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Abstract 

Background  Type 2 diabetes mellitus (T2DM) affects approximately 451 million adults globally. In this study, we 
identified the optimal combination of marker candidates for detecting T2DM using miRNA-Seq data from 95 samples 
including T2DM and healthy individuals.

Methods  We utilized the genetic algorithm (GA) in the discovery of an optimal miRNA biomarker set. We discovered 
miRNA subsets consisting of three miRNAs for detecting T2DM by random forest-based GA (miRDM-rfGA) as a feature 
selection algorithm and created six GA parameter settings and three settings using traditional feature selection meth-
ods (F-test and Lasso). We then evaluated the prediction performance to detect T2DM in the miRNA subsets derived 
from each setting.

Results  The miRNA subset in setting 5 using miRDM-rfGA performed the best in detecting T2DM (mean 
AUROC = 0.92). Target mRNA identification and functional enrichment analysis of the best miRNA subset (hsa-miR-
125b-5p, hsa-miR-7-5p, and hsa-let-7b-5p) validated that this combination was involved in T2DM. We also confirmed 
that the targeted genes were negatively correlated with the clinical variables related to T2DM in the BxD mouse 
genetic reference population database.

Conclusions  Using GA in miRNA-Seq data, we identified the optimal miRNA biomarker set for T2DM detection. GA 
can be a useful tool for biomarker discovery and drug-target identification.
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Background
Type 2 diabetes mellitus (T2DM) is characterized by 
abnormalities in carbohydrate, lipid, and protein metab-
olism pathways. Dysregulation of insulin secretion and 

response in T2DM results in hyperglycemia.
According to the International Diabetes Federation, 

451 million adults worldwide have diabetes; this number 
is expected to reach 693 million by 2045 [1]. Diabetes is 
among the top 10 causes of death globally, and the risk of 
all-cause mortality increases by approximately 2–three-
fold among individuals with diabetes [2].

T2DM is a representative disease that leads to diabetic 
nephropathy, retinopathy, neuropathy, and other compli-
cations, including colon and liver cancers [3–9].

The main objective of this study was to identify the 
optimal biomarkers for detecting T2DM and identify-
ing drug targets to treat T2DM. Among the various 
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putative drug targets, epigenetic mechanisms such as 
microRNAs (miRNAs) may contribute to the develop-
ment of common diseases, including T2DM [10, 11]. 
miRNAs, which are short (~ 22 nucleotides) noncoding 
RNAs, have emerged as key cell type-specific regulators 
of gene expression, operating primarily to inhibit target 
genes post-transcription by binding with complementary 
mRNA [12].

In T2DM, miRNAs target various genes related to glu-
cose and fatty acid metabolism and the insulin signaling 
pathway in diverse tissues (e.g., skeletal muscle, pancreas, 
adipocytes, and liver), thereby affecting physiological 
functions [10, 13, 14].

Because of the importance of the regulation of miRNAs 
in T2DM, several studies have tried to identify miRNA 
biomarkers for T2DM by characterizing differentially 
expressed miRNAs (in blood, pancreas, adipocytes, skel-
etal muscle, and liver) in T2DM patients [3–9, 15–19]. In 
addition, miRNA biomarker discovery has confirmed the 
negative correlation between the expression of discov-
ered miRNAs and their target mRNAs [3–11, 14–19].

Biomarker discovery based on feature selection and 
applying the machine learning method is a promising 
approach [20–25]. However, these methods use genetic 
data to create a model that classifies T2DM patients and 
to derive important features that affect the classification 
performance of the model. In this case, it is possible to 
calculate the importance of miRNAs that affect disease 
diagnosis. However, the optimal number of entries in the 
biomarker combination for disease diagnosis is difficult 
to define using these methods. In other words, it is dif-
ficult to determine an optimal combination of marker 
candidates. As marker candidates belong to differentially 
expressed (DE) genes (or miRNAs), and DE genes are 
usually numerous, identification of the best combination 
of select markers is challenging [26]. Even though the 
combination of machine learning and genetic algorithm 
(GA) techniques can be adopted for addressing these 
challenges, it still has not been widely explored in the 
context of T2DM biomarker discovery.

