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Abstract 

Species distribution modeling (SDM) has become an increasingly common approach to explore questions 
about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we con-
ducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used 
SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods 
has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy 
modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional 
models were developed for areas in Africa and Asia, while more localized modeling efforts were most common 
for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological 
foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne 
disease risk.
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Background
Mosquito-borne diseases have long imposed a heavy 
burden on both human and animal health worldwide [1]. 
There is an extensive history of mosquito control efforts 
to reduce the transmission of mosquito-borne diseases 

of global public health importance, notably malaria, yel-
low fever, and dengue fever [2–4]. However, these efforts 
are increasingly undermined by the combined effects of 
climate change, urbanization, and health system erosion, 
all of which are implicated in the expansion of mosquito-
borne diseases to higher latitudes and elevations [3, 5, 
6], the re-emergence of diseases like malaria and yellow 
fever [7–10], and the emergence of novel pathogens like 
chikungunya and Zika virus [11–14]. Despite their pub-
lic health importance, most of these diseases are under-
surveilled and underreported, particularly in areas where 
poverty overlaps with a growing number of syndemic and 
syndromically hard-to-distinguish mosquito-borne dis-
eases [15–17]. As a result, mapping the geographic dis-
tribution of mosquito vectors is often used as a first step 
towards describing the shifting landscapes of infectious 
disease risk.
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One of the most commonly applied tools to study 
mosquito geographic distributions is species distribu-
tion modeling (SDM), also commonly known as ecologi-
cal niche modeling. Species distribution models relate 
presence-absence or presence-only occurrence data 
to explanatory landscape factors, producing estimates 
of suitable habitat [18, 19]. Inputs for SDMs typically 
include geolocated data on the presence of the species 
of interest as the response variable, often in the form of 
occurrence records derived from literature reviews, data-
bases, or aggregated abundance sampling [18]. Explana-
tory variables are extracted from a wide range of sources, 
and ideally represent aspects of the species’ ecology that 
impact whether the organism can persist in a particular 
environment. Researchers often consider climatologi-
cal factors, as well as place and organism-specific factors 
such as land cover, slope, aspect, elevation, soil type, and 
human effects on the landscape [20–22].

Given the flexibility of the approach, the motivations 
and objectives for developing SDMs of mosquito spe-
cies often vary alongside model inputs, methods, and 
spatial scope. For example, global, regional, or national-
scale SDMs may aim to anticipate broad distributions 
of present or future disease risk [23–25], while models 
developed at a finer spatial scale play an increasingly 
important role in vector control strategies. Public health 
vector control and mosquito source reduction are cor-
nerstones of disease management, curbing transmission 
when clinical treatment and prophylactic options are 
limited or non-existent, as is currently the case for many 
arboviruses [26]. Identifying areas at risk from mosquito-
borne disease transmission is integral to the development 
of effective policies, formation of mitigation strategies, 
and allocation of resources [27, 28]; however, vector sur-
veillance activities can be resource intensive and geo-
graphically limited [29, 30]. Research-guided mosquito 
surveillance and abatement efforts are therefore often 
cited as necessary for practitioners to precisely know not 
only when, but also where to both monitor and intervene 
[31–37].

Here, we undertake a systematic review of the current 
body of literature on mosquito SDM research, motivated 
by the desire to understand these different applications, 
and to identify trends, challenges, and gaps in the cur-
rent body of knowledge generated around mosquito 
ecology and biogeography. We followed the preferred 
reporting items for systematic reviews and meta-analy-
ses (PRISMA) guidelines to identify and compile studies 
that developed SDMs of mosquito species in the past 20 
years, and extracted information on the species, meth-
ods, input variables, and location and scale of each rel-
evant published, peer-reviewed study [38].

