libitum. Sentinels were used to ensure that mice were free of com-
mon murine pathogens. All procedures were approved by the insti-
tutional animal care and use committee of the University of Virginia.

Isolation of bone marrow for ex vivo experiments

Whole bone marrow was isolated, as previously described.20 After
isolation, whole bone marrow was either (1) immediately used in
ex vivo assays, (2) stained for fluorescence-activated cell sorting
(FACS), or (3) placed into cryostor CS10 (StemCell Technologies)
for long-term storage in a −80◦C freezer. Cell viability was assayed
using trypan blue exclusion, and counting was done on an auto-
matic hemocytometer (TC-20; Bio-Rad).

Colony-forming assay for functional determination of

hematopoietic progenitors

Twenty thousand whole bone marrow cells, 1000 lineage (Lin)−

Sca-1+ c-Kit+ (LSK) cells, 2000 GMPs, or 1000 CMPs from
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VDR–/– or WT mice were placed into MethoCult M3434 (StemCell
Technologies) per the manufacturer’s protocol. Cells were cultured
with either control media (Iscove modified Dulbecco
medium [IMDM] + 2% fetal bovine serum [FBS]), DCA (35 μM;
Sigma-Aldrich), cholic acid (CA; 35 μM; VWR), LCA (18 μM;
Sigma-Aldrich), or 1,25-dihydroxy vitamin D3 (1,25-VITD3; 100 nM,
1 nM, or 1 nM; Sigma-Aldrich). Colony formation of burst forming
units–erythroid (BFU-Es), colony-forming unit–granulocyte, eryth-
rocyte, macrophage, and megakaryocyte (CFU-GEMMs), and
CFU-granulocyte and macrophage (CFU-GMs) were analyzed on
culture-day 11. Colony morphology was assessed with experi-
mental blinding.

Wright-Giemsa staining for GMP morphological

assessment

WT or VDR–/– cells from the colony-forming assays were isolated
via dissolution of the semisolid media. Colonies were removed by
washing with IMDM + 2% FBS. Cells were centrifuged, and the
media was decanted via aspiration; this wash step was repeated
twice. Isolated cells were stained for FACS to isolate GMPs. GMPs
were subjected to FACS using phosphate-buffered saline (PBS) +
3% bovine serum albumin and spun onto microscope slides. The
slides were placed in 98% methanol for 7 minutes to fix the cells.
Cells were stained with 0.02% Wright-Giemsa stain (Sigma-
Aldrich) for 30 minutes and washed with distilled water to remove
excess stain. Slides were mounted in Cytoseal XYL (Epredia) and
coverslipped. Images were obtained with the NanoZoomer S360
digital scanner (Hamamatsu). Images were uploaded to the Path-
Core database, and representative images were selected using the
PathCore Flow solution.

Liquid coculture experiments

Irradiated AFT024 cells were seeded to confluency in 24-well
plates in Dulbecco modified Eagle medium + 10% FBS +
0.05 mM 2-mercaptoethanol in a 33◦C, 5% CO2 incubator.
Complete media was made adding 0.22 μm filter–sterilized mini-
mum essential medium α with nucleosides (StemCell Technolo-
gies) containing 1mM hydrocortisone (StemCell Technologies) to
Myelocult M5300 (StemCell Technologies) for a final concentra-
tion of 1 μM hydrocortisone. AFT024 media was removed from the
wells, and 200 000 whole bone marrow cells in 1 mL of complete
media were added to each well. Cells were cultured for 1 week
either in control media or in the presence of DCA (35 μM) or LCA
(18 μM). After 1 week, media were removed and placed into a
collection tube, adherent cells were washed with Hanks balanced
salt solution (StemCell Technologies). Hanks balanced salt solu-
tion was removed and placed into the collection tube, and cells
were treated with Trypsin-EDTA (0.05%; Thermo Fisher Scientific).
Trypsinization was halted by washing cells with heat-inactivated
FBS, followed by IMDM + 2% FBS. This was placed back into
the collection tube and centrifuged to form pellet cells. The media
were decanted via aspiration. Cells were resuspended in FACS
buffer (PBS + 1% FBS) and stained for spectral flow cytometry.

