
Set Norm and Equivariant Skip Connections: Putting the Deep in
Deep Sets

Lily H. Zhang*,1, Veronica Tozzo*,2,3, John M. Higgins2,3, Rajesh Ranganath1,4

1Center for Data Science, New York University, New York, NY

2Massachusetts General Hospital, Harvard Medical School, Cambridge, MA

3Department of Systems Biology, Harvard Medical School, Boston, MA

4Department of Computer Science, New York University, New York, NY.

Abstract

Permutation invariant neural networks are a promising tool for making predictions from

sets. However, we show that existing permutation invariant architectures, Deep Sets and Set

Transformer, can suffer from vanishing or exploding gradients when they are deep. Additionally,

layer norm, the normalization of choice in Set Transformer, can hurt performance by removing

information useful for prediction. To address these issues, we introduce the “clean path principle”

for equivariant residual connections and develop set norm (SN), a normalization tailored for

sets. With these, we build Deep Sets++ and Set Transformer++, models that reach high depths

with better or comparable performance than their original counterparts on a diverse suite of

tasks. We additionally introduce Flow-RBC, a new single-cell dataset and real-world application

of permutation invariant prediction. We open-source our data and code here: https://github.com/

rajesh-lab/deep_permutation_invariant.

1. Introduction

Many real-world tasks involve predictions on sets as inputs, from point cloud classification

(Guo et al., 2020; Wu et al., 2015; Qi et al., 2017a) to the prediction of health outcomes

from single-cell data (Regev et al., 2017; Lähnemann et al., 2020; Liu et al., 2021; Yuan et

al., 2017).

Models applied to input sets should satisfy permutation invariance: for any permutation of

the elements in the input set, the model prediction stays the same. Deep Sets (Zaheer et al.,

2017) and Set Transformer (Lee et al., 2019) are two general-purpose permutation-invariant

neural networks that have been proven to be universal approximators of permutation-

invariant functions under the right conditions (Zaheer et al., 2017; Lee et al., 2019; Wagstaff

et al., 2019). In practice, however, these architectures are often tailored to specific tasks to

achieve good performance (Zaheer et al., 2017; Lee et al., 2019).

Correspondence to: Lily H. Zhang < lily.h.zhang@nyu.edu>, Veronica Tozzo < vtozzo@mgh.harvard.edu>.
*Equal contribution

HHS Public Access
Author manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

Published in final edited form as:
Proc Mach Learn Res. 2022 July ; 162: 26559–26574.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/rajesh-lab/deep_permutation_invariant
https://github.com/rajesh-lab/deep_permutation_invariant

In this work, we pursue a general approach to achieve improved performance: making

permutation-invariant networks deeper. Whether deeper models benefit performance is often

task-dependent, but the strategy of building deeper networks has yielded benefit for a

variety of architectures and tasks (He et al., 2016b; Wang et al., 2019; Li et al., 2019).

Motivated by these previous results, we investigate whether similar gains can be made of

permutation-invariant architectures and prediction tasks on sets.

However, naively increasing layers in Deep Sets and Set Transformer can hurt performance

(see Figure 1). We show empirical evidence, supported by a gradient analysis, that both

models can suffer from vanishing or exploding gradients (Section 3.1, Section 3.2).

Moreover, we observe that layer norm, the normalization layer discussed in Set Transformer,

can actually hurt performance on tasks with real-valued sets, as its standardization forces

potentially unwanted invariance to scalar transformations in set elements (Section 3.3).

To address these failures, we introduce Deep Sets++ and Set Transformer++, new versions

of Deep Sets and Set Transformer with carefully designed residual connections and

normalization layers (Section 4). First, we propose skip connections that adhere to what

we call the “clean path” principle to address potential gradient issues. Next, we propose

set norm (SN), an easy-to-implement normalization layer for sets which standardizes each

set over the minimal number of dimensions. We consider both residual connections and

normalization layers since either alone can still suffer from gradient problems (Zhang et al.,

2018; Yang et al., 2019; De & Smith, 2020).

Deep Sets++ and Set Transformer++ are able to train at high depths without suffering from

the issues seen in the original models (Section 7). Furthermore, deep versions of these

architectures improve upon their shallow counterparts on many tasks, avoiding issues such

as exploding or vanishing gradients. Among other results, these new architectures yield

better accuracy on point cloud classification than the task-specific architectures proposed in

the original Deep Sets and Set Transformer papers.

We also introduce a new dataset for permutation-invariant prediction called Flow-RBC

(Section 5). The dataset consists of red blood cell (RBC) measurements and hematocrit

levels (i.e. the fraction of blood volume occupied by RBCs) for 100,000+ patients. The

size and presence of a prediction target (hematocrit) makes this dataset unique, even among

single-cell datasets in established repositories like the Human Cell Atlas (Regev et al.,

2017). Given growing interest around single-cell data for biomedical science (Lähnemann

et al., 2020), Flow-RBC provides machine learning researchers with the opportunity to

benchmark their methods on an exciting new real-world application.

2. Permutation invariance

Let M be the number of elements in a set, and let x denote a single set with samples

x1, …, xM, xi ∈ X. A function f :XM Y is permutation invariant if any permutation π of the

input set results in the same output: f(πx) = f(x). A function σ :XM YM is permutation
equivariant if, for any permutation π, the outputs are permuted accordingly: σ(πx) = πσ(x).
A function is permutation-invariant if and only if it is sum-decomposable with sufficient

Zhang et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

conditions on the latent space dimension (Zaheer et al., 2017; Wagstaff et al., 2019). A

sum-decomposable function f :XM Y is one which can be expressed using a function

ϕ :X Z mapping each input element to a latent vector, a sum aggregation over the

elements of the resulting output, and an unconstrained decoder ρ :Z Y:

f(x) = ρ ∑
i = 1

M
ϕ(xi) . (1)

Existing permutation-invariant architectures utilize the above fact to motivate their

architectures, which consist of an equivariant encoder, permutation-invariant aggregation,

and unrestricted decoder. Equivariant encoders can express ϕ(xi) for each element xi if

interactions between elements are zeroed out. For the remainder of the paper, we consider

the depth of a permutation-invariant network to be the number of layers in the equivariant

encoder. We do not consider decoder changes as the decoder is any unconstrained network,

so we expect existing work on increasing depth to directly transfer.

3. Problems with Existing Architectures

Both Deep Sets and Set Transformer are permutation invariant (Zaheer et al., 2017; Lee

et al., 2019). However, a gradient analysis of each shows that both architectures can

exhibit vanishing or exploding gradients. We present experimental evidence of vanishing

and exploding gradients in Deep Sets and Set Transformer respectively (Figure 1).

3.1. Deep Sets gradient analysis

Deep Sets consists of an encoder of equivariant feedforward layers (where each layer

is applied independently to each element in the set), a sum or max aggregation, and

a decoder also made up of feedforward layers (Zaheer et al., 2017). Each feedforward

layer is an affine transform with a ReLU non-linearity: for layer ℓ and element i, we

have zℓ, i = relu(zℓ − 1, iW ℓ + bℓ). We denote the output after an L-layer encoder and permutation-

invariant sum aggregation as y = ∑i zL, i. Then, the gradient of weight matrix W 1 of the first

layer is as follows:

∂ℒ
∂W 1

= ∂ℒ
∂y ∑

i

∂y
∂zL, i

∂zL, i

∂W 1
. (2)

The rightmost term above is a product of terms which can become vanishingly small when

the number of layers L is large:

∂zL, i

∂W 1
= ∂zL, i

∂z1, i

∂z1, i

∂W 1
(3)

= ∏
ℓ = 2

L ∂zℓ, i

∂zℓ − 1, i

∂z1, i

∂W 1
(4)

Zhang et al. Page 3

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

= ∂z1, i

∂W 1
∏

ℓ = 2

L ∂relu(zℓ, i)
∂zℓ, i

W ℓ . (5)

This gradient calculation mirrors that of a vanilla feedforward network, except for the

additional summation over each of the elements (or the corresponding operation for max

aggregation). Despite the presence of the sum, the effect of a product over many layers

of weights still dominates the overall effect on the gradient of earlier weights. We provide

experimental evidence in Figure 1.

3.2. Set Transformer gradient analysis

Set Transformer consists of an encoder, aggregation, and decoder built upon a multihead

attention block (MAB) (Lee et al., 2019).1 The MAB differs from a transformer block

in that its skip connection starts at the linearly transformed input xW Q rather than x (see

Equation (7)).2 Let AttnK be multihead attention with K heads and a scaled softmax, i.e.

softmax(⋅ ∕ D) where D is the number of features. Then, MAB can be written as:

MABK(x, y) = f(x, y) + relu(f(x, y)W + b), (6)

f(x, y) = xW Q + AttnK(x, y, y) . (7)

The Set Transformer encoder block is a sequence of two MAB blocks, the first between

learned inducing points and the input x, and the second between the input x and the output

of the first block. Given D hidden units and M learned inducing points p,3 the inducing point

set attention block (ISAB) can be written as such:

ISABM(x) = MABK(x, h) ∈ ℝS × D (8)

where h = MABK(p, x) ∈ ℝM × D . (9)

The aggregation block is an MAB module between a single inducing point and the output

of the previous block (M = 1 in Equation (9)), and the decoder blocks are self-attention

modules between the previous output and itself. In Lee et al. (2019), layer norm is applied to

the outputs of Equation (6) and Equation (7) in the MAB module definition but is turned off

in the experiments.