Methods
We conducted literature searches following PRISMA 
statement guidelines, a checklist of criteria to ensure 
transparency in systematic reviews [38, 39]. We con-
ducted searches across all Web of Science databases 
through January 2023 to identify studies using SDMs 
to estimate mosquito geographic distributions. Combi-
nations of key terms used in searches included “Aedes,” 
“Culex,” “Anopheles,” and “mosquito” with “species dis-
tribution model*” and “ecological niche model*.” We 
included Aedes, Anopheles and Culex as explicit search 
terms, as these genera comprise the disease vectors most 
targeted in public health initiatives, and are intensely 
studied as disease vectors [40–42]. The inclusion of 
“mosquito” as a search term was to ensure that we cap-
tured studies on species beyond these three taxonomic 
groupings, and we did not restrict our searches to species 
implicated in human disease transmission. While there 
were no restrictions on the geographic region of study or 
date of publication, searches were limited to English lan-
guage results.

Duplicate records were removed from our search 
results before screening. We screened the remaining 
abstracts for subject relevance (i.e., studies on mosqui-
toes), additionally removing publications that were lit-
erature reviews, expert commentaries, synthesis papers, 
phylogenetic studies, or gray literature. The remain-
ing studies were reviewed in full for inclusion, exclud-
ing studies with methodologies that were not within the 
scope of this review, including papers that were purely 
descriptive, used mosquito-borne disease cases as 
response variables, or modeled mosquito presence, abun-
dance, or behaviors (e.g., such as oviposition or bite rates) 
using data with no geospatial component.

We extracted information from the full text of the 
remaining studies, which included information on pub-
lication (e.g., digital object identifier link), the mosquito 
species of interest as identified in the studies, SDM meth-
ods used, geographic location of study, spatial scale of 
analysis, and data sources for both species occurrence 
records and explanatory environmental variables. We 
noted methods used for model fitting, addressing colline-
arity, and if modeled distributions were projected beyond 
their initial training scope (e.g., models projected to other 
geographic locations, or future time horizons) when 
available. The methods used in the studies were classified 
into nine categories, which are outlined in Table 1.

Data extracted from the final collection of screened lit-
erature were synthesized to describe trends in mosquito 
SDMs. Data visualization was conducted in R (v4.1.2.) 
using code adapted from Lippi et  al. [43], and mapping 
was performed in ArcMap (v10.8.1). The database of 
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screened literature is available on GitHub (https://​github.​
com/​RyanL​ab/​MOSQ_​SDM_​Table).

Results
The initial search returned 1185 records (Fig.  1), and 
563 records remained after duplicates were removed. 
In initial abstract screening, 298 records for studies that 
did not fit the scope of this review were removed. After 
reviewing the full text of the remaining 265 records, we 

retained 204 studies that met our criteria for inclusion 
(https://​github.​com/​RyanL​ab/​MOSQ_​SDM_​Table).

Taxonomic focus of SDMs
There were 138 mosquito species featured in SDMs pro-
duced in the reviewed literature, which included 78 spe-
cies in Anopheles, 25 species in Culex, 24 species in Aedes 
(= Ochlerotatus), and 11 species in other genera, includ-
ing Coquillettidia, Culiseta, Haemagogus, and Sabethes. 
By species, most SDM studies developed models for 

Table 1  Nine categories of methods defined in this review that were used to build species distribution models

Modeling method Definition (example)

CTA​ Classification tree analysis methods, including classification and regression trees, boosted regression trees, and random forest

Ensemble A weighted or unweighted average, or combination, of models built with different methods

Envelope Models that identify the boundaries of species’ ecological tolerance directly from data, without the use of machine learning (e.g., 
BIOCLIM, CLIMEX, CliMond, DOMAIN)

GARP Genetic algorithm for rule-set production, generates mathematical rules for estimating species presence

MaxEnt Maximum entropy, for expressing probability distributions

Mechanistic Process-based models, often using parameters of physiological limits to estimate distributions (e.g., species thermal limits)

Mixed Uses two or more methods to estimate species distributions, but does not average or combine output into a model ensemble

Regression Non-machine learning regression models (e.g., logistic regression, generalized linear models, generalized additive models, etc.)

Other Less commonly used methods that did not fit into another category (e.g., ecological niche factor analysis, environmental suitability 
thresholds, logic thresholds)

Fig. 1  Flow diagram of the systematic review process, indicating combinations of search terms and number of studies screened

https://github.com/RyanLab/MOSQ_SDM_Table
https://github.com/RyanLab/MOSQ_SDM_Table
https://github.com/RyanLab/MOSQ_SDM_Table
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Aedes aegypti (n = 55), Aedes albopictus (n = 50), Culex 
pipiens (n = 20), Anopheles gambiae (n = 17), and Anoph-
eles arabiensis (n = 15) (Fig. 2).