In silico assessment of bile acid receptor expression

Bile acid receptor messenger RNA expression was compared
using the online publicly available database, Haemosphere. Data
were derived from the heamopedia mouse RNA–sequencing data
set.30
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IV DCA treatment

Control mice that were 4- or 6-week-old VDR–/– and WT litter-
mates were IV administered 400 μL of 0.20 mg/mL DCA or PBS 3
times a week for 2 weeks. Cage beddings were swapped every
3 days between genotypes to minimize variability caused by dif-
ferences in the microbiome.

scRNA-seq

Cells were isolated from our liquid coculture system, and lineage-
negative cells were subjected to FACS for single-cell RNA
sequencing (scRNA-seq). Cells were sorted using 1% FACS
buffer in low–protein binding microcentrifuge tubes (Thermo Fisher
Scientific). The cells were then centrifuged at 800g and resus-
pended in 50 μL of PBS + 0.04% bovine serum albumin and
filtered with a Flowmi filter (Millipore Sigma). Cell viability was
assessed using the CellDrop cell counter (DeNovix Inc) and the
acridine orange/propidium iodide viability assay (DeNovix Inc). The
Genome Analysis and Technology core generated the single-cell
indexed libraries and performed quality control analyses to ensure
high-quality RNA. Briefly, 8000 cells per sample were targeted for
use with the 10X Genomics Chromium Controller platform, the
Chromium single-cell 3′ library, and the Gel Bead Kit version 3.1
reagent. Generated complementaty DNA was subjected to quality
control using the 4200 TapeStation instrument, using the D5000
Kit (Agilent). Quality control was performed on the Illumina Miseq,
using the nano 300Cycle kit (1.4 million reads per run). Samples
were then deep sequenced on the NextSeq 2000, using the
P3-100 Cycle kit. Binary Base Call (BCL) files were converted to a
FASTQ format using Illumina bcl2fastq2 software.

scRNA-seq analysis

FASTQ files were used to generate a count matrix using the cell
ranger pipeline (10x Pipeline) and then imported to the Seurat R
package for in-depth analysis.31 Cell sample size, average unique
molecular identifier (UMI) counts per cell, and average detected
genes per cell were as follows: for media, 9346, 65 526, and 3270,
respectively; and for DCA-treated samples, 8520, 61 884, and
2930, respectively). Cells with unusually low or high total UMI
counts (ie, <1000 or >50 000) or a high percentage of UMI counts
arising from mitochondrial genes (>10%) were filtered out. Data
were normalized across samples using the SCTransform func-
tion.32 In the normalization procedure, the variables “percentage of
mitochondrial gene expression” and “number of detected genes”
were regressed to remove these sources of variation. Principal
component analysis and uniform manifold approximation and pro-
jection were performed for dimension reduction and data visuali-
zation.33 Clustering analysis was implemented via Seurat function
FindClusters with Louvain algorithm.34 To determine the number of
clusters, we maximized the average silhouette width to ensure
modest cohesion within each cluster and separation between
clusters. Cluster marker genes and differentially expressed genes
between treatments within a cluster were determined through the
Seurat function FindMarkers with the MAST algorithm.35 To adjust
for multiple comparisons, we controlled false discovery rate
through the Benjamini-Hochberg procedure. Genes with an
adjusted P value < .05 were considered differentially expressed.
Gene Ontology enrichment analysis was conducted for differen-
tially expressed genes between treatments in the GMP cluster
through the gene functional annotation tool DAVID.36
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Software and statistical analyses

Spectral flow data were analyzed on the flow cytometry analysis
software OMIQ. All data were exported into GraphPad Prism
(version 9.0.2) for statistical analysis. All figures were compiled and
arranged using Adobe Illustrator (version 27.0). All experiments in
this study were analyzed using unpaired Student t tests, a one-way
analysis of variance with Tukey post hoc test, or a two-way analysis
of variance with Šidák or Dunnett post hoc test.

Results

Secondary bile acids expand myeloid cells via direct

interaction with bone marrow

We previously demonstrated that mice with elevated serum sec-
ondary bile acids, DCA and LCA, had significantly higher numbers
of GMPs than those with normal acid levels, as measured via flow
cytometry and colony-forming assays.20 Although secondary bile
acids can signal to mature immune cells as well as intestinal cells
and hepatocytes,37-39 it was unclear whether DCA and LCA could
communicate to the bone marrow to stimulate myelopoiesis.
We hypothesized that secondary bile acids act directly on bone
marrow cells, and used ex vivo approaches to determine whether
secondary bile acids were sufficient to drive myelopoiesis
(Figure 1A-B). Whole bone marrow treated with LCA and DCA, but
not marrow treated with primary bile acid and DCA precursor CA,
exhibited a preferential increase in CFU-GMs (Figure 1C). This
preferential expansion involved an increase in the total number of
CFU-GMs in DCA/LCA-treated cultures, a decrease in BFU-Es in
DCA-treated cultures (Figure 1D), an increase in the total number
of all colonies in LCA-treated cultures (Figure 1E), and morpho-
logical changes in GMPs, suggesting enhanced maturity, with
sorted cells exhibiting macrophage- and neutrophil-like morphol-
ogies (Figure 1F).40