1The MAB module in Lee et al. (2019) should not be confused with multihead attention (Vaswani et al., 2017), which is a component
of the module.
2The implementation of the MAB module in code differs from the definition in the paper. We follow the former.
3Typically, M < < S for computational efficiency.

Zhang et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Consider a single ISAB module. We let z1 denote the output of the previous block, z2 denote

the output after the first MAB module (i.e. h in Equation (9)), and z3 denote the output of the

second MAB module, or the overall output of the ISAB module. Then,

f1 = f(p, z1) = IW 1Q + AttnK(p, z1, z1) (10)

z2 = f1 + relu(f1W 1 + b1) (11)

f2 = f(z1, z2) = z1W 2Q + AttnK(z1, z2, z2) (12)

z3 = f2 + relu(f2W 2 + b2) . (13)

Let I denote the identity matrix Then, the gradient of a single ISAB block output z3 with

respect to its input z1 can be represented as ∂z3
∂z1

= ∂z3
∂f2

∂f2
∂z1

, or

I + ∂relu(f2W 2 + b2)
∂(f2W 2 + b2) W 2 W 2Q + ∂AttnK(z1, z2, z2)

∂z1
.

In particular, we notice that even if the elements in
∂relu(f2W 2 + b2)

∂(f2W 2 + b2) W 2 and ∂AttnK(z1, z2, z2)
∂z1

 are

close to zero, the weights W 2Q will affect the partial derivatives of each ISAB output with

respect to its input. The gradient of earlier weights will be the product of many terms of

the above form, and this product can explode when the magnitude of the weights grows,

causing exploding gradients and unstable training (see Figure 1(c) for an example). We

find experimentally that even with the addition of layer norm, the problem persists. See

Appendix B.1 for an analogous gradient analysis with the inclusion of layer norm.

Based on the gradient analysis provided for both Deep Sets and Set Transformer, both

vanishing and exploding gradients are possible for both models. In our experiments, we

primarily see evidence of vanishing gradients for Deep Sets and exploding gradients for Set

Transformer.

3.3. Layer norm can hurt performance

Layer norm (Ba et al., 2016) was introduced for permutation-invariant prediction tasks in Set

Transformer (Lee et al., 2019), mirroring transformer architectures for other tasks. However,

while layer norm has been shown to benefit performance in other settings (Ba et al., 2016;

Chen et al., 2018), we find that layer norm can in fact hurt performance on certain tasks

involving sets (see Table 1).

Let μ z, σ z ∈ ℝD be the statistics used for standardization of a vector z ∈ ℝD and γ ,

β ∈ ℝD be transformation parameters acting on each feature independently. Then, given a

Zhang et al. Page 5

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

set with elements {xi}i = 1
M ∈ ℝD, layer norm first standardizes each element independently

x̄i = xi − μxi
σxi

, and then transforms xi = xi ⊙ γ + β .

Element-wise standardization forces an invariance where two elements whose activations

differ in only a scale yield the same output when processed through layer norm following a

linear projection. If we consider layer norm in is typical placement, after a linear projection

and before the non-linear activation f(xi) = relu(LN(xiW)) (Ba et al., 2016; Ioffe & Szegedy,

2015; Ulyanov et al., 2016; Cai et al., 2021), we have that for xi and xi′ = αxi, α ∈ ℝ,

LN(xi′W) = (αxi)W − μ xi′W
σ xi′W

∗ γ + β (14)

= αxiW − αμ xiW
ασ xiWW

∗ γ + β (15)

= xiW − μ xiW
σ xiW

∗ γ + β = LN(xiW) . (16)

Since LN(xi′W) = LN(xiW), f(xi′) = f(xi), meaning the two elements are indistinguishable at

this point in the network. This invariance reduces representation power (two such samples

cannot be treated differently in the learned function) and removes information which may

potentially be useful for prediction (i.e. per-element mean and standard deviation).

An Example in 2D.—Consider sets of two-dimensional real-valued elements and a model

with 2D activations. Layer norm’s standardization will map all elements to either (−1, 1),

(0, 0), or (1, −1), corresponding to whether the first coordinate of each element is less than,

greater than, or equal to the second coordinate. If the task is classifying 2D point clouds,

any two shapes which share the same division of points on either side of the y = x line will

be indistinguishable (see Appendix B.2 for a visualization). Generalizing this phenomenon

to higher dimensions, layer norm’s standardization decreases the degrees of freedom in

elements’ outputs relative to their inputs, an effect that can be particularly harmful for sets

of low-dimensional, real-valued elements. In contrast, layer norm is commonly used in NLP,

where one-hot encoded categorical tokens will not be immediately mapped to the same

outputs. Differences such as these ones highlight the need to consider normalization layers

tailored to the task and data type at hand.

Our analysis on gradients and layer norm does not suggest that these issues will always be

present. However, the possibility of these issues, as well as experimental evidence thereof,

raises the need for alternatives which do not exhibit the same problems.

Zhang et al. Page 6

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Deep Sets++ and Set Transformer++

We propose Deep Sets++ and Set Transformer++, new architectures that differ from the

originals only in their encoders, as we fix the decoder and aggregation to their original

versions. For simplicity, we let the hidden dimension remain constant throughout the

encoder. Based on the analysis of Section 3, we explore alternative residual connections

scheme to fix the vanishing and exploding gradients. Moreover, given the potential issues

with layer norm for real-valued set inputs, we consider an alternative normalization.

Concretely, we propose the clean-path equivariant residual connections and set norm.

4.1. Clean-path equivariant residual connections

Let f be an equivariant function where X = Y = ℝD, i.e. f :ℝM × D ℝM × D. A function

g which adds each input to its output after applying any equivariant function f is also

equivariant:

g(πx) = f(πx) + πx = πf(x) + πx = πg(x) .

While such residual connections exist in the literature (Weiler & Cesa, 2019; Wang et al.,

2020), here we refer to them as equivariant residual connections (ERC) to highlight their

equivariant property and differentiate them from other possible connections that skip over

blocks (see Section 7 for an example). In sets, ERCs act on every element and eliminate the

vanishing gradient problem (see Appendix G for a gradient analysis).

ERCs can be placed in different arrangements within an architecture (He et al., 2016b;a;

Vaswani et al., 2017; 2018). We consider non-clean path and clean path arrangements. Let

l indicate the layer in the network. Non-clean path blocks include operations before or after

the residual connections and must be expressed as either

xl + 1 = g(xl) + f(xl) or xl + 1 = g(xl + f(xl)), (17)

where g, f cannot be the identity function. This arrangement was used in the MAB module

of the Set Transformer architecture (see Figure 2 panel a). Previous literature on non

permutation-invariant architectures shows that the presence of certain operations between

skip connections could yield undesirable effects (He et al., 2016a;b; Klein et al., 2017;

Vaswani et al., 2018; Xiong et al., 2020).

In contrast, clean path arrangements add the unmodified input to a function applied on it,

xl + 1 = xl + f(xl), (18)

resulting in a clean path from input to output (see gray arrows in Figure 2 b and d).

The clean path MAB block (Figure 2 panel b) mirrors the operation order of the Pre-LN

Transformer (Klein et al., 2017; Vaswani et al., 2018), while the clean path version of Deep

Sets mirrors that of the modified ResNet in He et al. (2016a) (Figure 2 panel d).

Zhang et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.2. Set norm

Designing normalization layers for permutation equivariant encoders requires careful

consideration, as not all normalization layers are appropriate to use. To this aim, we analyze

normalization layers as a composition of two operations: standardization and transformation.

This setting captures most common normalizations (Ioffe & Szegedy, 2015; Ba et al., 2016;

Ulyanov et al., 2016).

Let a ∈ ℝN × M × D be the activation before the normalization operation, where N is the

size of the batch, M is the number of elements in a set (sets are zero-padded to the largest

set size), and D is the feature dimension. First, the activations are standardized based

on a setting S which defines which dimensions utilize separate statistics. For instance,

S = {N, M} denotes that each set in a batch and each element in a set calculates its

own mean and standard deviation for standardization, e.g. μS(a)b, s = 1
D ∑d = 1

D an, i, d. Results

are repeated over the dimensions not in S so that μS(a), σS(a) ∈ ℝN × M × D match a in

dimensions for elementwise subtraction and division. A standardization operation can be

defined as:

āS = a − μS(a)
σS(a) , (19)

where we assume that the division is well-defined (i.e. non-zero standard deviation).