Grouping by genera, mosquitoes featured in SDM stud-
ies have changed over time (Fig. 3a).

The early mosquito SDM literature predominantly 
focused on mosquitoes in the genus Anopheles, compris-
ing 64.3% of studies published through 2010. In recent 
years, studies on Aedes mosquitoes have become more 
prevalent, and these mosquitoes were the taxonomic 
focus of nearly half (48.6%) of all mosquito SDMs pro-
duced since 2015. In the same period, roughly a quarter 
of studies were on mosquitoes in the genus Anopheles 
(24.0%), and 11.6% on mosquitoes in the genus Culex.

Methods used to build SDMs
Overall, 169 of the 204 studies reviewed (82.8%) used a 
single method to estimate mosquito distributions, while 
the remaining 35 (17.2%) used more than one method or 

used model ensemble approaches (Fig.  3b). More than 
half (n = 108, 52.9%) of the studies used MaxEnt exclu-
sively, a trend which also holds across genera (Fig.  4). 
An additional 21 (10.3%) used MaxEnt with one or more 
additional SDM methods. Non-machine learning regres-
sion models (e.g., logistic regression, generalized linear 
models, etc.) were used exclusively in 18 studies (8.8%), 
and used in combination with other methods in an addi-
tional 16 studies (7.8%). CTA methods, which included 
classification and regression trees, boosted regression 
trees, and random forest, were used as the sole SDM 
method in 14 studies (6.9%), and the genetic algorithm 
for rule set prediction (GARP) was the sole method in 12 
studies (5.9%). CTA methods were combined with other 
SDMs in 18 additional studies (8.8%), while GARP was 
used with other methods in five additional studies (2.5%). 
Mechanistic models were used as the only SDM method 
in three studies (1.5%), and bioclimatic envelope models 
were used in five studies (2.5%). Thirteen studies (6.4%), 

Fig. 2  Top 10 mosquito species, within each genus, that have been studied with species distribution models (SDMs). Most efforts focused 
on Aedes aegypti and Aedes albopictus, followed by Culex pipiens, though collectively species in the genus Anopheles were also extensively modeled. 
Cs. Culiseta, Cq. Coquillettidia, Hg. Haemagogus, Ps. Psorophora, Sa. Sabethes, Ur. Uranotaenia 
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which were characterized as “Other,” featured uncom-
mon methods such as ecological niche factor analysis, 
and other types of environmental suitability or logic 
thresholds.

The frequency of using SDMs to estimate mosquito 
distributions increased markedly over time, particularly 
from 2015 onward (Fig. 3b). Concurrently, the evolution 
of SDM algorithms led to a more diverse methodological 
landscape. In the early 2000s, GARP was the most com-
monly implemented method among these studies, and 
remained a frequently used method until approximately 
2010. MaxEnt software was released in 2006, and the 

first mosquito SDM study using MaxEnt was published 
shortly thereafter, in 2007. By 2011, it was the most com-
mon SDM approach, with 19 of 43 studies (44.2%) pub-
lished during those years solely using MaxEnt. More than 
half (62.3%) of the mosquito SDM studies published since 
2015 solely used MaxEnt to estimate mosquito distribu-
tions. To a lesser extent, the frequency of using multiple 
SDM approaches in a single study [“Mixed” (Figs. 3, 4)] 
has also increased over time. The first mixed methods 
study based on our inclusion criteria was published in 
2008, and studies that used multiple SDM approaches 
have accounted for 13.7% of those published since 

Fig. 3  Cumulative number of studies on mosquitoes that modeled a given mosquito genus (a), and the SDM methods used in studies over time 
(b). CTA​ Classification tree analysis,  MaxEnt maximum entropy, GARP genetic algorithm for rule-set production
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2015. CTAs and regression methods have seen modest 
increases in use over the past decade, and were used in 
8.2% and 6.2% of studies, respectively, since 2015. The 
increased availability of gridded data layers of ecologi-
cal and climate products, representing a host of environ-
mental factors, has also been a fundamental piece in the 
rapid expansion of SDM research. A notable example is 
the WorldClim database, which was first released in 2005 
(with version 2 released in 2017) and made long-term 
averages of historical and projected future climate data 
accessible for many SDM studies [44].