To further validate that secondary bile acids drive myelopoiesis, we
used a previously described coculture system for murine HPCs41

(Figure 1A), followed by spectral cytometry to analyze immune
cell populations (supplemental Figure 1; supplemental Table 1).
Bile acid treatment increased both mature and immature myeloid
cell populations, including CMPs (Figure 1G; supplemental
Figure 2A), GMPs (Figure 1H; supplemental Figure 2B), neutro-
phils (Figure 1I; supplemental Figure 2C), and macrophages
(Figure 1J; supplemental Figure 2D). Bile acid treatment did not
elevate the numbers of monocytes (supplemental Figure 2E-H),
LSK cells (supplemental Figure 2I-J), or other GMP progenitors
such as lymphoid-primed multipotent progenitors (supplemental
Figure 2K-L).42

DCA interacts with HSPCs to drive myelopoiesis and

does not require stromal cells

The bone marrow is composed of specialized niches having both
hematopoietic and stromal cells. Stromal cells form a critical
component that support HSPCs and help guide their proliferation
and differentiation.43,44 We aimed to determine the necessity of
stromal cells for myeloid expansion during DCA treatment. LSK
cells were flow-sorted to enrich HSPCs, and deplete stromal cells
and were cultured in colony-forming media in the presence or
absence of DCA (Figure 2A; supplemental Table 2). Cultures
treated with DCA generated elevated proportions of CFU-GMs
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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Figure 1. Secondary bile acids expand myeloid cells via direct interaction with bone marrow. (A) Whole bone marrow was placed in either (1) colony-forming

media or (2) liquid coculture with AFT024 cells. (B) Myelopoiesis schematic representation; CFU-GEMM, CFU-GM, MEP, and BFU-E. (C-E) Whole bone marrow was cultured in

colony-forming media with DCA, CA, or LCA. Colonies were analyzed as (C) percentage of total colonies, (D) number of individual colony types, and (E) total colony numbers. (F)
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(Figure 2B), increased total numbers of colonies (Figure 2C) and
CFU-GMs (Figure 2D), decreased BFU-Es (Figure 2E), and did not
affect CFU-GEMMs (Figure 2F). Moreover, Addition of a heterog-
enous population of CD34− cells back to sorted CD34+ cultures
resulted in no change in CFU-GM expansion upon treatment with
DCA (supplemental Figure 3A-D). These data suggest that stromal
cells are not required for DCA-mediated expansion of myelopoiesis
and that secondary bile acids can signal directly to HSPCs to alter
hematopoiesis.

LSK cells are a heterogenous population of HSPCs with members
capable of producing myeloid progenitor cells. Moreover, we have
shown previously that bone marrow from DCA-treated animals
maintains heightened myelopoiesis 8 weeks after transplantation,
when adoptively transferred to treatment-naive animals.20 This
suggests that a transplantable fraction of the hematopoietic
compartment is affected by elevated serum DCA, rather than a
stromal population. Thus, to better understand how DCA exerts its
effect on myelopoiesis, flow-sorted CMPs and GMPs were placed
into colony-forming media with or without DCA. DCA treatment of
CMPs preferentially expanded CFU-GMs without significantly
Figure 1 (continued) Wright-Giemsa staining of FAC-sorted GMPs from colony-forming a

CMPs, (H) CMPs, (I) neutrophils, and (J) macrophages from liquid coculture experiments.

experimental replicates and were analyzed using one-way analysis of variance (ANOVA) w

**P < .01; ***P < .001; ****P < .0001. MEPs, megakaryocyte erythrocyte progenitors.
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altering the number of CFU-GMs, BFU-Es, or CFU-GEMMs
(supplemental Figure 3E-I). Furthermore, the treatment of GMPs
did not enhance total colony output (supplemental Figure 3J).
Moreover, serial replating of flow-sorted LSK cells treated with
DCA in the first plating, but not subsequent platings, showed that
DCA-treated cultures had significantly higher colony generation
than untreated controls (supplemental Figure 3K). Overall, our data
suggest that DCA interacts with GMP progenitors, not GMPs, to
enhance myelopoiesis while elevating self-renewal and cellular
output of LSK cells.