Next, the standardized activations are transformed through learned parameters which differ

only over a setting of dimensions T. For instance, T = {D} denotes that each feature is

transformed by a different scale and bias, which are shared across the sets in the batch

and elements in the sets. Let γ T, β T ∈ ℝN × M × D denote the learned parameters and ⊙
represent elementwise multiplication. Any transformation operation can be defined as:

aT = ā ⊙ γ T + β T . (20)

Proposition 1. Let ℱ be the family of transformation functions which can be expressed via
Equation (20). Then, for f ∈ ℱ, T = {D} and T = {} are the only settings satisfying the
following properties:

1. fT(πia) = πifT(a) where πi is a permutation function that operates on elements in a

set;

2. fT(πna) = πnfT(a) where πn is a permutation function that operates on sets.

See Appendix C for proof. In simpler terms, the settings T = {D} and T = {} are the only

ones that maintain permutation invariance and are agnostic to set position in the batch. The

setting T = {D} contains T = {} and is more expressive, as T = {} is equivalent to T = {D}

where learned parameters γ T, β T each consist of a single unique value. Thus, we choose

T = {D} as our choice of transformation.

Zhang et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Standardization will always remove information; certain mean and variance information

become unrecoverable. However, it is possible to control what information is lost based on

the choice of dimensions over which standardization occurs.

With this in mind, we propose set norm (SN), a new normalization layer designed to

standardize over the fewest number of dimensions of any standardization which acts on

each set separately. Per-set standardizations are a more practical option for sets than

standardizations which happen over a batch (N ∉ S, batch norm is an example), as the

latter introduce issues such as inducing dependence between inputs, requiring different

procedures during train and test, and needing tricks such as running statistics to be stable.

In addition, any standardization over a batch needs to take into account how to weight

differentially-sized sets in calculating the statistics as well as how to deal with small batch

sizes caused by large inputs.

Set norm is a normalization defined by a per set standardization and per feature

transformation (ℒ = {N}, T = {D}):

SN(anid) = an − μn
σn

⊙ γd + βd,

μn = 1
M

1
D ∑

i = 1

M
∑

d = 1

D
anid,

σn
2 = 1

M
1
D ∑

i = 1

M
∑

d = 1

D
(anid − μn)2 .

Set norm is permutation equivariant (see Appendix C for proof). It also standardizes over the

fewest dimensions possible of any per-set standardization, resulting in the least amount of

mean and variance information removed (e.g. only the global mean and variance of the set

rather than the mean and variance of each sample in the set in the case of layer norm). Note

that set norm assumes sets of size greater than one (M > 1) or multi-sets in which at least

two elements are different.

Next, we combine clean-path equivariant residual connections and set norm to build

modified permutation-invariant architectures Deep Sets++ and Set Transformer++.

4.3. Deep Sets++ (DS++)

DS++ adopts the building blocks mentioned above, resulting in a residual block of the form

xl + 1 = xl + SetNorm(W l1(relu(SetNorm(W l2xl)))) .

The DS++ encoder starts with a first linear layer and no bias, as is customary before a

normalization layer (Ioffe & Szegedy, 2015; Ba et al., 2016) and ends with a normalization-

relu-weight operation after the final residual block in the encoder, following He et al.

(2016a).

Zhang et al. Page 9

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.4. Set Transformer++ (ST++)

Similarly, ST++ adds a set norm layer and adheres to the clean path principle (see Figure

2 (b)). In practice, we define a variant of the ISAB model, which we call ISAB++, that

changes the residual connections and adds normalization off the residual path, analogous to

the Pre-LN transformer (Klein et al., 2017; Vaswani et al., 2018; Xiong et al., 2020). We

define two multi head attention blocks MAB1 and MAB2 with K heads as

MABK
1 (x, y) = h + fcc(relu(SetNorm(h))) (21)

where h = x + AttnK(x, SetNorm(y), y) . (22)

MABK
2 (x, y) = h + fcc(relu(SetNorm(h))) (23)

where h = x + AttnK(x, SetNorm(x), SetNorm(y), y) . (24)

Then, the ISAB++ block with D hidden units, K heads and M inducing points is defined as

ISAB+ +M (x) = MABK
2 (x, h) ∈ ℝS × D, (25)

h = MABK
1 (p, x) ∈ ℝM × D . (26)

The reason why MABK
1 does not include normalization on the first input is because that

inducing points #####p are learned.

5. FlowRBC

To complement our technical contributions, we open-source FlowRBC, a prototypical

example of a clinically-available single cell blood dataset. In this type of dataset,

permutation invariance holds biologically as blood cells move throughout the body.

FlowRBC aims to answer an interesting physiological question: can we predict extrinsic

properties from intrinsic ones? In practice, the task is to predict a patient’s hematocrit levels

from individual red blood cell (RBC) volume and hemoglobin measurements. Hematocrit

is the fraction of overall blood volume occupied by red blood cells and thus an aggregated

measure of RBCs and other blood cell types. See more details in Appendix A. FlowRBC

represents an exciting real-world use case for prediction on sets largely overlooked by the

machine learning community. It differs from other real-valued datasets (e.g. Point Cloud) in

that every absolute measurement carries biological information beyond its relative position

with other points. This implies that translations might map to different physiological states.

For this reason, careful architectural design is required to preserve useful knowledge about

the input.

Zhang et al. Page 10

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6. Experimental setup

To evaluate the effect of our proposed modifications, we consider tasks with diverse inputs

(point cloud, continuous, image) and outputs (regression, classification). We use four main

datasets to study the individual components of our solution (Hematocrit, Point Cloud, Mnist

Var and Normal Var) and two (CelebA, Anemia) for validation of the models.

• Hematocrit Regression from Blood Cell Cytometry Data (Hematocrit a.k.a.
Flow-RBC). The dataset consists of measurements from 98240 train and 23104

test patients. We select the first visit for a given patient such that each patient

only appears once in the dataset, and there is no patient overlap between train

and test. We subsample for each distribution to 1,000 cells.

• Point Cloud Classification (Point Cloud). Following (Zaheer et al., 2017; Lee

et al., 2019), we use the Model-Net40 dataset (Wu et al., 2015) (9840 train and

2468 test clouds), randomly sample 1,000 points per set, and standardize each

object to have mean zero and unit variance along each coordinate axis. We report

ablation results as cross entropy loss to facilitate the readability of the tables, i.e.

lower is better.

• Variance Prediction, Image Data (MNIST Var). We implement empirical

variance regression on MNIST digits as a proxy for real-world tasks with sets

of images, e.g. prediction on blood smears or histopathology slides. We sample

10 images uniformly from the training set and use the empirical variance of the

digits as a label. Test set and training set images are non-overlapping. Training

set size is 50,000 sets, and test set size is 1,000 sets. We represent each image as

a 1D vector.

• Empirical Variance Prediction, Real Data (Normal Var). Each set is a

collection of 1000 samples from a univariate normal distribution. Means are

drawn uniformly in [−10, 10], and variances are drawn uniformly in [0, 10]. The

target for each set is the empirical variance of the samples (regression task) in the

set. Training set size is 10,000 sets, and test set size is 1,000 sets.

• Set anomaly detection, Image Data (CelebA). Following Lee et al. (2019),

we generate sets of images from the CelebA dataset (Liu et al., 2015) where

nine images share two attributes in common while one does not. We learn an

equivariant function whose output is a 10-dimensional vector that identifies the

anomaly in the set. We build a train and test datasets with 18000 sets, each

of them containing 10 images (64×64). Train and test do not contain the same

individuals.

• Anemia detection, Blood Cell Cytometry Data. The dataset consists of 11136

train and 2432 test patients. Inputs are individual red blood cell measurements

(volume and hemoglobin) and the outputs are a binary anemic vs. non-anemic

diagnosis. A patient was considered anemic if they had a diagnosis for anemia of

any type within 3 days of their blood measurements. We sample 1,000 cells for

each input distribution.

Zhang et al. Page 11

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Unless otherwise specified, results are reported in Mean Squared Error (MSE) for regression

experiments and in cross entropy loss (CE) for point cloud classification, averaged over

three seeds. We fix all hyperparameters, including epochs, and use the model at the end of

training for evaluation. We notice no signs of overfitting from the loss curves. For further

experimental details, see Appendix D.

7. Results

Clean path residuals have better performance than non-clean path ones.

Table 3 confirms that clean path pipelines generally yield the best performance across set

tasks both for Deep Sets and Set Transformer, independently of normalization choice. The

primary exception to this trend is Deep Sets on Point Cloud, which can be explained

by a Point Cloud-specific phenomenon where the repeated addition of positive values

in the architecture improves performance (see Appendix E.1 for empirical analysis). Non-

clean path Set Transformer has both the worst and best results on Mnist Var among Set

Transformer variants, evidence of its unpredictable behavior at high depths. In contrast,

ST++ results are more stable, and Table 5 illustrates that ST++ consistently improves on

Mnist Var as depth increases.