To identify an optimal miRNA set for T2DM, we inte-
grated GA and random forest to develop a novel feature 
selection algorithm. We first obtained public miRNA-
Seq datasets from T2DM patients and healthy controls 
(HC) from the Gene Expression Omnibus (GEO). We 
then compared diverse feature selection methods (i.e., 
F-test in analysis of variance [ANOVA] and least abso-
lute shrinkage and selection operator [Lasso]) under 
three settings with our GA-based feature selection 
(named miRDM-rfGA) under six settings. In each set-
ting, we evaluated the performance of each biomarker set 
in detecting T2DM. We then obtained publicly available 
mouse phenotype data to show biological associations 

between T2DM-related phenotypes and the biomarker 
set [27]. In this study, we demonstrated the utility of GA 
for the discovery of an optimal miRNA biomarker set. 
This study not only emphasizes the significance of miR-
NAs in T2DM but also provides the novel application of 
GA and machine learning techniques in the discovery of 
optimal combinations of disease biomarkers.

Materials and methods
Data collection
We searched for and acquired public miRNA-Seq data 
in the blood tissue for biomarker discovery (Fig.  1). 
First, we accessed Sequence Read Archive (SRA) [28] 
and obtained relevant datasets by using the search terms 
“Diabetes” and “miRNA”. After acquiring the results from 
the query, two datasets (SRP151126 and SRP093728) of 
miRNA profiling related to T2DM in human blood were 
obtained (Supplementary Figure S1 and Supplementary 
Table S1). Thus, we selected 95 samples (56 HCs and 39 
T2DM patients) to download fastq sequences and per-
form further analyses (Supplementary Table S1).

Pre‑processing of miRNA‑Seq data and dataset preparation
For the 95 miRNA-Seq samples, we pre-processed the 
data using FastQC v0.11.7 (http://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/) and Cutadapt v1.3 [29]. 
Samples with a Phred quality score of less than 20 were 
removed. We used Illumina Universal Adapter and Illu-
mina Small RNA 3’ Adapter for adapter trimming. Subse-
quently, we trimmed the reads with lengths of 18–25 bp. 
The miRdeep2 mapper (v 2.0.0.8) [30] was used for 
sequence alignment of the human reference genome ver-
sion hg19, and miRNAs were annotated using miRbase 
version 21 [31]. For quantifying the miRNA expression, 
reads per million (RPM) were used and Z-normalization 
was used to display the miRNA expression.

To remove sparse miRNAs, miRNAs with a ratio of 
90% or more in a sample with an expression value of 0 for 
each miRNA from a total of 95 samples were removed, 
yielding a total of 1169 miRNAs.

The training and test sets were created in a ratio of 
7:3. The training set was used for biomarker discovery 
using the GA or traditional feature selection method, 
and the test set was used to evaluate the performance of 
the T2DM patient classification model using biomarkers 
selected by each method.

Biomarker set discovery using GA and traditional feature 
selection methods
According to previous studies [32–36], the optimal num-
ber of entries in biomarker sets range from two to nine. 
Inspired by a previous study using three miRNAs as 
biomarker combinations [36], we aimed to discover an 
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optimal biomarker set consisting of three miRNAs for 
detecting T2DM. Therefore, we used the feature selec-
tion method to identify a biomarker set comprising three 
miRNAs. To this end, GA was adopted, and we used the 
F-test in ANOVA and Lasso as a traditional feature selec-
tion method for comparison with GA.

GA is a heuristic algorithm that uses natural selec-
tion to find the best solution [37–39]. To simulate natu-
ral selection, the GA generates a population and a set of 
individuals (i.e., chromosomes and solutions). Individuals 
consist of a set of features (or genes) that represent a set 
of solutions to a predefined problem.

For each individual, the fitness score was calculated to 
show how each solution, indicating selected features, was 
optimal. The best individual (i.e., the best solution) in the 
population was selected and included in a new popula-
tion for the next generation, and the other individuals 
were produced by crossover and mutation. Thus, the GA 
generates individuals repeatedly, assesses their fitness, 
and terminates when the given goal is met or when some 
stopping criteria are met.

In this study, we implemented a random forest (RF)-
based GA feature selection algorithm (miRDM-rfGA) 
with miRNA-Seq data as input, and determined the three 
most optimal miRNA subsets evaluated by a fitness score 
using RF.