The VDR is required for CFU-GM expansion during

DCA treatment

Bile acids signal through bile acid receptors to mediate cellular
functions.24,39 Although the functions of these receptors are
becoming better understood within metabolic tissues, such as the
liver and gut, little is known about the role of bile acid receptors
within the bone marrow. We used Haemosphere, a publicly avail-
able RNA-seq database, to explore the expression of canonical bile
acid receptors, the farnesoid X receptor (FXR) and the Takeda G
ssays; bar represents 50 μM size. (G-J) Flow cytometric analysis of frequencies of (G)

All data are shown and represent 3 (colony-forming assay) or 2 (liquid coculture)

ith Tukey post hoc test, or two-way ANOVA with Dunnett post hoc test. *P < .05;
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Figure 3.
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protein–coupled receptor (TGR5), and secondary bile acid sensor,
the VDR, in HSPCs.28-30 Fxr and Tgr5 were not expressed in the
majority of myeloid progenitors in this data set, whereas Vdr was
highly expressed (Figure 3A). Because VDR was recently been
shown to be a bile acid sensor,28,29 we examined its contribution to
our model and hematopoiesis.

To determine whether VDR was required for GMP expansion, we
treated whole marrow from WT littermate controls (Figure 3B-F) or
VDR-deficient mice (VDR–/–) (Figure 3G-K) with DCA. DCA
treatment expanded CFU-GMs in WT cultures (Figure 3B), did not
alter total colony counts (Figure 3C), increased CFU-GMs
(Figure 3D), decreased BFU-Es (Figure 3E), and did not affect
CFU-GEMMs (Figure 3F). Conversely, DCA treatment of VDR–/–

bone marrow did not expand CFU-GMs (Figure 3G) and did not
alter the total numbers of colonies (Figure 3H), CFU-GMs
(Figure 3I), BFU-Es (Figure 3J), or CFU-GEMMs (Figure 3K). We
observed that the VDR was required for the previously observed
morphological changes to GMPs in DCA-treated cultures
(Figure 3L). Finally, we tested whether the canonical VDR ligand,
1,25-VITD3, also induced myelopoiesis. Whole bone marrow
treated with 1,25-VITD3 recapitulated the results from bile acid
treatment, supporting that VDR activation drives myelopoiesis in
this model system (Figure 3M).

VDR was necessary for DCA-mediated GMP

expansion in vivo

We hypothesized that VDR was required in vivo for the expansion
of GMPs after DCA treatment. DCA was administered to VDR–/–

mice and their WT littermate controls, as described previously
(Figure 4A).20 DCA significantly increased GMPs in WT mice
(Figure 4B) but not in VDR–/– mice (Figure 4C). No significant
difference in CMPs, neutrophils, or macrophages was detected in
WT (Figure 4D,F,H) or VDR–/– mice (Figure 4E,G,I). Moreover,
monocytes, LSK cells, and lymphoid-primed multipotent pro-
genitors did not increase in either WT (supplemental
Figure 4A,C,E,G) or VDR–/– mice (supplemental Figure 4B,D,F,H).

DCA treatment increases differentiation and

proliferation in GMPs

To explore how DCA affects GMPs to alter myeloid cell develop-
ment, we used scRNA-seq of sorted Lin− cells (supplemental
Table 2) from liquid culture with and without DCA (Figure 5A), as
described in Figure 1. We tested data quality by examining the
number of genes and UMIs on a per-cell basis, the mitochondrial
and ribosomal transcript counts as a percentage of the total tran-
script count, the ratio of the total number of transcripts to the
percentage of mitochondrial gene expression, and the total number
of genes (supplemental Figure 5A-F).31 In addition, we analyzed the
relationship between the total number of transcripts and genes and
the percentage of these represented within the top 50 expressed
genes (supplemental Figure 5G-H).31
Figure 3. The VDR mediated CFU-GM expansion during DCA treatment. (A) Mess

was analyzed in HSPCs using the RNA-seq database Heamosphere. (B-K) Whole bone m

colony-forming media in the presence of DCA. Colonies were analyzed as (B,G) the proport