The clean path principle has previously been shown in other applications to improve

performance and yield more stable training (He et al., 2016a; Wang et al., 2019). Its benefit

for both Deep Sets and Set Transformer provides further proof of the effectiveness of this

principle.

Equivariant residual connections are the best choice for set-based skip connections.

ERCs generalize residual connections to permutation-equivariant architectures. For further

validation of their usefulness, we empirically compare them with another type of residual

connection: an aggregated residual connection (ARC) which sums an aggregated function of

the elements (e.g. sum, mean, max) from the previous layer. Appendix F provides a more

detailed discussion. Results in Table 4 show that clean-path ERCs remain the most suitable

choice.

Set norm performs better than other norms.

Table 2 shows that Deep Sets benefits from the addition of set norm when no residual

connections are involved. Hematocrit and Normal Var performances are the same across

normalizations, but this is due to a vanishing gradient that cannot be overcome by the

presence of normalization layers alone.

We further analyzed normalizations in the presence of residual connections in Table 3.

Here, we also consider the normalization layer used in the PointNet and PointNet++

architectures for point cloud classification (Qi et al., 2017a;b), implemented as batch

norm on a transposed tensor. We call this norm feature norm, which is an example of a

normalization that occurs over the batch rather than on a per-set basis (S = {D}, T = {D}).

Zhang et al. Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Clean path residuals with set norm generally perform best. The pattern is particularly evident

for Normal Var, where clean path is significantly better than non-clean path and the addition

of set norm further improves the performance.

We additionally observe in Table 3 that results for layer norm improve with the addition

of clean-path residual connections relative to earlier results in Table 1 and Table 2. We

hypothesize that skip connections help alleviate information loss from normalization by

passing forward values before normalization. For instance, given two elements xl and xl
′ that

will be mapped to the same output x by layer norm, adding a residual connection enables the

samples to have distinct outputs xl + 1 = xl + x and xl + 1
′ = xl

′ + x.

Deep Sets++ and Set Transformer++ outperform existing architectures.

We validate our proposed models DS++ and ST++ on real-world datasets (Table 5).

Deep Sets (DS) and Set Transformer (ST) show failures (underlined entries) as depth

increases. On the contrary, DS++ and ST++ tend to outperform their original and shallow

counterparts at high depths (rows highlighted in gray have the highest number of best

results). Deep Sets++ and Set Transformer++ particularly improve performance on point

cloud classification and CelebA set anomaly detection. We show in Appendix E that, on an

official point cloud benchmark repository (Goyal et al., 2021a), DS++ and ST++ without

any modifications outperform versions of Deep Sets and Set Transformer tailored for point

cloud classification. On Hematocrit, both deep modified models surpass the clinical baseline

(25.85 MSE) while the original Deep Sets at 50 layers does not (more details are provided in

Appendix A).

Table 5 highlights that DS++ and ST++ generally improve over DS and ST overall without

notable failures as depth increases. Due to their reliability and ease of use, DS++ and

ST++ are practical choices for practitioners who wish to avoid extensive model search or

task-specific engineering when approaching a new task, particularly one involving sets of

measurements or images. We expect this benefit to be increasingly relevant in healthcare or

biomedical settings, as new datasets of single cell measurements and cell slides continue to

be generated, and new tasks and research questions continue to be posed.

Lastly, while ST and ST++ performance are better than DS++, it is worth noticing that

the former models have approximately 3 times more parameters and take more time and

memory to run. As an example, on point cloud classification, ST++ took ≈ 2 times longer to

train than DS++ for the same number of steps on a NVIDIA Titan RTX.

8. Related Work

Previous efforts to design residual connections (He et al., 2016b; Veit et al., 2016; Yao et al.,

2020) or normalization layers (Ioffe & Szegedy, 2015; Ba et al., 2016; Santurkar et al., 2018;

Ghorbani et al., 2019; Luo et al., 2019; Xiong et al., 2020; Cai et al., 2021) have often been

motivated by particular applications. Our work is motivated by applications of predictions on

sets.

Zhang et al. Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The effects of non-clean or clean path residual connections have been studied in various

settings. He et al. (2016a) showed that adding a learned scalar weight to the residual

connection, i.e. xℓ + 1 = λℓxℓ + ℱ(xℓ), can result in vanishing or exploding gradients if the A

scalars are consistently large (e.g. > 1) or small (< 1). Wang et al. (2019) while see that for

deep transformers, only the clean path variant converges during training. Xiong et al. (2020)

show that Post-LN transformers (non-clean path) require careful learning rate scheduling

unlike their Pre-LN (clean path) counterparts. Our analysis provides further evidence of

the benefit of clean-path residuals. While our clean and non-clean path DS architectures

mirror those of the clean and non-clean path ResNet architectures (He et al., 2016a;b), the

non-clean path Set Transformer differs from non-clean path Post-LN Transformer in that the

former also has a linear projection on the residual path.

Many normalization layers have been designed for specific purposes. For instance, batch

norm (De & Smith, 2020), layer norm (Ba et al., 2016), instance norm (Ulyanov et al., 2016)

and graph norm (Cai et al., 2021) were designed for image, text, stylization, and graphs

respectively. In this work, we propose set norm with set inputs in mind, particularly sets of

real-valued inputs. The idea in set norm to address different samples being mapped to the

same outputs from layer norm is reminiscent of the goal to avoid oversmoothing motivating

pair norm (Zhao & Akoglu, 2019), developed for graph neural networks.

Our work offers parallels with work on graph convolutional networks (GCNs). For instance,

previous works in the GCN literature have designed architectures that behave well when

deep and leverage residual connections (Li et al., 2019; Chen et al., 2020). However, while

GCNs and set-based architectures share a lot of common principles, the former relies on

external information about the graph structure which is not present in the latter.

9. Conclusion

We illustrate limitations of Deep Sets and Set Transformer when deep and develop Deep

Sets++ and Set Transformer++ to overcome these limitations. We introduce set norm to

address the unwanted invariance of layer norm for real-valued sets, and we employ clean-

path equivariant residual connections to enable identity mappings and help address gradient

issues. DS++ and ST++ are general-purpose architectures and the first permutation invariant

architectures of their depth that show good performance on a variety of tasks. We also

introduce Flow-RBC, a new open-source dataset which provides a real-world application of

permutation invariant prediction in clinical science. We believe our new models and dataset

have the potential to motivate future work and applications of prediction on sets.

Acknowledgements

This work was supported by NIH/NHLBI Award R01HL148248, NSF Award 1922658 NRT-HDR: FUTURE
Foundations, Translation, and Responsibility for Data Science, a DeepMind Fellowship, and NIH R01 DK123330.

A.: Flow-RBC

The analysis of and prediction from single-cell data is an area of rapid growth (Lähnemann

et al., 2020). Even so, Flow-RBC constitutes a dataset unique for its kind, consisting of more

Zhang et al. Page 14

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

than 100,000 measurements taken on different patients paired with a clinical label. Even

established projects like the Human Cell Atlas (Regev et al., 2017) or Flow Repository4

do not include single-cell datasets of this size. For instance, to our knowledge, the second

largest open-source dataset of single-cell blood samples contains data from 2,000 individuals

and does not include external clinical outcomes for all patients to be used as a target.

Flow-RBC consists of 98,240 train and 23,104 test examples. Each input set is a red blood

cell (RBC) distribution of 1,000 cells. Each cell consists of a volume and hemoglobin

content measurement (see Figure 3 for a visual representation). The regression task consists

of predicting the corresponding hematocrit level measured on the same blood sample. Blood

consists of different components: red blood cells, white blood cells, platelets and plasma.

The hematocrit level measures the percentage of volume taken up by red blood cells in a

blood sample.

Since we only have information about the volume and hemoglobin of individual RBCs

and no information about other blood cells, this task aims to answer an interesting

clinical question: is there information present in individual RBC volume and hemoglobin

measurements about the overall volume of RBCs in the blood? As this question has not been

definitively answered in the literature, there is no known expected performance achievable;

instead, increases in performance are an exciting scientific signal, suggesting a stronger

relationship between single cell RBC and aggregate population properties of the human

blood than previously known.

The existing scientific literature notes that in the presence of diseases like anemia, there

exists a negative correlation between hematocrit and the red cell distribution width (RDW),

also known as the coefficient of variation of the volume i.e. SD(Volume) / Mean(Volume)

× 100 (McPherson et al., 2021, Chapter 9). To represent the current state of medical

knowledge on this topic, we use as a baseline a linear regression model with RDW as

covariate. Additionally, we build a regression model on hand-crafted distribution statistics

(up to the fourth moment on both marginal distributions as well as .1, .25, .5, .75, .9

quantiles). This model improves over simple prediction with RDW, further confirming the

hypothesis that more information lies in the single-cell measurements of RBCs. ST++

further improves performance, resulting in an MSE reduction of 28% over the RDW model.