Spatial scale of SDMs
The scale of analysis varied considerably throughout the 
mosquito SDM literature. The majority of studies were 
conducted at the sub-national (34.8%) or national (31.4%) 
level. Most national or sub-national studies were con-
ducted in the USA (11.1%), followed by Germany (6.7%), 
Mexico (6.7%), Australia (5.2%), Brazil (4.4%), China 
(4.4%), Colombia (4.4%), Italy (4.4%), Argentina (3.7%), 
Iran (3.7%), and Tanzania (3.7%) (Fig. 5). Approximately 
one-quarter of studies (24.5%) were regional, projecting 
models over large geographic areas that encompassed 
multiple countries. Most of the regional models were 

developed for portions of Africa (30.0%) and Europe 
(30.0%), followed by SDMs developed for regions in Asia 
(24.0%), North America (16.0%), and South America 
(16.0%). Nearly half of all regional models (44.0%) were 
developed for species of Anopheles. Relatively few SDMs 
(9.3%) focused on a global extent, but of those, the major-
ity (68.4%) focused on mosquitoes in the genus Aedes 
(Fig.  6A). Studies conducted in African countries typi-
cally modeled the distributions of Anopheles, while Euro-
pean studies tended to focus on Aedes. In comparison, 
studies conducted in North America, South America, 
the Middle East, and countries in Asia more frequently 
included multiple species, or other taxonomic groups 
(Fig. 5).

The scale of analysis used to build SDMs also varied 
by taxa. Species distribution models were built for Aedes 
mosquitoes in roughly equivalent proportions (Fig.  6a), 
possibly driven by the global invasions of Ae. aegypti and 
Ae. albopictus. In contrast, global suitability models for 
Anopheles and Culex were relatively uncommon (Fig. 6b, 
c), regional and sub-national models were most common 
for Anopheles (Fig. 6b), and SDMs for Culex and multiple 
genera primarily consisted of national and sub-national 
models (Fig. 6c, d).

Fig. 4  Breakdowns of methods used, shown by taxonomic groups for Aedes (a), Anopheles (b), Culex (c), and studies that estimated distributions 
for multiple genera (d). For abbreviations, see Fig. 3
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Fig. 5  Map representing the number of SDM studies conducted at the national or sub-national level (country, greyscale) and the mosquito genera 
modeled in the studies (pie chart, color breakdown)

Fig. 6  The proportion of spatial scales represented in the reviewed SDM studies, shown by genera for Aedes (a), Anopheles (b), Culex (c), 
and multiple genera (d)
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Data sources used to build SDMs
Mosquito occurrence records used as data inputs for 
SDM workflows were obtained from a variety of sources. 
Over one-third of the reviewed studies (36.8%) included 
georeferenced locations from online data repositories 
when building models, the majority of which (49.3%) 
used the Global Bioinformatics Information Facility to 
obtain data. Georeferenced data obtained from pub-
lished sources and literature reviews were also frequently 
used as data inputs in studies (36.8%), with the data-
base published by Kraemer et  al. [45] explicitly cited as 
a data source in 5.4% of all studies. Use of existing public 
health surveillance systems for mosquito records, which 
included databases from national public health authori-
ties, was indicated in 11.8% of studies.

Collection of novel mosquito records through ento-
mological sampling was indicated in approximately 
one-third (32.2%) of published studies, of which 16.1% 
supplemented collection records with data from other 
sources (e.g., published data, online repositories, etc.). 
Of the studies that collected entomological data, 59.3% 
reported larval sampling, of which 18.8% reported sam-
pling with oviposition or gravid traps. Diverse sampling 
methods were reported in studies with entomological 
data that targeted the adult life stage, including Centers 
for Disease Control and Prevention light traps (37.8%), 
BG-Sentinel traps (22.2%), Mosquito Magnet traps 
(15.6%), aspiration (13.3%), and human landing catch 
(11.1%). While studies that included a field component 
typically described the mosquito life stage targeted in 
sampling, across all studies the life stage of mosquitoes 
used for species presence (i.e., adults, immatures, or 
both) was not specified in most instances (53.9%).