(E,J) BFU-Es, and (F,K) CFU-GEMMS. (L) Wright-Giemsa staining of FAC-sorted GMPs f

presence of VDR ligand 1,25-VITD3. All data are shown and represent 3 experimental repl

with Dunnett or Šidák post hoc test. *P < .05; **P < .01; ***P < .001; ****P < .0001.
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A silhouette width analysis was performed to optimize the number
of clusters to a 7-cluster model (Figure 5B).45 Dimensionality
reduction was performed using a principal component analysis
before uniform manifold approximation and projection visualization
of clusters (Figure 5C).33,34 To identify clusters, we used myeloid
gene expression profiles established in previous scRNA-seq
studies.46,47 Cluster 2 was identified as GMPs based on the
expression of marker genes including Elane, Sox4, Cd34, and
Mpo, and clusters 3 to 5 were identified as neutrophil progenitors
based on the stepwise induction of Ltf, Mmp8, and Cxcl2
throughout the clusters (Figure 5D-E).46 Cluster 1 was identified as
early HSPCs by the expression of Gata2, Egr1, and Il1rl1
(supplemental Figure 5I),46-49 and cluster 6 consisted of monocytic
progenitors demonstrated by the high expression of monocyte
development genes (supplemental Figure 5J).47 A Gene Ontology
analysis was performed on both significantly upregulated
(Figure 5F) and downregulated (supplemental Figure 5K) genes in
cluster 2 when treated with DCA.

Myeloid differentiation genes were upregulated during DCA treat-
ment (Figure 5F-G). Among these genes, DCA treatment upregu-
lated activator protein-1 genes Fos, Jun, and Hif1α, which are all
implicated in cellular proliferation and myelopoiesis.50-53 We then
examined how DCA could alter cell cycle activity in GMPs
(supplemental Figure 5L). We observed a significantly higher pro-
portion of GMPs in the G2M phases of the cell cycle in the DCA
group (supplemental Figure 5M) as well as a significantly higher
G2M score in DCA-treated GMPs at a per-cell level (supplemental
Figure 5N). Moreover, DCA significantly increased expression of a
cellular proliferation marker and G2M gene, Mki67, in GMPs on
a per-cell basis (supplemental Figure 5O-P). This suggests a
mechanism by which DCA treatment heightens myeloid differenti-
ation, proliferation, and colony formation by increasing cell cycle
activity and myelopoiesis gene expression in bone marrow pro-
genitors. Collectively, these data demonstrate that secondary bile
acids enhance myelopoiesis by interacting directly with HPCs in a
VDR-dependent manner and elevating the expression of genes
associated with proliferation and myeloid differentiation in GMPs.

Discussion

The key discoveries in our work establish a new paradigm to explain
how individual microbial metabolites can shape myeloid cell
development via marrow-resident metabolite receptors. Treatment
with secondary bile acids was sufficient to enhance the prolifera-
tion and differentiation of both mature and immature myeloid cells
in ex vivo cultures. Interestingly, DCA treatment of a sorted LSK
population was sufficient to promote myelopoiesis, demonstrating
that secondary bile acids could directly interact with HSPCs
outside the stromal environment. The VDR was required for the
DCA-mediated expansion of CFU-GMs and GMPs, as demon-
strated by the failure of DCA to enhance myelopoiesis in VDR–/–

mice and VDR-deficient marrow ex vivo. Treatment of whole bone
enger RNA expression of bile acids receptors Fxr and Tgr5, and bile acid sensor, Vdr,

arrow from (B-F) VDR+/+ littermate controls and (G-K) VDR–/– mice was placed into

ion of total colonies, (C,H) the total colony number, and the number of (D,I) CFU-GMs,

rom colony-forming assays; bar represents 50 μM. (M) Colony-forming assay in the

icates. Data were analyzed with either an unpaired Student t test or two-way ANOVA
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marrow with the canonical VDR ligand 1,25-VITD3 mimicked these
observations, suggesting that VDR activation promotes myelopoi-
esis of marrow cells ex vivo. Finally, we discovered that DCA
treatment was associated with the elevated expression of genes
associated with myeloid differentiation and cellular proliferation in
GMPs.

Our study adds novel insights to the role of bile acids in hemato-
poiesis. Previous studies have demonstrated that bile acids,
notably taurocholic acid, can act as chemical chaperones in the
fetal liver to prevent protein aggregation in rapidly expanding
hematopoietic stem cells.54 Serum bile acid concentration is also
associated with enhanced recovery from myelosuppressive
chemotherapy in humans and administration of taurodeoxycholic
acid promotes hematopoietic recovery in mice after treatment with
5-fluorouracil.55 It is important to note that these studies did not
interrogate the role of direct bone marrow bile acid signaling or
decouple potential interactions with hepatic or intestinal tissues.
Herein, we analyzed how bile acids communicate with the bone
marrow and assessed whether specific action on hematopoietic
progenitors were sufficient to elevate myelopoiesis vs more indirect
mechanisms involving other tissue compartments. We demon-
strated that secondary bile acid treatment of marrow cells ex vivo
was sufficient to enhance myelopoiesis and that this action was
dependent upon the VDR. Therefore, to our knowledge, our results
establish a novel pathway by which secondary bile acids can
enhance myelopoiesis via direct interactions with marrow-resident
receptors.