See Table 6 for results.

4 https://flowrepository.org

Zhang et al. Page 15

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://flowrepository.org/

Figure 3:
Example of RBC distribution given in input for the prediction of hematocrit level.

Procedure to Obtain RBC distribution measurements

All Flow-RBC data is collected retrospectively at Massachusetts General Hospital under

an existing IRB-approved research protocol and is available at this link. Each RBC

distribution consists of volume and hemoglobin mass measurements collected using the

Advia 2120 (Harris et al., 2005), a flow-cytometry based system that measures thousands of

cells. The volume and hemoglobin information are retrieved through Mie (or Lorenz-Mie)

theory equations for the analysis of light scattering from a homogeneous spherical particle

(Tycko et al., 1985). An example of one input distribution is provided in Figure 3. The

Advia machine returns an average of 55,000 cells. For this dataset, we downsampled

each distribution to 1,000 cells, a number high enough to maintain sample estimates

of “population” (i.e. all 55,000 cells) statistics with minimal variance while imposing

reasonable memory requirements on consumer gpus. Each distribution is normalized and

re-scaled by the training set mean and standard deviation.

Zhang et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Table 6:

Baseline regression performances for the prediction of hematocrit from RBC distributions.

Our proposed Set Transformer++ currently has the best performance on this task.

MSE

RDW 25.85

Moments 22.31

Set Transformer++ 18.69

B.: Layer Norm Analyses

B.1. Gradient Analysis for Set Transformer with Layer Norm

The addition of Layer norm to Equation (7) does not preclude the possibility of exploding or

vanishing gradients. Let AttnK be multihead attention with K heads and a scaled softmax, i.e.

softmax(⋅ ∕ D), and let LN be layer norm. We consider the following definition of a MAB

module, with layer norm placement that matches what was described in the original paper

(Lee et al., 2019):

MABK(x, y) = LN(f(x, y) + relu(f(x, y)W + b)), (27)

f(x, y) = LN(xW Q + AttnK(x, y, y)) . (28)

The inducing point set attention block (ISAB) is then

ISABM(x) = MABK(x, h) ∈ ℝS × D (29)

where h = MABK(p, x) ∈ ℝM × D . (30)

Consider a single ISAB module. We let z1 denote the output of the previous block, z2 denote

the output after the first MAB module (i.e. h in Equation (9)), and z3 denote the output of the

second MAB module, or the overall output of the ISAB module. Then,

f1 = f(p, z1) = LN(IW 1Q + AttnK(p, z1, z1)) (31)

z2 = LN(f1 + relu(f1W 1 + b1)) (32)

f2 = f(z1, z2) = z1W 2Q + AttnK(z1, z2, z2)) (33)

f3 = LN(f2) (34)

Zhang et al. Page 17

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f4 = f3 + relu(f3W 2 + b2) (35)

z3 = LN(f4) . (36)

The gradient of a single ISAB block output z3 with respect to its input z1 can be represented

as ∂z3
∂z1

= ∂z3
∂f4

∂f4
∂f3

∂f3
∂f2

∂f2
∂z1

, or

∂LN(f4)
∂f4

I + ∂relu(f2W 2 + b2)
∂(f2W 2 + b2) W 2

∂LN(f2)
∂f2

W 2Q + ∂AttnK(z1, z2, z2)
∂z1

.

The gradient expression is analogous to the one in Section 3.2, with the exception of

additional
∂LN(f4)

∂f4
 and

∂LN(f2)
∂f2

 per ISAB block. With many ISAB blocks, it is still possible

for a product of the weights W 2Q to accumulate.

B.2. Visualizing Layer Norm Example in 2D

In Section 3.3, we discussed how layer norm removes two degrees of freedom from each

sample in a set, which can make certain prediction difficult or impossible. In particular, we

discussed a simple toy example in 2D, that of classifying shapes based on 2D point clouds.

We utilize hidden layers of size 2, which means the resulting activations can be visualized.

In this setup, different shapes yield the same resulting activations as long as their points are

equally distributed above and below the y = x line. See Figure 4.

Zhang et al. Page 18

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Layer norm performs per-sample standardization, which in 2D point cloud classification can

result in shapes (left) whose 2D activations (right) are indistinguishable from each other.

C.: Normalization proofs

Proposition 1. Let ℱ be the family of transformation functions which can be expressed via
Equation (20). Then, for f ∈ ℱ, T = {D} and T = {} are the only settings satisfying the
following properties:

1. fT(πia) = πifT(a) where πi is a permutation function that operates on elements in

the set;

2. fT(πna) = πnfT(a) where πn is a permutation function that operates on sets.

Proof. For transformation tensors in ℝN × M × D, the parameters can be distinct over the

batch (N ∈ T), over the elements (M ∈ T), over the features (D ∈ T), or any combination

of the three. We show that N ∈ T and M ∈ T are unsuitable, leaving only D ∈ T.

Having distinct parameters over the samples breaks permutation equivariance, making

M ∈ T an untenable option. Let f :ℝM × D ℝM × D be the transformation function, and

γ {M}, β {M} represent tensors in ℝN × M × D where the values along dimension M can be

unique, while the values along N, D are repeated. We denote an indexing into the batch

dimension as γ {M}, n, β {M}, n. Then, f breaks permutation equivariance:

Zhang et al. Page 19

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f(πia) = πia ⊙ γ {M}, n + β {M}, n (37)

≠ πi(a ⊙ γ {M}, n + β {M}, n) (38)

= πif(a) . (39)

Having distinct parameters over the batch means that the position of a set in the batch

changes its ordering, making N ∈ T an untenable option. Let γ {N}, β {N} represent tensors

which can differ over the batch, e.g. γ {N}, n ≠ γ {N}, n′, n ≠ n′. Then, the prediction function fn

for batch index n will yield a different output than the prediction function fn′ for batch index

n′:

fb(a) = a ⊙ γ {N}, n + β {N}, n (40)

≠ a ⊙ γ {N}, n′ + β {N}, n′ (41)

= fn′(a) . (42)

As neither M nor N can be in T, the remaining options are T = {D} or T = {}, i.e. γ ,

β each repeat a single value across the tensor. Note that T = {} is strictly contained in

T = {D}: if the per feature parameters are set to be equal in the T = {D} setting, the result

is equivalent to T = {}. Therefore, T = {D} sufficiently describes the only suitable setting of

parameters for transformation. □

Proposition 2. Set norm is permutation equivariant.

Proof. Let μ, σ ∈ ℝ be the elements mean and variance over all features in the set,

γ , β ∈ ℝM × D refer to the appropriate repetition of per-feature parameters in the M
dimension. Then,

SN(πx) = πx − μ
σ ∗ γ + β] (43)

= π x − μ
σ ∗ γ + β (44)

= πSN(x) . (45)

Zhang et al. Page 20

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Equation (44) follows from the fact that μ, σ are scalars and γ , β are equivalent for every

sample in the set. □

D.: Experimental configuration

Across experiments and models we purposefully keep hyperparameters consistent to

illustrate the easy-to-use nature of our proposed models. All experiments and models

are implemented in PyTorch. The code is available at https://github.com/rajesh-lab/

deep_permutation_invariant

D.1. Experimental Setup

Hematocrit, Point Cloud and Normal Var use a fixed sample size of 1000. MNIST Var and

CelebA use a sample size of 10 due to the high-dimensionality of the images in input. The

only architectural difference across these experiments is the choice of permutation-invariant

aggregation for the Deep Sets architecture: we use sum aggregation for all experiments

except Point Cloud, where we use max aggregation, following (Zaheer et al., 2017). We

additionally use a featurizer of convolutional layers for the architectures on CelebA given

the larger image sizes in this task (see Appendix D.2 section for details).

All models are trained with a batch size of 64 for 50 epochs, except for Hematocrit where

we train for 30 given the much larger size of the training dataset (i.e. 90k vs. ≤ 10k). All

results are reported as test MSE (or cross entropy for point cloud) at the last epoch. We did

not use early stopping and simply took the model at the end of training. There was no sign

of overfitting. Results are reported setting seeds 0, 1, and 2 for initialization weights. We use

the Adam optimizer with learning rate 1e-4 throughout.

D.2. Convolutional blocks for set anomaly

For our set anomaly task on CelebA, similarly to Zaheer et al. (2017), we add at the

beginning of all the considered architectures 9 convolutional layers with 3 × 3 filters.

Specifically, we start with 2D convolutional layers with 32, 32, 64 feature-maps followed by

max pooling; we follow those with 2D convolutional layers with 64, 64, 128 feature maps

followed by another max pooling; and weend with 128, 128, 256 2D convolutional layers

followed by a max-pooling layer with size 5. The output of the featurizer (and input to the

rest of the permutation invariant model) is 255 features. The architecture is otherwise the

same as those used on all other tasks considered in this work.

Table 7:

Detailed DeepSets more residuals architecture.