Environmental predictors of mosquito presence
Most studies (89.7%) incorporated climate variables 
to estimate mosquito distributions. While some stud-
ies (20.1%) used climate data exclusively, many (69.6%) 
used a combination of climate data and other environ-
mental covariates (e.g., land cover class, elevation, soil 
classifications, etc.) in their model predictions. Most 
studies (69.2%) that used climate data to produce SDMs 
employed WorldClim data products. Many studies 
(27.9%) projected models to estimate mosquito distri-
butions under future climate conditions, using products 
such as downscaled global climate models as environ-
mental predictors. A variety of methods were used to 
control for collinearity in environmental predictors 
before building SDMs, including use of correlation coef-
ficients with a threshold (27.5%), principal component 
analysis (8.3%), and variance inflation factor (5.9%). 
Nearly half of the studies (48.5%) did not explicitly 
address predictor collinearity.

Variables identified as important for predicting mos-
quito distributions were reported in 80.3% of stud-
ies. Identified drivers varied considerably between 
studies and taxa. Measures of temperature were most 
often described as important predictors of mosquitoes 
(54.9% of studies), followed by precipitation (42.6%), land 
cover and land use (31.4%), and elevation (18.6%). Of the 
studies that incorporated climate variables, 62.6% iden-
tified temperature, and 52.5% identified precipitation as 
important predictors of mosquito habitat suitability. By 
taxonomic group, temperature variables were top predic-
tors in 44 (50.0%) studies on Aedes, 37 (58.7%) studies on 
Anopheles, and 16 (69.6%) studies on Culex. Precipitation 
variables were top predictors in 32 (36.4%) studies on 
Aedes, 36 (57.1%) studies on Anopheles, and 12 (52.2%) 
studies on Culex. Variable importance was not reported 
in 19.6% of studies.

Discussion
SDM has become a frequently used methodological 
approach to estimate the distribution, and implicit risk, 
of vector-borne diseases [35, 36]. In this study, we con-
ducted a systematic review of scientific literature that 
used SDMs to estimate geographic distributions of mos-
quitoes. By quantifying data from the screened literature 
to identify patterns and trends, we were able to summa-
rize the methods, taxonomic foci, geographic scope, and 
other attributes reported in SDM studies. Importantly, 
this also enabled us to identify potential gaps in the cur-
rent literature, and thus provide guidance for future 
modeling efforts.

Current trends in mosquito SDMs
Although there is diversity in the landscape of avail-
able modeling approaches and tools, MaxEnt is the most 
commonly implemented method for conducting SDM 
studies on mosquitoes [46]. After its release in 2006, 
MaxEnt quickly gained favor over previously common 
methods, like GARP, and remains the most frequently 
used approach for the estimation of mosquito distribu-
tions [47]. While MaxEnt may be the most appropri-
ate methodology for some studies, the popularity of the 
method also results from an interpretable graphic user 
interface, prolific training guides, and general ease of 
implementation for users. Further, the release of World-
Clim climate model output data in 2005, and the subse-
quent availability of other gridded environmental data 
products, allowed users to perform analyses without col-
lecting primary environmental data, facilitating the use 
of SDMs [48].

The majority of the SDM studies in this review were 
on Anopheles or Aedes. This is not surprising, given the 
emphasis on the global health importance of malaria 
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transmitted by mosquitoes in the genus Anopheles, and 
arboviral pathogens transmitted by some species in the 
genus Aedes, including yellow fever virus and dengue 
virus. Moreover, most global modeling efforts involve 
mosquitoes in the genus Aedes, likely owing not only to 
the medical importance of two key species (Ae. aegypti 
and Ae. albopictus), but also to their cosmopolitan suc-
cess as invasive species. In contrast, SDMs for Anopheles 
were typically conducted at regional, national, and local 
scales, and in locations predominantly on the African 
continent, reflecting the disproportionate research effort 
focused on malaria caused by Plasmodium falciparum.