For miRDM-rfGA, five phases were considered: (1) gen-
eration of the initial population, (2) evaluation of each 
individual by a fitness function that explains whether the 
solution is good or not, (3) selection of individuals with the 

highest fitness score, indicating the best RF performance 
(e.g., area under the receiver operating characteristic 
[AUROC]), (4) crossover, and (5) mutation for new indi-
viduals in the next generation (Supplementary Figure S2).

In the first step of miRDM-rfGA, we generated the ini-
tial population to undergo successive evolution through 
the GA. A large number of individuals with diverse 
solutions within the initial population is necessary for 
successfully deriving optimal solutions. Therefore, we 
randomly generated 1,000 individuals, limited by our 
computational power available. The randomly generated 
1000 individuals have diverse solutions for accessing the 
miRNA expression dataset. Within the initial population, 
each individual carried a specific number of miRNAs 
(described as “genes”) as features (Supplementary Fig-
ure S2A). The features of each individual were mapped 
to 1139 miRNA indices in the pre-processed dataset. In 
other words, an individual (ind) consists of 1139 features. 
the features were represented as ind = (x1, x2, …, x1139). xi 
has a binary variable (i.e., {0,1}) where 1 indicates selec-
tion of the i-th miRNA and 0 indicates non-selection of 
the miRNA in the dataset. Subsequently, miRDM-rfGA 
randomly selects features from the 1139 indices accord-
ing to the predefined number of selected features for 
each individual in the initial population (Supplementary 
Figure S2A). Then, given the individual, the expression 
profiles of the selected features (miRNAs) were extracted 
from the miRNA-Seq input data (i.e., the expression 
matrix of samples by miRNAs), generating a subset of the 
input data as a training set for the RF model. With the 

Fig. 1  Overview of this study. T2DM and HC samples in blood were collected from NCBI GEO. Feature selection using GA with RF was used 
for miRNA biomarker discovery. We also compared the classification performance of T2DM with other traditional feature selection methods (F-test 
in ANOVA and Lasso)
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selected features in each individual, we calculated a fit-
ness score as follows (fitness function) (Supplementary 
Figure S2B):

where AUC​k is the AUROC from the RF model for classi-
fying T2DM and HC in the k-th fold during M fold cross-
validation in the training set; x is the number of selected 
features (miRNAs) in the individual; W is the penalty 
weight; and b is the optimal number of selected genes for 
the optimal biomarker combination.

Each individual was evaluated with a fitness score, and 
the individual with the highest fitness score was included 
in the population. The individual was then included in the 
next generation, and the other individuals in the next gen-
eration were produced by crossover and mutation (Supple-
mentary Figure S2C). miRDM-rfGA iterates these phases 
for G generations and derives the best individual among 
these generations (Supplementary Figure S2D). Based on 
miRDM-rfGA, we created six parameter settings (settings 
1 to 6), and the parameters N, W, b, G, crossover rate, and 
mutation rate are listed in Table  1. For the GA process, 
“DEAP” v.1.3.1 in Python 3.7 were used [40].

(1)Fitness = 100×

M

k=1
AUCk

M
−W × x − b

For traditional feature selection using the F-test in 
ANOVA, scikit-learn’s f_classif function was used. Fea-
ture importance was calculated for each feature using 
f_classif, the top three miRNAs with the highest feature 
importance were selected through SelectKBest (k = 3), 
and the RF method was used to evaluate the discrimina-
tion power of T2DM for the selected miRNA biomarker 
set (setting 7).

For Lasso, we applied logistic regression using L1-reg-
ularization and used the SelectedFromModel (k = 3) 
function. Then, Lasso (setting 8) and RF (setting 9) were 
used as models for classifying T2DM using the selected 
miRNA biomarker set. Detailed information on settings 
7, 8, and 9 is presented in Table 2.

Performance comparison
For each trained model in each setting, the mean AUROC 
score was calculated using threefold cross-validation in 
the test set. The performance of each setting was com-
pared using the mean AUROC.