Encoder Aggregation Decoder

Residual block × 51

FC(128) FC(128) Sum/Max FC(128)

SetNorm(128) ReLU

Zhang et al. Page 21

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/rajesh-lab/deep_permutation_invariant
https://github.com/rajesh-lab/deep_permutation_invariant

Encoder Aggregation Decoder

Addition FC(128)

ReLU ReLU

FC(128)

ReLU

FC(no outputs)

E.: Additional results

E.1. Understanding ResNet vs. He Pipeline for Deep Sets on Point Cloud.

We explore why Deep Sets with the non-clean ResNet residual pipeline performs better

on Point Cloud than Deep Sets with the clean He residual pipeline. Specifically, to test

whether the difference is due to the ReLU activation in between connections, we design

another residual pipeline where the connections (i.e. additions) are more frequent and also

separated by a ReLU nonlinearity. We call this pipeline FreqAdd. This new architecture is

shown in Table 7 and comparison of loss curves is in Figure 5 where we can observe that the

architecture with more residual connection FreqAdd has even better performances than the

non-clean pipeline. We speculate that this might be due to peculiarities of Point Cloud which

benefit from continual addition positive values. Indeed, in the original Deep Sets paper

(Zaheer et al., 2017), the authors add a ReLU to the end of the encoder for the architecture

tailored to point cloud classification, and such a nonlinearity is noticeably missing from the

model used for any other task.

E.2. Comparing Point Cloud classification with Task-Specific Models

Here, we compare the performances of DS++ and ST++ unmodified with those of

models built specifically for point cloud classification. For a fair comparison, we use the

experimental setup and the code provided in SimpleView (Goyal et al., 2021b). In practice,

we use their DGCNN-smooth protocol and record the test accuracy at 160 epochs. The

sample size for this experiment is the default in the SimpleView repository, 1024. We

compared Deep Sets++, Set Transformer++, PointNet++ (Qi et al., 2017b), and SimpleView

(Goyal et al., 2021a), as well as the models proposed in the original Deep Sets and

Set Transformer papers tailored to point cloud classification, which differ than from the

baseline architectures used in our main results. We describe these tailored Deep Sets and Set

Transformer models in Table 8 and Table 9.

Results are reported in Table 10 and Figure 6. Deep Sets++ and Set Transformer++

without any modifications both achieve a higher test accuracy than the Deep Sets and

Set Transformer models tailor designed for the task. PointNet++ and SimpleView perform

best, but both architectures are designed specifically for point cloud classification rather

than tasks on sets in general. Concretely, PointNet++ hierarchically assigns each point to

centroids using Euclidean distance which is not an informative metric for high-dimensional

inputs, e.g. sets of images. SimpleView is a non-permutation invariant architecture that

Zhang et al. Page 22

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

represents each point cloud by 2D projections at various angles; such a procedure is ill-

suited for sets where samples do not represent points in space.

Table 8:

Customized Deep Sets architecture for PointCloud.

Encoder Aggregation Decoder

x - max(x) Max Dropout(0.5)

FC(256) FC(256)

Tanh Tanh

x-max(x) Dropout(0.5)

FC(256) FC(n_outputs)

Tanh

x-max(x)

FC(256)

Tanh

Table 9:

Customized Set Transformer architecture for PointCloud.

Encoder Aggregation Decoder

FC(128) Dropout(0.5) Dropout(0.5)

ISAB(128, 4, 32) PMA(128, 4) FC(n_outputs)

ISAB(128, 4, 32)

Table 10:

Point cloud test accuracy

Model Accuracy

Deep Sets 0.86

Deep Sets++ 0.87

Set Transformer 0.86

Set Transformer++ 0.87

SimpleView 0.92

PointNet++ 0.92

F.: Aggregated residual connections (ARCs)

A function g which adds aggregated equivariant residual connections to any equivariant

function f is also permutation equivariant:

Zhang et al. Page 23

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Loss curves for train (left) and test (right) comparing the residual pipelines ResNet (orange),

He (magenta) and FreqAdd (green). Adding a positive number more frequently (green >

orange > magenta) results in better performance for Point Cloud.

Figure 6:
Test accuracy curves of different architectures on Point Cloud classification, as implemented

in the SimpleView codebase. Unmodified DS++ and ST++ outperform DS and ST tailored

to the task.

g(πx) = f(πx) + pool(x1…, xS)
= πfx) + pool(x1, …, xS) = πg(x) .

Results in Table 4 clearly show that clean path ARCs perform worse than clean path ERCs

(Table 3).

Zhang et al. Page 24

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

G.: Gradient Computation for Equivariant Residual Connections

We compute the gradients for early weights in a Deep Sets network with equivariant residual

connections below.

We denote a single set x with its samples x1, …, xM. We denote hidden layer activations as

zℓ, i for layer ℓ and sample s. In the case of no residual connection, zℓ, i = ReLU(zℓ − 1, mW ℓ + bℓ).
We denote the output after an L-layer encoder and permutation invariant aggregation as

y = ∑i zL, i (we use sum for illustration but note that our conclusions are the same also for

max). For simplicity let the hidden dimension remain constant throughout the encoder.

Now, we can write the gradient of weight matrix of the first layer W 1 as follows:

∂ℒ
∂W 1

= ∂ℒ
∂W 1

∑
i

∂y
∂zL, i

∂zL, i

∂W 1
. (46)

Equivariant residual connections prevent vanishing gradients by passing forward the result

of the previous computation along that sample’s path, i.e. zℓ, i = ReLU(zℓ − 1, iW ℓ + bℓ) + zℓ − 1, i:

∂zL, i

∂z1, i
= ∏

ℓ = 2

L ∂ℓ, i

∂zℓ − 1, i
(47)

= ∏
ℓ = 2

L ∂ReLU(zℓ, i)
∂zℓ, i

(1 + W ℓ) . (48)

References

Ba J, Kiros J, and Hinton GE Layer normalization. ArXiv, abs/1607.06450, 2016.

Cai T, Luo S, Xu K, He D, Liu T-Y, and Wang L Graphnorm: A principled approach to accelerating
graph neural network training. In ICML, 2021.

Chen M, Firat O, Bapna A, Johnson M, Macherey W, Foster GF, Jones L, Parmar N, Schuster M, Chen
Z, Wu Y, and Hughes M The best of both worlds: Combining recent advances in neural machine
translation. In ACL, 2018.

Chen M, Wei Z, Huang Z, Ding B, and Li Y Simple and deep graph convolutional networks. In
International Conference on Machine Learning, pp. 1725–1735. PMLR, 2020.

De S and Smith SL Batch normalization biases residual blocks towards the identity function in deep
networks. arXiv: Learning, 2020.

Ghorbani B, Krishnan S, and Xiao Y An investigation into neural net optimization via hessian
eigenvalue density. In ICML, 2019.

Goyal A, Law H, Liu B, Newell A, and Deng J Revisiting point cloud shape classification with a
simple and effective baseline. In ICML, 2021a.

Goyal A, Law H, Liu B, Newell A, and Deng J Revisiting point cloud shape classification with a
simple and effective baseline. International Conference on Machine Learning, 2021b.

Guo Y, Wang H, Hu Q, Liu H, Liu L, and Bennamoun M Deep learning for 3d point clouds: A survey.
IEEE transactions on pattern analysis and machine intelligence, PP, 2020.

Zhang et al. Page 25

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harris N, Kunicka J, and Kratz A The advia 2120 hematology system: flow cytometry-based analysis
of blood and body fluids in the routine hematology laboratory. Laboratory Hematology, 11(1):47–
61, 2005. [PubMed: 15790553]

He K, Zhang X, Ren S, and Sun J Identity mappings in deep residual networks. ArXiv, abs/
1603.05027, 2016a.

He K, Zhang X, Ren S, and Sun J Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016b.

Ioffe S and Szegedy C Batch normalization: Accelerating deep network training by reducing internal
covariate shift. ArXiv, abs/1502.03167, 2015.

Klein G, Kim Y, Deng Y, Senellart J, and Rush AM Opennmt: Open-source toolkit for neural machine
translation. ArXiv, abs/1701.02810, 2017.

Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell
KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini CS-O, Aparicio
S, Baaijens JA, Balvert M, de Barbanson B, Cappuccio A, Corleone G, Dutilh BE, Florescu M,
Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kiełbasa SM, Korbel JO, Kozlov
AM, Kuo T-H, Lelieveldt BPF, Măndoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A,
Raczkowski L, Reinders MJT, de Ridder J, Saliba A-E, Somarakis A, Stegle O, Theis FJ, Yang H,
Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, and Schönhuth A Eleven grand challenges in
single-cell data science. Genome Biology, 21, 2020.

Lee J, Lee Y, Kim J, Kosiorek AR, Choi S, and Teh Y Set transformer: A framework for attention-
based permutation-invariant neural networks. In ICML, 2019.

Li G, Muller M, Thabet A, and Ghanem B Deepgcns: Can gcns go as deep as cnns? In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 9267–9276, 2019.