Our results suggest an interdependence of bile acid–enhanced
myelopoiesis and the VDR. Previous studies have established
that secondary bile acids interact with the VDR in the intestinal
environment and can signal through the canonical bile acid
receptors FXR and TGR5 in stromal cells within the bone marrow
environment to enhance osteogenesis.26-28 However, until this
study, it remained unknown whether secondary bile acids could
interact with the VDR within the marrow, particularly in HSPCs. We
determined that secondary bile acids could communicate directly
with HSPCs because DCA treatment of a FAC-sorted LSK pop-
ulation enhanced myelopoiesis. Importantly, recent lineage-tracing
experiments have shown that multipotent progenitors within the
LSK population are the major contributor to adult blood cell
development and that all GMPs, CMPs, and mature myeloid cells
are derived from progenitors within this population.2,56 In silico data
demonstrated that, in hematopoietic progenitors, the Vdr gene was
highly expressed compared with Fxr and Tgr5. DCA treatment
failed to promote myelopoiesis in animals and whole marrow defi-
cient in VDR. VDR activation can induce myeloid differentiation,
notably granulopoiesis in zebrafish models, as well as monopoiesis
in murine and human CD34+ cord blood cells, and promote survival
and proliferation of HPCs.57-60 Importantly, these studies were
performed using 1,25-VITD3, and this study is, to the best of our
Figure 5. DCA treatment increases differentiation and proliferation in GMPs. (A) L

of DCA, and subjected to scRNA-seq using the 10x Genomics platform. (B) Selection of a

after dimensional reduction with PCA. (C) Cell cluster visualization using uniform manifold ap

neutrophil genes across clusters. (E) Dot plot of genes associated with neutrophil maturit

analysis using the 184 most upregulated genes within cluster 2 after mapping genes usin

upegulated and downregulated genes labeling genes associated with myeloid cell develop

analysis.
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knowledge, the only to date to examine VDR-bile interactions in
hematopoietic progenitors. Therefore, our work uncovers a new
pathway by which bile acids communicate with hematopoietic
progenitors via the VDR, with the capacity to shape lifelong mye-
lopoietic processes.

We observed that secondary bile acid treatment was sufficient to
broadly enhance myelopoiesis, elevating CMPs, GMPs, neutrophils,
and macrophages ex vivo but not in vivo. This is consistent with our
previous results that animals with elevated serum DCA exhibit
elevated GMPs, but only during infectious insult were more mature
myeloid cells observed in the intestine.20 Thus, we aimed to better
understand how bile–VDR signaling altered mature myeloid cell
development from the GMP population. We determined that GMPs
from secondary bile acid–treated cultures have significantly
elevated expression of the myeloid differentiation/proliferation genes
Jun and Fos and the cell proliferation marker gene Mki67. The
protein products of activator protein-1 genes Fos and Jun, c-Fos
and c-Jun, respectively, are known regulators of the cell cycle, and c-
Jun interactions with master myeloid transcription factor PU.1 are
required for myeloid cell generation from multipotent progenitors.61-63

Moreover, VDR deficiency has been shown to decrease the
expression of the protein product of Mki67, KI67, in murine LSK cell
populations.58 Our results suggest that secondary bile acids are
sufficient to expand the GMP population by promoting the prolifera-
tion and differentiation of hematopoietic progenitors. However, addi-
tional signals may be required in vivo to promote the differentiation of
cells within the GMP population to mature myeloid cells.

In conclusion, we have demonstrated that secondary bile acids are
sufficient to drive bone marrow myelopoiesis by interacting directly
with the LSK population in a VDR-dependent manner. This work
adds to the mechanistic insight of how bile acids can potentiate
systematic immune responses via direct interactions with pro-
genitor cells. Increased understanding of bile acid–VDR interac-
tions in gut–marrow communication highlights the critical role of
microbiome-derived metabolites in myelopoietic regulation, which
will affect human health both during homeostasis and during the
context of infectious and inflammatory disease.
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