Principal component analysis
For the three best miRNA biomarker sets, we devised a 
method to distinguish between T2DM and HC using 
the most optimum miRNA biomarker set. Therefore, 

Table 1  Description of miRDM-rfGA parameter settings and the mean AUROC score in each setting

GA settings Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

The number 
of selected features 
in the initial indi-
viduals (N)

3 6 9 12 9 12

The optimal number 
of selected features 
(b)

3 3 3 3 3 3

Population 1000 1000 1000 1000 1000 1000

Generation (G) 200 200 200 200 500 300

Crossover rate 0.8 0.8 0.8 0.8 0.8 0.8

Mutation rate 0.003 0.003 0.003 0.003 0.003 0.003

Penalty weight (W) 20 15 10 7 10 7

Generation consist-
ing of the best 
individual

168 31 58 139 463 44

Selected miRNAs hsa-miR-29b-1-5p, 
hsa-miR-6738-3p, 
and hsa-miR-125b-
2-3p

hsa-miR-494-3p, 
hsa-miR-668-3p, 
and hsa-miR-29b-
1-5p

hsa-miR-222-5p, 
hsa-miR-671-5p, 
and hsa-miR-
1307-3p

hsa-miR-494-3p, 
hsa-let-7b-5p, 
and hsa-miR-29b-
1-5p

hsa-let-7b-5p, 
hsa-miR-125b-5p, 
and hsa-miR-7-5p

hsa-miR-7-5p, 
hsa-miR-92b-3p, 
and hsa-let-7b-5p

Fold for cross-valida-
tion of test data

3 3 3 3 3 3

Mean AUROC score 
by threefold cross-
validation in test 
set and standard 
deviation

0.86 ± 0.09 0.89 ± 0.08 0.87 ± 0.05 0.89 ± 0.06 0.92 ± 0.04 0.90 ± 0.06
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principal component analysis (PCA) was performed with 
three components using the miRNA-Seq data.

Target mRNA identification and pathway enrichment 
analysis
MIENTURNET (http://​userv​er.​bio.​uniro​ma1.​it/​apps/​
mient​urnet/, accessed on 12 April, 2021) [41] was used 
for identifying the putative target genes of the differen-
tially expressed circulating miRNAs and analyzing their 
pathway enrichment.

Correlation analysis in mouse population data
The purpose of this analysis was to determine the correla-
tion between diabetes-related clinical indicators and gene 
expression targeted by selected miRNAs using publicly 
available mouse population data [27]. For this analysis, 
two gene expression datasets in mouse liver tissue were 
obtained from the BxD mouse high-fat diet (HFD) [EPFL/
LISP BXD HFD Liver Affy Mouse Gene 1.0 ST (Aug 18) 
RMA] and chow diet (CD) [EPFL/LISP BXD CD Liver Affy 
Mouse Gene 1.0 ST (Aug 18)] cohort from the GeneNet-
work 1 database (http://​gn1.​genen​etwork.​org) [27].

The mRNA expression levels of IGF1R, IRS2, and PIK3CD 
were confirmed from mRNA gene expression array data 
in the liver tissue of the HFD and CD cohorts. In the gene 
expression data, we compared the top 25% of each gene 
with the bottom 25% of the group and clinical parameters.

Spearman’s correlation analysis was performed 
between gene expression data and the clinical param-
eters insulin response (IR) and oral glucose tolerance test 
(OGTT).

Statistical analysis
Student’s t-test was used for analysis of differentially 
expressed miRNAs and DE genes in BxD mouse data 

between groups (T2DM vs. HC). For the DE analysis in 
the GEO gene and miRNA expression array dataset, we 
used GEO2R [42]. Correlations were evaluated using 
Spearman’s correlation coefficient. All reported P values 
were statistically significant when less than 0.05.

Results
Performance of feature selection using miRDM‑rfGA 
and traditional feature selection
In this study, we identified the optimal miRNA biomarker 
combination. For this, we used mirDM-rfGA and tradi-
tional feature selection methods and evaluated the pre-
diction performance of the miRNA subsets derived from 
each method. The workflow for determining the optimal 
miRNA features is presented in Fig. 1.

First, we derived the three miRNA subsets using 
mirDM-rfGA under six settings (settings 1 to 6) (Fig. 2A, 
B, C, D, E, F and Table 1). Using each miRNA subset data 
derived from each setting, we constructed an RF model 
classifying T2DM patients. Each RF model was compared 
with the mean AUROC (± 1 standard deviation) through 
threefold cross-validation using the test set.