Geographic gaps exist for central Asia, Southeast 
Asia, eastern Europe, and portions of Africa and South 
America, where few highly localized studies have been 
conducted. Notably, many of these regions have rich 
mosquito diversity, including dozens of understudied 
vectors of current or potential future emerging infections 
[49]. Modeling studies in these regions were also under-
developed in respect to other methodological aspects; for 
example, temperature and precipitation in these regions 
were most commonly represented by WorldClim biocli-
matic variables rather than regionally developed climate 
products. Regionally targeted research efforts may ben-
efit from locally created and locally validated climate and 
land cover products.

Challenges of SDMs
We found considerable variation in which environmental 
drivers were identified as predictive of mosquito distribu-
tions, such that few generalizations could be made even 
for a given species. Variable importance is influenced 
by nearly every step of the SDM building process, such 
as choice of data products, scale of analysis, collinearity 
reduction techniques, and choice of SDM algorithm. In 
studies that reported variable importance, actual values 
of environmental predictors (i.e., numerical thresholds 
for occurrence) were rarely reported. The prevalence of 
studies that failed to reduce the number of variables to  
address collinearity, or lacked justification for choice of 
environmental predictors, points to a potentially trou-
bling lack of biological grounding and hypothesis test-
ing. These challenges can be readily addressed in future 
studies through adherence to best practices and stand-
ards in building models and reporting results [50–52]. 
Assessing the quality of models and adherence to best 
practices is beyond the scope of this review but has been 
recently assessed by Barker and MacIsaac [51]. Given 
some of these underlying heterogeneities among stud-
ies, care must be taken when interpreting the results of 
SDMs, especially those potentially used for guiding pub-
lic health decision-making, as basing decisions on the 
results of poor-quality models can lead to the diversion 

of resources and miscommunication of the true risk of 
exposure.

Opportunities for future modeling efforts
Many efforts have been made to delineate the geographic 
extent of mosquitoes, but the current literature still may 
not capture the full landscape of risk, especially in the 
biodiverse areas where new infections are more likely to 
originate [53, 54]. Moreover, older range maps may not 
reflect the most current understanding of mosquito tax-
onomy (e.g., grouping members of a species complex 
together), and may need reassessment. The movement 
of vectors and pathogens may also serve as the catalyst 
for new public health challenges, for example, when mos-
quito vectors aggressively invade new locations [6, 55], or 
when the introduction of pathogens increases the medi-
cal significance of local mosquito populations [35]. These 
changes also create a problem for the scientific literature 
itself: the estimation of range boundaries based on base-
line climate conditions has diminishing value in a rapidly 
warming world, where mosquito ranges have already 
become non-stationary in both invasive ranges [25] and 
endemic areas [6].

Conclusions
Our findings indicate an opportunity not only to 
expand data collection and distribution modeling 
efforts for underrepresented mosquito species and 
in underrepresented areas [43, 56] but also to more 
broadly rethink the SDM workflow as it is currently 
used in vector surveillance and control. An iterative 
workflow is technologically feasible and cost-effective, 
where (1) existing surveillance data and local knowl-
edge are used to generate or update mosquito distri-
bution models; (2) new forecasts are generated that 
anticipate areas at risk of range expansions, based on 
existing trends and climate projections; and (3) mod-
els are used to guide the collection of new surveil-
lance data, which can also be used for model validation 
(Fig.  7). Field efforts to collect data used for model 
improvement can be a daunting endeavor, yet we found 
a surprisingly high number of studies which collected 
novel entomological survey data for building models. 
Nevertheless, relatively few studies incorporated data 
from public health surveillance systems, highlighting 
a potential avenue to future collaborations between 
modelers, public health authorities, and vector control 
agencies. This new workflow presents opportunities on 
the technological front, where efforts to employ newer 
approaches with updated methodologies and software, 
and adherence to best practices, may enable us to refine 
estimates of spatial risk; moreover, adoption of auto-
mated approaches that update range estimates from 
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incoming data could aid in making timely predictions 
that are more accessible to decision-makers. Partner-
ships with local experts and agencies will be key both 
to improving model predictions and maximizing their 
applied utility [57]. Ultimately, working more closely 
with end users may facilitate the uptake of modeling 
workflows, ensuring that SDMs are appropriately con-
textualized and regularly updated.
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