Liu J, Fan Z, Zhao W, and Zhou X Machine intelligence in single-cell data analysis: Advances and new
challenges. Frontiers in Genetics, 12, 2021.

Liu Z, Luo P, Wang X, and Tang X Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), December 2015.

Luo P, Wang X, Shao W, and Peng Z Towards understanding regularization in batch normalization.
ArXiv, abs/1809.00846, 2019.

McPherson RA, Msc M, and Pincus MR Henry’s clinical diagnosis and management by laboratory
methods E-book. Elsevier Health Sciences, 2021.

Qi C, Su H, Mo K, and Guibas L Pointnet: Deep learning on point sets for 3d classification and
segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
77–85, 2017a.

Qi C, Yi L, Su H, and Guibas L Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. In NIPS, 2017b.

Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P,
Carninci P, Clatworthy M, et al. Science forum: the human cell atlas. elife, 6:e27041, 2017.
[PubMed: 29206104]

Santurkar S, Tsipras D, Ilyas A, and Madry A How does batch normalization help optimization? In
NeurIPS, 2018.

Tycko D, Metz M, Epstein E, and Grinbaum A Flowcytometric light scattering measurement of
red blood cell volume and hemoglobin concentration. Applied optics, 24(9):1355–1365, 1985.
[PubMed: 18223719]

Ulyanov D, Vedaldi A, and Lempitsky V Instance normalization: The missing ingredient for fast
stylization. ArXiv, abs/1607.08022, 2016.

Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, and Polosukhin I
Attention is all you need. ArXiv, abs/1706.03762, 2017.

Vaswani A, Bengio S, Brevdo E, Chollet F, Gomez AN, Gouws S, Jones L, Kaiser L, Kalchbrenner N,
Parmar N, Sepassi R, Shazeer NM, and Uszkoreit J Tensor2tensor for neural machine translation.
In AMTA, 2018.

Veit A, Wilber MJ, and Belongie SJ Residual networks behave like ensembles of relatively shallow
networks. In NIPS, 2016.

Zhang et al. Page 26

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wagstaff E, Fuchs F, Engelcke M, Posner I, and Osborne MA On the limitations of representing
functions on sets. In ICML, 2019.

Wang Q, Li B, Xiao T, Zhu J, Li C, Wong DF, and Chao LS Learning deep transformer models for
machine translation. arXiv preprint arXiv:1906.01787, 2019.

Wang R, Walters R, and Yu R Incorporating symmetry into deep dynamics models for improved
generalization. arXiv preprint arXiv:2002.03061, 2020.

Weiler M and Cesa G General e (2)-equivariant steerable cnns. Advances in Neural Information
Processing Systems, 32, 2019.

Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, and Xiao J 3d shapenets: A deep representation for
volumetric shapes. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1912–1920, 2015.

Xiong R, Yang Y, He D, Zheng K, Zheng S, Xing C, Zhang H, Lan Y, Wang L, and Liu T-Y On layer
normalization in the transformer architecture. ArXiv, abs/2002.04745, 2020.

Yang G, Pennington J, Rao V, Sohl-Dickstein J, and Schoenholz SS A mean field theory of batch
normalization. ArXiv, abs/1902.08129, 2019.

Yao Z, Gholami A, Keutzer K, and Mahoney MW Pyhessian: Neural networks through the lens of the
hessian. 2020 IEEE International Conference on Big Data (Big Data), pp. 581–590, 2020.

Yuan G, Cai L, Elowitz MB, Enver T, Fan G, Guo G, Irizarry RA, Kharchenko PV, Kim J, Orkin SH,
Quackenbush J, Saadatpour A, Schroeder T, Shivdasani RA, and Tirosh I Challenges and emerging
directions in single-cell analysis. Genome Biology, 18, 2017.

Zaheer M, Kottur S, Ravanbakhsh S, Póczos B, Salakhutdinov R, and Smola A Deep sets. In NeurIPS,
2017.

Zhang H, Dauphin YN, and Ma T Fixup initialization: Residual learning without normalization. In
International Conference on Learning Representations, 2018.

Zhao L and Akoglu L Pairnorm: Tackling oversmoothing in gnns. In International Conference on
Learning Representations, 2019.

Zhang et al. Page 27

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
At high depths, Deep Sets can suffer from vanishing gradients (top), while Set Transformer

can suffer from exploding gradients (bottom). Experiment is MNIST digit variance

prediction (see Section 6 for details).

Zhang et al. Page 28

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Clean path variants have no additional operations on the residual path (denoted by a grey

arrow), whereas non-clean path variants do. In (c), weight* is also part of the attention

computation.

Zhang et al. Page 29

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 30

Table 1:

Set Transformer can perform worse (underlined) with layer norm than with no normalization, particularly

when inputs are real-valued. Results are test loss over three seeds (CE for Point Cloud, MSE for rest). Lower

is better.

No norm Layer norm

Hematocrit 18.7436 ± 0.0148 19.0904 ± 0.1003

Point Cloud 0.9217 ± 0.0119 0.9219 ± 0.0052

Normal Var 0.0023 ± 0.0006 0.0801 ± 0.0076

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 31

Table 2:

Set norm can improve performance of 50-layer Deep Sets, while layer norm does not (Point Cloud, MNIST

Var). In some cases, normalization alone is not enough to overcome vanishing gradients (Hematocrit, Normal

Var). Table reports test loss (CE for Point Cloud, MSE otherwise). Lower is better. Uunderlined results are

notable failures.

no norm layer norm set norm

Hematocrit 25.879 ± 0.001 25.875 ± 0.002 25.875 ± 0.002

Point Cloud 3.609 ± 0.000 3.619 ± 0.000 1.542 ± 0.086

MNIST Var 5.555 ± 0.001 5.565 ± 0.001 0.259 ± 0.003

Normal Var 8.4501 ± 0.0031 8.4498 ± 0.0054 8.4433 ± 0.0011

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 32

Ta
b

le
 3

:

C
le

an
 p

at
h

re
si

du
al

 c
on

ne
ct

io
ns

 o
ut

pe
rf

or
m

 n
on

-c
le

an
 p

at
h

re
si

du
al

 c
on

ne
ct

io
ns

 b
ot

h
in

 D
ee

p
Se

ts
 a

nd
 S

et
 T

ra
ns

fo
rm

er
. C

le
an

 p
at

h
re

si
du

al
s

w
ith

 s
et

no
rm

 p
er

fo
rm

 b
es

t o
ve

ra
ll.

 R
es

ul
ts

 a
re

 te
st

 lo
ss

 f
or

 d
ee

p
ar

ch
ite

ct
ur

es
 (

50
 la

ye
rs

 D
ee

p
Se

t,
16

 la
ye

rs
 S

et
 T

ra
ns

fo
rm

er
),

 lo
w

er
 is

 b
et

te
r.

P
at

h
R

es
id

ua
l t

yp
e

N
or

m
H

em
at

oc
ri

t
(M

SE
)

P
oi

nt
 C

lo
ud

 (
C

E
)

M
ni

st
 V

ar
 (

M
SE

)
N

or
m

al
 V

ar
 (

M
SE

)

D
ee

p
Se

ts
no

n-
cl

ea
n

pa
th

la
ye

r
no

rm
19

.6
64

9
±

 0
.0

39
4

0.
59

74
 ±

 0
.0

02
2

0.
35

28
 ±

 0
.0

06
3

1.
46

58
 ±

 0
.7

25
9

fe
at

ur
e

no
rm

19
.9

80
1

±
 0

.0
86

2
0.

65
41

 ±
 0

.0
02

2
0.

33
71

 ±
 0

.0
05

9
0.

83
52

 ±
 0

.3
88

6

se
t n

or
m

19
.3

14
6

±
 0

.0
40

9
0.

60
55

 ±
 0

.0
00

7
0.

34
21

 ±
 0

.0
02

2
0.

20
94

 ±
 0

.1
11

5

cl
ea

n
pa

th
la

ye
r

no
rm

19
.4

19
2

±
 0

.0
17

3
0.

63
68

2±
 0

.0
06

7
0.

39
97

 ±
 0

.0
30

2
0.

03
84

 ±
 0

.0
10

5

fe
at

ur
e

no
rm

19
.3

91
7

±
 0

.0
68

5
0.

71
48

 ±
 0

.0
16

4
0.

33
68

 ±
 0

.0
04

9
0.

11
95

 ±
 0

.0
00

0

se
t n

or
m

19
.2

11
8

±
0.

07
62

0.
70

96
 ±

 0
.0

04
9

0.
34

41
 ±

 0
.0

03
6

0.
01

98
 ±

 0
.0

04
1

Se
t T

ra
ns

fo
rm

er
no

n-
cl

ea
n

pa
th

la
ye

r
no

rm
19

.1
97

5
±

 0
.1

39
5

0.
92

19
 ±

 0
.0

05
2

2.
06

63
 ±

 1
.0

03
9

0.
08

01
 ±

 0
.0

07
6

fe
at

ur
e

no
rm

19
.4

96
8

±
 0

.1
44

2
0.