Among the six settings using mirDM-rfGA, setting 
5 showed the best performance. The AUROC of the 
model was calculated through the test set, and the mean 
AUROC was 0.92 ± 0.04. The miRNAs subset using set-
ting 5 included ’hsa-let-7b-5p,’ ’hsa-miR-125b-5p,’ and 
’hsa-miR-7-5p,’ (Fig. 2E and Table 1).

We also applied traditional feature selection using uni-
variate feature selection methods (F-test in ANOVA and 
Lasso; settings 7 to 9; Fig. 2G, H, I and Table 2) for com-
parison with the settings using mirDM-rfGA.

As a result, the mean AUROC value of setting 7 
was 0.72 ± 0.08 (’hsa-miR-6820-5p,’ ’hsa-miR-29b-
2-5p,’ and ’hsa-miR-1307-3p’); that of setting 8 was 
0.64 ± 0.05 (’hsa-miR-22-3p,’ ’hsa-miR-92a-3p,’ and 

Table 2  Description of the traditional feature selection methods and the mean AUROC score in each setting

Traditional feature selection methods Setting 7 Setting 8 Setting 9

Feature selection models Univariate feature selection (f_classif ) Lasso (Logistic regression 
using L1 regularization)

Lasso (Logistic regres-
sion using L1 regulariza-
tion)

Selection methods SelectKBest
(top 3)

SelectFromModel (top 3) SelectFromModel (top 3)

T2DM classification model Random forest Lasso Random forest

Selected miRNAs hsa-miR-6820–5p, hsa-miR-29b-2-5p, 
and hsa-miR-1307-3p

hsa-miR-22-3p, hsa-miR-
92a-3p, and hsa-miR-181a-5p

hsa-miR-22-3p, hsa-miR-
92a-3p, and hsa-miR-
181a-5p

Fold for cross-validation of test data 3 3 3

Mean AUROC score by threefold cross-valida-
tion in test set and standard deviation

0.72 ± 0.08 0.64 ± 0.05 0.52 ± 0.02
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’hsa-miR-181a-5p’), and that of setting 9 was 0.52 ± 0.02 
(’hsa-miR-22-3p,’ ’hsa-miR-92a-3p,’ and ’hsa-miR-
181a-5p’) (Table 2).

In summary, the setting 5 using mirDM-rfGA showed 
the best performance in detecting T2DM, and the 
miRNA set derived by the setting 5 included ’hsa-let-
7b-5p,’ ’hsa-miR-125b-5p,’ and ’hsa-miR-7-5p’.

The log2 fold change of T2DM vs. HC for each miRNA 
in setting 5 was 0.468, − 0.853, and 0.953, respectively 
(Fig. 3A and Table 3). The P values were also statistically 
significant at 4.33e − 5, 4.59e − 4, and 1.75e − 4, respec-
tively. The DE analysis results and statistical significance 
of miRNAs derived from other settings are described in 
Fig. 3B–H and Table 3.

Fig. 2  Performance of classifying T2DM and HC using selected miRNA biomarker set from nine feature selection settings. A Settings 1, (B) 2, (C) 
3, (D) 4, (E) 5, and (F) 6 were configured based on miRDM-rfGA. G Settings 7, (H) 8, and (I) 9 were configured using traditional feature selection 
methods (F-test and Lasso). In the test set, threefold cross validation was used, and mean AUROC and standard deviation was calculated
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The relationship between the best miRNA biomarker set 
and their target mRNAs
We used PCA to determine how the optimal miRNA 
biomarker subset (hsa-miR-125b-5p, hsa-miR-7-5p, and 
hsa-let-7b-5p) distinguished between T2DM patients 
and HCs. The T2DM and HC groups were differenti-
ated using only the expression levels of the three miR-
NAs (Fig. 4A). After confirming that these three miRNAs 
can discriminate against the diabetic group, functional 
enrichment analysis of the miRNA-target gene was con-
ducted based on the miRTarbase database [43, 44] to 

determine the signaling pathway to which the target 
genes of the three miRNAs belong. All three miRNAs 
were found to be most enriched in insulin receptor sub-
strate (IRS)-related events triggered by IGF1R in the 
Reactome database (Fig. 4B) [45].

In this pathway, the target genes were PIK3CB, IGF1R 
targeted by hsa-miR-125b-5p, IRS2, IGF1R, and PIK3CD 
targeted by hsa-miR-7-5p, and IRS2 and IGF1R targeted 
by hsa-let-7b-5p.

Interestingly, all three miRNAs target IGF1R in the 
pathway network (Fig. 4B).

Fig. 3  Difference of miRNA biomarker expression levels between T2DM and HC group. We derived miRNA biomarker set using each setting 
for feature selection. We compared miRNA expression levels between T2DM and HC groups. A Settings 5 (the best setting), (B) 1, (C) 2, (D) 3, (E) 4, 
and (F) 6 were configured based on miRDM-rfGA. G Setting 7, and (H) settings 8 and 9 were configured using traditional feature selection methods 
(F-test and Lasso). The same miRNAs were selected in settings 8 and 9. Each miRNA expression was converted into z-score
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Next, we confirmed the expression patterns of the 
genes targeted by the miRNA biomarker in a public data-
set of T2DM studies.

In the skeletal muscle tissue (GSE22309), we also con-
firmed that the gene expression levels of IRS2, IGF1R, 
and PIK3CD were decreased in patients with T2DM after 
insulin treatment compared with those in healthy partici-
pants after insulin treatment (Fig. 4C and Supplementary 
Table S2). However, the regulation pattern of hsa-miR-
125b-5p on its targets (IGF1R and PIK3CB) was not 
observed (Fig. 4C).

Correlation with diabetes‑related clinical variables 
according to the gene expression targeted by the miRNA 
biomarkers
We also investigated the correlation between mRNA 
targeted by miRNA biomarkers in IRS-related events by 
the IGF1R pathway and clinical indicators related to dia-
betes in a publicly available BxD mouse database [27].

Correlation analysis was performed using the GeneNet-
work BxD mouse database. Among various clinical vari-
ables, when the expression levels of IGF1R, PIK3CD, and 
IRS2 were low in HFD and CD mice, both glucose levels 
in the OGTT and IR values during OGTT increased, and 
these results showed a negative correlation (Fig.  5 and 
Supplementary Table S3).

Discussion
In this study, we identified a miRNA biomarker set con-
sisting of three miRNAs for detecting T2DM using public 
miRNA-Seq data. To this end, we devised miRDM-rfGA, 
which is an GA-based feature selection algorithm, and 
created biomarker discovery settings using GA (six set-
tings) and traditional feature selection methods (3 
settings using F-test and Lasso) by constructing RF clas-
sifier models to detect T2DM, using miRNAs obtained 
through each setting. We then compared the classifi-
cation performance of the biomarker sets from all set-
tings. As a result, setting 5 using miRDM-rfGA (mean 
AUROC: 0.92) outperformed traditional feature selection 
approaches in identifying these biomarkers. From the set-
ting 5, we determined that a set of biomarkers consisting 
of three miRNAs (hsa-miR-125b-5p, hsa-miR-7-5p, and 
hsa-let-7b-5p) had the most optimal classification per-
formance for T2DM (Fig. 2E). To confirm the association 
between the discovered miRNA biomarker set and dia-
betes, we performed a functional enrichment analysis of 
miRNA-targeted mRNAs. As a result, IRS-related signal-
ing by IGF1R, which is directly related to diabetes, was 
derived (IRS2, IGF1R, PIK3CD, and PIK3CB) (Fig. 4C). In 
addition, correlation analysis was performed between the 
expression levels of the corresponding mRNA and clini-
cal variables related to the detection of diabetes using the 
public data of BxD mice (Fig. 5) [27]. These results con-
firmed that the gene expression levels in diabetes were 
consistent with those from our study.

In addition, we confirmed that there are various studies 
supporting that three miRNAs (hsa-miR-125b-5p, hsa-
miR-7-5p, and hsa-let-7b-5p) are related to diabetes.

Let-7b-5p is a miRNA belonging to the let-7 fam-
ily, which has a common seed region up to nucleotides 
2–8, and is known to perform similar functions [46]. 
In this study, the relationship between let-7 and diabe-
tes showed that glucose tolerance was inhibited in let-7 
overexpressing mice, and let-7 knockdown via let-7 
anti-miR restored glucose intolerance caused by obesity 
[46]. In addition, functional recovery of insulin signal-
ing was observed in the muscle and liver following let-7 
anti-miR treatment [46]. In another study, a Lin28 trans-
genic mouse model showed that let-7 downregulation 
effectively reduced glucose levels in a high-fat diet and 

Table 3  DE analysis of miRNA biomarkers derived by each 
setting

a LogFC Log2FoldChange, T2DM Type 2 diabetes, HC Healthy control

Feature 
selection 
settings

Selected miRNA aLogFC
(T2DM vs. HC)

P value

Setting 1 hsa-miR-29b-1-5p 0.947  < 0.001

hsa-miR-494-3p 0.912 0.001

hsa-let-7b-5p 0.468  < 0.001

Setting 2 hsa-miR-29b-1-5p 0.947  < 0.001

hsa-miR-6738-3p -1.400 0.201

hsa-miR-125b-2-3p -0.768 0.007

Setting 3 hsa-miR-222-5p 1.083 0.006

hsa-miR-671-5p 0.593 0.007

hsa-miR-1307-3p 0.535  < 0.001

Setting 4 hsa-miR-494-3p 0.912 0.001

hsa-miR-668-3p 0.506 0.182

hsa-miR-29b-1-5p 0.947  < 0.001

Setting 5 hsa-let-7b-5p 0.468  < 0.001

hsa-miR-125b-5p -0.853  < 0.001

hsa-miR-7-5p 0.953  < 0.001

Setting 6 hsa-miR-7-5p 0.953  < 0.001

hsa-miR-92b-3p -0.837 0.002

hsa-let-7b-5p 0.468  < 0.001

Setting 7 hsa-miR-6820-5p 1.132 0.041

hsa-miR-29b-2-5p 0.961  < 0.001

hsa-miR-1307-3p 0.535  < 0.001

Setting 8 & 9 hsa-miR-22-3p 0.244 0.068

hsa-miR-92a-3p -0.520 0.008

hsa-miR-181a-5p 0.085 0.645
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activated the Insulin-PI3K-mTOR signaling pathway 
through let-7 suppression [47]. In our study (Fig. 3E), let-
7b-5p was overexpressed in the group of patients with 
T2DM as compared to that in the HCs. The results of this 
study confirmed that the overexpression of let-7 was con-
sistent with the study results of miRNAs adversely affect-
ing glucose tolerance and insulin sensitivity.

miR-7 is known as a miRNA related to insulin secretion 
and glucose homeostasis in the insulin signaling pathway. 
Agbu et al. reported that circulating glucose and triglyc-
eride levels were increased in Drosophila insulin-pro-
ducing cells (IPCs) overexpressing miR-7 as compared 
to those in wild-type cells [48]. Additionally, miR-7-5p 
inhibits glucose uptake and insulin-induced AKT phos-
phorylation by affecting the downregulation of IRS-1 and 
IRS-2 [16, 49]. Expression patterns of miR-7-5p and IRS2 
were also observed in the present study (Figs. 3E and 4C).

According to Gong et  al., the expression of hsa-miR-
125b-5p is downregulated in the retinas of rats with 
STZ-induced diabetes [50]. They also confirmed that miR-
125b-5p was downregulated with the progression of dia-
betic retinopathy (DR), suggesting that hsa-miR-125b-5p 

might be used as an effective T2DM and DR treatment, 
and the expression pattern of hsa-miR-125b-5p was iden-
tical to that observed in our study (Fig. 3E).

The genes targeted by the three miRNAs for the optimal 
miRNA biomarker set of T2DM were IRS2, IGF1R, and 
PIK3CD. IRS2 is an insulin receptor substrate 2 involved 
in insulin sensitivity as an insulin signaling pathway, and 
whose expression levels are decreased in T2DM [51]. In a 
mouse model study, when IRS2 was knocked out, obesity 
and insulin sensitivity decreased. As a result, glucose tol-
erance was induced and developed into T2DM. This led 
to hyperinsulinemia and β-cell damage [52, 53].

IGF1R functions as an insulin receptor by forming a 
dimer with the insulin receptor as an insulin-like growth 
factor-1 receptor [54]. Dong et  al. confirmed that the 
expression level of IGF1R was decreased in the liver of 
diabetic rats, and the regulation of this gene by miRNAs 
could play a role in the improvement of insulin resistance 
[55]. Razny et al. compared the expression levels of whole 
blood mRNA between an obese group with insulin resist-
ance and an obese group without insulin resistance [56], 
and found that the gene expression level of IGF1R had 

Fig. 4  The best miRNA biomarker set in setting 5. A Principal Component Analysis (B) Functional enrichment analysis of the miRNA biomarker set. 
C Pathway of IRS-related events triggered by IGF1R signaling. DE analysis result of the best miRNA biomarker set and the targeted mRNAs in skeletal 
muscle. The circle size of each point is proportional to the |log2 of fold change in T2DM vs. healthy control|
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decreased. Therefore, the decreasing pattern in the gene 
expression level of IGF1R coincided with the increasing 
pattern in the expression level of hsa-let-7b-5p and hsa-
miR-7-5p targeting IGF1R.

PIK3CD refers to Phosphatidylinositol-4,5-Bisphos-
phate 3-Kinase Catalytic Subunit delta, which is a cata-
lytic subunit of PI3K. PIK3CD participates in PI3-Kinase 
signaling and affects the AKT pathway, and the gene 
expression level of PIK3CD is diminished in the skel-
etal muscle tissue of diabetic patients [57]. In addition, 
inhibition of PI3K signaling in skeletal muscle tissue in 
mouse models results in insulin resistance and systemic 
glucose intolerance. Further, free fatty acid and triglyc-
eride levels in the blood are elevated [58]. Insulin resist-
ance occurs when PI3K signaling is inhibited [59, 60] and 
has been observed in adipocytes [61, 62], muscle cells 
[57], the liver [63], and blood [56]. Du et al. reported that 
PIK3CD-targeting miRNA can inhibit the insulin signal-
ing pathway and thus become a target gene that can regu-
late insulin resistance [63].

By devising miRDM-rfGA, we identified a set of puta-
tive diagnostic and treatment biomarkers for T2DM 
using GA. Our study was limited by the number of 

samples (95). However, to compensate for this limitation, 
we used correlation analysis with the public BxD mouse 
database to confirm that the mRNAs targeted by the 
miRNA biomarker set were also related to T2DM [27]. In 
addition, our study was limited to discovering diagnos-
tic and treatment biomarkers composed of three miR-
NAs. Based on this, an extended follow-up study may be 
conducted.

In addition, while our method could have allowed for 
an extended study into diabetic complications along 
with diabetes, our study was also focused on only type 
2 diabetes. However, using a publicly available miRNA 
dataset (GEO accession: GSE51674) covering ‘diabetic 
nephropathy with type 2 diabetes’ (T2DN) in kidney tis-
sue (Supplementary Table S1), hsa-let-7b, hsa-miR-125b 
were up-regulated in T2DN (Supplementary Table S4 
and Supplementary Figure S3). Among these miRNAs, 
we may indicate hsa-let-7b as a biomarker candidate not 
only for T2DM but also for T2DN.

This study suggested that the feature selection method 
combining genetic algorithms (GA) and machine learn-
ing is superior to traditional feature selection methods, 
and also that this approach can be useful in deriving 

Fig. 5  Correlation and DE analysis between targeted mRNAs and clinical parameters related to T2DM, using public BxD mouse database: 
GeneNetwork. A Spearman’s correlation analysis between hepatic IRS2 expression (x-axis) in BxD high-fat diet (HFD) mice and Insulin (y-axis) 
during OGTT and (B) the comparison between the highest 25% mice (HFD) of IRS2 gene expression with the bottom 25% mice (HFD) of the gene 
expression. C Spearman’s correlation analysis between hepatic IRS expression in BxD chow diet (CD) mice and insulin response (IR) during OGTT 
and (D) the comparison between the top 25% mice (CD) of IRS2 gene expression with the bottom 25% mice (CD) of the gene expression. E 
Spearman’s correlation analysis between hepatic IGF1R expression level in BxD HFD mice and glycemia level during OGTT and (F) the comparison 
between the top 25% mice (HFD) of IGF1R gene expression with the bottom 25% mice of the gene. G Spearman’s correlation analysis 
between hepatic PIK3CD expression level in BxD HFD mice and IR during OGTT and (H) the comparison between the top 25% mice (HFD) of PIK3CD 
gene expression with the bottom 25% mice (HFD) of the gene
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optimal biomarker combinations that can be applied 
across various diseases.

Conclusions
We derived an optimal miRNA biomarker set that could 
detect T2DM using GA to process miRNA-Seq data. 
Thus, GA can be used as an effective method for bio-
marker discovery.
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