82
51

 ±
0.

00
25

0.
40

43
 ±

 0
.0

07
8

0.
06

91
 ±

 0
.0

14
6

se
t n

or
m

19
.0

52
1

±
0.

02
88

1.
91

67
 ±

 0
.4

88
0

0.
40

64
 ±

 0
.0

14
7

0.
02

49
 ±

 0
.0

11
2

cl
ea

n
pa

th
la

ye
r

no
rm

18
.5

74
7

±
0.

02
63

0.
66

56
 ±

 0
.0

14
8

0.
63

83
 ±

 0
.0

02
0

0.
01

04
 ±

 0
.0

00
0

fe
at

ur
e

no
rm

19
.1

96
7±

 0
.0

33
0

0.
61

88
 ±

 0
.0

14
1

0.
79

46
 ±

0.
00

65
0.

00
74

 ±
 0

.0
01

0

se
t n

or
m

18
.7

00
8

±
 0

.0
18

3
0.

62
80

 ±
 0

.0
09

8
0.

80
23

 ±
 0

.0
03

8
0.

00
30

 ±
 0

.0
00

0

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 33

Ta
b

le
 4

:

E
qu

iv
ar

ia
nt

 r
es

id
ua

l c
on

ne
ct

io
ns

 p
er

fo
rm

 b
et

te
r

th
an

 a
gg

re
ga

te
d

re
si

du
al

 c
on

ne
ct

io
ns

 in
 b

ot
h

D
ee

p
Se

ts
 a

nd
 S

et
 T

ra
ns

fo
rm

er
. M

ax
 a

gg
re

ga
tio

n
fo

r
Se

t

T
ra

ns
fo

rm
er

 le
d

to
 e

xp
lo

di
ng

 g
ra

di
en

t s
o

w
e

do
 n

ot
 r

ep
or

t r
es

ul
t.

P
at

h
R

es
id

ua
l t

yp
e

H
em

at
oc

ri
t

(M
SE

)
P

oi
nt

 C
lo

ud
 (

C
E

)
M

ni
st

 V
ar

 (
M

SE
)

N
or

m
al

 V
ar

 (
M

SE
)

D
ee

p
Se

ts
eq

ui
va

ri
an

t
19

.2
11

8
±

0.
07

62
0.

70
96

 ±
 0

.0
04

9
0.

34
41

 ±
 0

.0
03

6
0.

01
98

 ±
 0

.0
04

1

m
ea

n
19

.3
46

2
±

 0
.0

26
0

0.
85

85
 ±

 0
.0

25
3

1.
28

08
 ±

 0
.0

10
1

0.
88

11
 ±

 0
.1

82
4

m
ax

19
.8

17
1

±
 0

.0
26

6
0.

87
58

 ±
 0

.0
19

6
1.

37
98

±
 0

.0
16

2
0.

89
64

 ±
 0

.1
37

6

Se
t T

ra
ns

fo
rm

er
eq

ui
va

ri
an

t
18

.6
88

3
±

0.
02

38
0.

62
80

 ±
 0

.0
09

8
0.

79
21

 ±
 0

.0
00

6
0.

00
30

 ±
 0

.0
00

0

m
ea

n
19

.6
94

5
±

 0
.1

06
7

0.
81

11
 ±

 0
.0

45
3

1.
62

73
 ±

 0
.0

33
5

0.
01

47
 ±

 0
.0

02
8

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 34

Ta
b

le
 5

:

W
hi

le
 D

ee
p

Se
ts

 a
nd

 S
et

 T
ra

ns
fo

rm
er

 e
xh

ib
it

no
ta

bl
e

fa
ilu

re
s

w
he

n
de

ep
 (

un
de

rl
in

ed
),

 D
ee

p
Se

ts
+

+
 a

nd
 S

et
 T

ra
ns

fo
rm

er
+

+
 d

o
no

t.
T

he
 la

tte
r

al
so

ac
hi

ev
e

ne
w

 le
ve

ls
 o

f
pe

rf
or

m
an

ce
 o

n
a

se
ve

ra
l t

as
ks

.

M
od

el
N

o.
 L

ay
er

s
H

em
at

oc
ri

t
(M

SE
)

M
N

IS
T

 V
ar

 (
M

SE
)

P
oi

nt
 C

lo
ud

 (
ac

cu
ra

cy
)

C
el

eb
A

 (
ac

cu
ra

cy
)

A
ne

m
ia

 (
ac

cu
ra

cy
)

D
ee

pS
et

s
3

19
.1

25
7

±
0.

03
61

0.
45

20
 ±

0.
01

11
0.

77
55

 ±
 0

.0
05

1
0.

38
08

 ±
 0

.0
01

6
0.

52
82

 ±
 0

.0
01

8

25
20

.2
00

2
±

 0
.0

68
9

1.
34

92
 ±

 0
.2

80
1

0.
34

98
 ±

 0
.0

34
0

0.
10

05
 ±

 0
.0

00
0

0.
48

56
 ±

 0
.0

00
0

50
25

.8
79

1
±

 0
.0

01
4

5.
55

45
 ±

 0
.0

01
4

0.
04

09
 ±

 0
.0

00
0

0.
10

05
 ±

 0
.0

00
0

0.
48

56
 ±

 0
.0

00
0

D
ee

p
Se

ts
+

+
3

19
.5

88
2

±
 0

.0
55

5
0.

58
95

 ±
 0

.0
11

4
0.

78
65

 ±
 0

.0
09

3
0.

57
30

 ±
 0

.0
01

6
0.

52
56

 ±
 0

.0
01

9

25
19

.1
38

4
±

 0
.1

01
9

0.
39

14
 ±

 0
.0

10
0

0.
80

30
 ±

 0
.0

03
4

0.
60

21
 ±

 0
.0

07
2

0.
53

41
 ±

 0
.0

11
8

50
19

.2
11

8
±

 0
.0

76
2

0.
34

41
 ±

 0
.0

03
6

0.
80

29
 ±

 0
.0

00
5

0.
57

63
 ±

 0
.0

13
4

0.
55

61
 ±

 0
.0

20
2

Se
t T

ra
ns

fo
rm

er
2

18
.8

75
0

±
 0

.0
05

8
0.

61
51

 ±
 0

.0
07

2
0.

77
74

 ±
 0

.0
07

6
0.

12
92

 ±
 0

.0
01

2
0.

59
38

 ±
 0

.0
07

5

8
18

.9
09

5
±

 0
.0

27
1

0.
32

71
 ±

 0
.0

06
8

0.
78

48
 ±

 0
.0

06
1

0.
42

99
 ±

 0
.1

00
1

0.
59

43
 ±

 0
.0

03
6

16
18

.7
43

6
±

0.
01

48
6.

26
63

 ±
 0

.0
03

6
0.

71
34

 ±
 0

.0
03

0
0.

45
70

 ±
 0

.0
54

0
0.

58
53

 ±
 0

.0
04

9

Se
t T

ra
ns

fo
rm

er
+

+
2

18
.9

22
3

±
 0

.0
27

3
1.

15
25

 ±
 0

.0
15

8
0.

81
46

 ±
 0

.0
02

3
0.

65
33

 ±
 0

.0
01

2
0.

57
70

 ±
 0

.0
22

3

8
18

.8
98

4
±

 0
.0

70
3

0.
94

37
 ±

 0
.0

13
7

0.
82

47
 ±

 0
.0

02
0

0.
66

21
 ±

 0
.0

02
1

0.
56

80
 ±

 0
.0

11
0

16
18

.7
00

8
±

0.
01

83
0.

80
23

 ±
 0

.0
03

8
0.

82
58

 ±
 0

.0
04

6
0.

65
87

 ±
 0

.0
00

1
0.

55
44

 ±
 0

.0
11

3

Proc Mach Learn Res. Author manuscript; available in PMC 2023 August 29.

	Abstract
	Introduction
	Permutation invariance
	Problems with Existing Architectures
	Deep Sets gradient analysis
	Set Transformer gradient analysis
	Layer norm can hurt performance
	An Example in 2D.

	Deep Sets++ and Set Transformer++
	Clean-path equivariant residual connections
	Set norm
	Deep Sets++ (DS++)
	Set Transformer++ (ST++)

	FlowRBC
	Experimental setup
	Results
	Clean path residuals have better performance than non-clean path ones.
	Equivariant residual connections are the best choice for set-based skip connections.
	Set norm performs better than other norms.
	Deep Sets++ and Set Transformer++ outperform existing architectures.

	Related Work
	Conclusion
	Flow-RBC
	Table 6:
	Layer Norm Analyses
	Figure 4:
	Normalization proofs
	Experimental configuration
	Table 7:
	Additional results
	Table 8:
	Table 9:
	Table 10:
	Aggregated residual connections ARCs
	Gradient Computation for Equivariant Residual Connections
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:

