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Abstract

Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The an-
tagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome
sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative
protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphory-
lation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and
biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine,
and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions,
ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling,

with a focus on the role of protein phosphorylation in its physiological processes.
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Introduction

The Bacillus genus comprises ~300 annotated species, which are
divided into different phylogenetic clusters based on 16S rRNA
and evolutionary relationships (Ash et al. 1991, Parte 2018). Mem-
bers of the Bacillus genus are rod-shaped, mostly aerobic, or fac-
ultative anaerobes, Gram-positive spore-forming bacteria. Two of
the most studied clades in these clusters are the Bacillus subtilis
and Bacillus cereus clades. The subtilis clade comprises ten species
including B. subtilis, B. amyloliquefaciens, B. aerophilus, B. pumilus, B.
atrophaeus, B. licheniformis, Bacillus sp. 586, Bacillus sp. 916, Bacillus
sp.JS, and Bacillus sp. BT1B_CT2, and the pathogenic species such
as B. anthracis, B. cereus, and B. thuringiensis are classified as part of
the cereus clade (Rooney et al. 2009, Bhandari et al. 2013). Among
these, B. subtilis, commonly found in soil environments and plant
roots, is the most characterized species. It is used as a model or-
ganism to decipher physiological and regulatory mechanisms in
all the Bacillus species (Vlamakis et al. 2013, Harwood et al. 2018,
Ravikumar et al. 2018, Richts et al. 2019, Errington and Aart 2020).
Subtilis clade members have a wide range of industrial and med-
ical applications owing to their phenotypic and genotypic varia-
tions (Cui et al. 2018, Harwood et al. 2018, Jezewska-Frackowiak et
al. 2018, Su et al. 2020).

The Bacillus life cycle is composed of three distinct phases:
spore formation (the dormant stage), spore germination, and a
replicating vegetative phase (Soule 1932, Sella et al. 2014). Bacillus
spores, formed under nutrition-deprived conditions, are metabol-
ically inactive entities that can remain viable for extended peri-

ods (Graham-Smith 1930, Khanna et al. 2020). These endospores
are highly resistant to stress conditions encountered in nature
and, therefore, can be found in a wide range of environments
including water, air, and soil. Under favorable conditions, these
spores germinate into the metabolically active vegetative form
(Watabe 2013, Bressuire-Isoard et al. 2018, Christie and Setlow
2020). Pathogenic Bacillus species proliferate inside their verte-
brate hosts (Nicholson et al. 2000, Nicholson 2002, Arora et al.
2017a). When pathogenic Bacilli infect their hosts, the spores ger-
minate and secrete toxins such as enterotoxin and emetic toxin,
as well as phospholipases and proteases that help the bacteria
to survive in the host environment (Moayeri et al. 2015, Sharma
et al. 2017, Ehling-Schulz et al. 2019, Enosi Tuipulotu et al. 2021).
Another survival strategy adopted by the members of this genus
is biofilm formation. A biofilm is a matrix of exopolysaccharides,
proteins, and nucleic acids that acts as a shield and protects
the bacterium from various antibiotics and the host’s immune
response (Hobley et al. 2015, Hall and Mah 2017, Huang et al.
2020, Shemesh and Ostrov 2020). The transition of Bacillus from
one phase to another depends on environmental and nutritional
conditions, which are sensed by the bacterial regulatory proteins.
The Bacillus regulatory network involves various sensory proteins
present on the surface and their post-translationally modified
forms, particularly phosphorylation. This review article focuses
on the role of protein phosphorylation events during transition-
ing of Bacillus species between different stages as well as during
infection in the human host. We tried to include the most relevant
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articles but may have missed some studies due to limitations of
search engine criteria and article length.

Post-translational modifications (PTMs) play important roles
in providing the required proteomic diversity in bacteria, despite
smaller genome sizes. PTMs such as phosphorylation, glycosyla-
tion, acetylation, and methylation influence almost all aspects of
cellular physiology (Arora et al. 2010, 2021, Higgins and Dworkin
2012, Sajid et al. 2015, Manuse et al. 2016, Mijakovic et al. 2016,
Khan et al. 2018, Macek et al. 2019, Bonne Kohler et al. 2020, Sing-
hal et al. 2020, Wang and Cole 2020). Among these PTMs, protein
phosphorylation is one of the most widely documented and in-
vestigated modifications across the bacterial system (Fig. 1). There
are dedicated protein kinases and phosphatases that are catego-
rized based on the phosphate group transfer from ATP to spe-
cific amino acids, such as serine (Ser)/threonine (Thr) (Ser/Thr
protein kinase-STK and Ser/Thr protein phosphatase-STP), ty-
rosine (Tyr) (bacterial protein Tyr kinase-BY kinase and pro-
tein Tyr phosphatase-PTP), histidine (His)/aspartate (Asp) (two-
component system-TCS/His sensor kinase-phosphorelay), srgi-
nine (Arg) (Arg kinase and Arg phosphatase), cysteine (Cys) [phos-
photransferase system (PTS) regulated protein (such as EIIA)
phosphorylation of Cys residues using PEP as energy source], and
atypical protein kinases that are unlike characterized kinases but
still possess kinase activity. The major phosphorylation systems
are shown in the Featured image (Hoch 2000, Stock et al. 2000,
Pereira et al. 2011, Capra and Laub 2012, Grangeasse et al. 2012,
Fuhrmann et al. 2013, Chao et al. 2014, Deutscher et al. 2014, Mi-
jakovic et al. 2016, Elhawy et al. 2021, Huang et al. 2021, Zhang
et al. 2021). Interestingly, many proteins are phosphorylated on
multiple sites, as also identified in most phosphoproteome-based
studies (Macek et al. 2007, Elsholz et al. 2012, Ravikumar et al.
2014, Birk et al. 2021). For example, 214 Ser/Thr/Tyr phosphosites
were identified in 153 proteins (Birk et al. 2021) and 121 Arg phos-
phosites were identified in 87 proteins of Bacillus subtilis (Elsholz
et al. 2012). It also indicates promiscuous activities of several ki-
nases, with overlapping specificity, and the primary reason for the
fallible connection between different studies.

TCSs are ubiquitous among bacterial systems, consisting of two
proteins, a sensor His kinase (HK) and a response regulator (RR).
When an external stimulus is sensed, the sensor HK is activated
by autophosphorylation of a conserved His residue. This signal is
then subsequently transferred to its cognate RR, which is usually a
transcription factor, resulting in differential altered gene expres-
sion (Fabret et al. 1999, Bijlsma and Groisman 2003, Capra and
Laub 2012, Groisman 2016). TCSs are known to be involved in var-
lous cellular pathways in Bacillus sp, such as stress response (Dar-
mon et al. 2002, Dhiman et al. 2014, Diomande et al. 2014, Mike
et al. 2014, Groisman 2016, Gupta et al. 2018), protease regulation
(Perchat et al. 2011, Gupta et al. 2017), sporulation (Stephenson
and Hoch 2002, Fujita and Losick 2003, White et al. 2006, Gopalani
et al. 2016, Peng et al. 2017), metabolic pathways (Birkey et al.
1998, Tanaka et al. 2003, Repizo et al. 2006, Geng et al. 2007, My-
ers et al. 2016, Aggarwal et al. 2017, van den Esker et al. 2017),
cell wall regulation (Howell et al. 2003, Dobihal et al. 2019, Wu et
al. 2019), biofilm formation (Verhamme et al. 2007, Stubbendieck
and Straight 2017, Zhou et al. 2018), antibiotic tolerance (Kesel et
al. 2013, Dintner et al. 2014, Zhang et al. 2015, Koh et al. 2021),
and pathogenesis (Duport et al. 2006, Vetter and Schlievert 2007,
Brillard et al. 2008, Gohar et al. 2008, Stauff and Skaar 2009, van
Schaik et al. 2009).

Our understanding of phosphorylation events at different
residues such as Ser, Thr, Tyr, Arg, or Cys has evolved over the
last three decades. For example, the kinases responsible for Tyr

phosphorylation were named bacterial tyrosine (BY) kinases and
were identified based on sequence homology with known Tyr ki-
nases, such as the YwgD/YwqE Tyr kinase and phosphatase pair
in B. subtilis (Mijakovic et al. 2003, 2005). Subsequently, more such
pairs were characterized in B. subtilis with roles predicted in var-
ious cellular pathways based on substrate identification in phos-
phoproteome studies (Mijakovic and Deutscher 2015).

The importance of Ser/Thr phosphorylation was soon realized
and with the advancement in genome sequencing and -omics
technologies, various Ser/Thr kinases (STKs) and Ser/Thr phos-
phatases (STPs) were identified and characterized in B. subtilis and
other microbes (Fischer et al. 1996, Moszer 1998, Obuchowski et
al. 2000, Vijay et al. 2000, Iwanicki et al. 2002, Madec et al. 2002,
Shakir et al. 2010, Lima et al. 2011, Pereira et al. 2011, Arora et al.
2012, Bidnenko et al. 2013, Borriss et al. 2018, Rajagopalan et al.
2018, Baros et al. 2020). Global phosphoproteome and in silico anal-
ysis further helped in the identification of substrates regulated
by Ser/Thr phosphorylation (Levine et al. 2006, Macek et al. 2007,
Miller et al. 2009, Ravikumar et al. 2014, Pan et al. 2015, Rosenberg
et al. 2015, Arora et al. 2017b, Zhang et al. 2018, Shi et al. 2020,
Birk et al. 2021). The Bacillus genus encodes two classes of STKs
that are categorized based on sequence homology and conserved
sequence motifs. These are eukaryotic-like Ser/Thr kinases (eS-
TKs) or Hanks-type kinases and atypical STKs (non-eSTKs), and
two-component kinases such as Ser/Thr kinases with specific sin-
gle substrates (Pereira et al. 2011, Arora et al. 2012, Shi et al. 2014a,
Mijakovic et al. 2016, Nguyen et al. 2016, Stancik et al. 2018, Zhang
et al. 2021).

The global phosphoproteome of Arg phosphorylation in B.
subtilis identified >100 proteins with phosphorylated Arg sites
across diverse classes of proteins involved in metabolism, cellular
architecture, sporulation, and various stress-induced responses
(Elsholz et al. 2012, Schmidt et al. 2014, Trentini et al. 2014, Singh
et al. 2015, Fuhrmann et al. 2016, Mijakovic et al. 2016, Zhou et
al. 2019). In the phosphoproteome study by Elsholz et al. (2012), of
the 87 proteins identified to be phosphorylated on Arg residues, 17
were phosphorylated on multiple sites. These proteins were ClpC,
RpoB, AroA, MtnK, OdhA, BdhA, ComfA, ComGA, ComkK, RpoC,
RpsM, GltA, Gmk, GroEL, GudB, MenB, and MtnA (Elsholz et al.
2012). Interestingly, genetic deletion of Arg kinase McsB in B. an-
thracis caused alteration in vegetative cells and spore morphology,
defective growth at elevated temperatures, and reduced sporula-
tion and germination efficiencies (Singh et al. 2015). These studies
signify the physiological relevance of Arg phosphorylation in the
Bacillus species.

In the following sections, we summarize the role of protein
phosphorylation during different stages and pathways in the Bacil-
lus (Table 1).

Cellular architecture and growth

The Gram-positive bacterial cell wall is comprised mostly of mul-
tilayered peptidoglycan sheets and teichoic acids that serve as a
protective barrier and help to maintain the bacterial shape and
integrity. Bacterial growth and cellular integrity is a dynamic pro-
cess that requires continuous hydrolysis of the cell wall to intro-
duce breaks for the accumulation of newly formed peptidogly-
can units into the cell wall (Vermassen et al. 2019). In B. subtilis,
this controlled autolysis is carried out by endopeptidases such as
CwlO and LytE, which are further regulated by the WalRK TCS
(Yamaguchi et al. 2004, Salzberg et al. 2013, Dobihal et al. 2019,
2022). The WalRK regulon is mostly composed of genes encoding
autolysins, autolysin inhibitors, ABC transporters, and genes in-
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Figure 1. Network of protein phosphorylation in Bacillus. Protein phosphorylation in Bacillus regulates several aspects of their life cycle, including
sporulation, germination, biofilm formation, protein synthesis, DNA regulation, cell architecture, stress responses, and virulence. The detailed
regulatory processes are discussed in the text along with the unique aspects of cross-talk and cross-phosphorylation within the kinases of different

classes.

volved in teichoic acid synthesis (Salzberg et al. 2013). Phosphory-
lation of the WalR RR at Asp5S3 by its cognate HK, WalK, blocks the
promoter of autolysin inhibitor iseA, thereby causing an increase
in the expression of these endopeptidases (Libby et al. 2015, Do-
bihal et al. 2019). Moreover, mutant walR bacilli have an L-shaped
morphology and a complete loss of the bacterial cell wall, impli-
cating the role of WalR in cell wall morphogenesis (Dominguez-
Cuevas et al. 2012). In B. anthracis, though the functional relevance
of the WalRK TCS has not been well-explored, its expression is in-
duced in the presence of an inhibitor of cell wall synthesis, fos-
fomyecin (Dhiman et al. 2015). Furthermore, WalR has been shown
to bind with the promoter regions of eag (S-layer protein EA1), ftsE
(ABC transporter), and kinB3 (HK) (Dhiman et al. 2014). Among
these, EA1 is an important component of the S-layer surround-
ing the cellular envelope that imparts structural stability to the
cell wall (Chateau et al. 2020, Fioravanti et al. 2022). Phospho-
rylation of WalR at Thr101 by PrkC, a membrane-localized eSTK
with surface-exposed PASTA (peptidoglycan and Ser/Thr kinase-
associated) domain, is important for the regulation of cell wall
homeostasis during the stationary phase in B. subtilis (Libby et al.
2015). The two-site phosphorylation of WalR at Asp53 and Thr101
by WalK and PrkC, respectively, enhances WalR activity and blocks
the expression of SasA, a protein involved in antibiotic tolerance
(Libby et al. 2019) (Fig. 2).

Lipoteichoic acid (LTA) is another important component of the
cell wall, i.e. threaded across peptidoglycan layers and is required
for optimal bacterial growth and physiology. Synthesis of LTA in
B. subtilis involves four enzymes: LtaS, Yinl, YvgJ, and YqgS, which
are phosphorylated by PrkC (Pompeo et al. 2018a). CpgA (Y1oQ), a
multidomain GTPase, is another target of the PrkC/PrpC pair that
plays an important role in the maintenance of bacterial shape and
peptidoglycan deposition in B. subtilis (Cladiere et al. 2006, Absalon

et al. 2008, 2009). Though the studies on CpgA phosphorylation
lack functional and genetic evidence, they suggest a possible link
between peptidoglycan biogenesis and Ser/Thr phosphorylation
(Fig. 2).

In the vegetative stage, division at the septal region results
in the generation of two daughter cells termed vegetative cells.
These vegetative cells display a specific rod-shaped morphology,
which is mainly determined by various proteins associated with
the cell wall and cytoskeleton (Jones et al. 2001, Errington and
Wu 2017, Angeles and Scheffers 2021). MreB, an actin-like cy-
toskeletal protein is a key factor that determines the character-
istic rod-shape of Bacilli, and the absence of mreB in B. subtilis al-
ters the localization of penicillin-binding protein (PBP1), result-
ing in bulging cell phenotype (Formstone and Errington 2005,
Carballido-Lopez 2006, Kawai et al. 2009). Interestingly, overex-
pression of YvcK, a protein with a similar localization pattern
as MreB, was able to rescue the mreB mutant phenotype with
proper PBP1 localization (Gorke et al. 2005, Foulquier et al. 2011).
Ser/Thr phosphorylation-mediated regulation of YvcK (Thr304)
by the PrkC/PrpC pair is shown to be critical for the rod-shaped
morphology in mreB mutant cells of B. subtilis. A null mutant
strain of mreB overexpressing the phosphoablative mutant YvcK
(Thr304Ala) exhibits a bulging-type phenotype with mis-localized
PBP1. However, mreB mutant bacteria overexpressing the phos-
phomimetic mutant YvcK (Thr304Glu) were able to restore rod-
shaped morphology (Foulquier et al. 2014). Another cell shape-
determining protein, RodZ (YmfM), is a target of the PrkC/PrpC
pair in B. subtilis, although its role and functional implication is
still unknown (Alyahya et al. 2009, Ravikumar et al. 2014, van
Beilen et al. 2016) (Fig. 2).

Ser/Thr phosphorylation of the cell division protein FtsZ is im-
portant for efficient septum formation in prokaryotes (Garcia et
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Figure 2. Role of protein kinases in Bacillus cell development and growth. The schematic diagram shows multiple proteins being regulated by
phosphorylation during general cell development and growth with four specific processes illustrated: cell morphogenesis, protein synthesis, DNA
regulation, and metabolism. Different classes of kinases are involved in each process that targets the substrates, which are involved in multiple
pathways. Black solid arrows represent kinase-mediated substrate phosphorylation, red dotted arrows represent activation/upregulation, black lines
with terminal bars represent inhibition or downregulation, and black dotted arrows represent regulatory links (either upregulation or downregulation).

al. 2016, Manuse et al. 2016, Hardt et al. 2017, Maurya et al. 2018,
Rajpurohit et al. 2022). Interestingly, phosphoproteome analysis
by Ravikumar et al. (2014) also identified FtsZ as a substrate of
PrkC/PrpC in B. subtilis, and a study by our group reported sep-
tation defects and upregulated ftsZ levels in a prkC deletion mu-
tant strain in B. anthracis (Dhasmana et al. 2021). These reports
may provide a functional connection between PrkC and the regu-
lation of cell division machinery in Bacillus genus via phosphory-
lation of FtsZ. In addition, a study on McsB Arg kinase (previously
characterized as a Tyr kinase) in B. anthracis showed attenuated
growth, elongated cell morphology (elongated cells), and defec-
tive septum formation in an mesB null mutant strain, signifying
the importance of Arg phosphorylation in bacterial growth and
development (Mattoo et al. 2008, Singh et al. 2015). Furthermore,
a new family of protein kinases belonging to the ubiquitous bac-
terial kinase family YdiB was shown to be important for normal
bacterial growth (Karst et al. 2009, Nguyen et al. 2017).

Altogether, these studies highlight the widespread role of pro-
tein phosphorylation in the regulation of cell morphogenesis and
growth in the Bacillus genus (Fig. 2).

Gene regulation

Protein phosphorylation is important in the regulation of vari-
ous genetic processes including replication, transcription initia-
tion, DNA condensation, and repair, via the phosphorylation of
DNA/RNA binding proteins (Garcia-Garcia et al. 2016). Phospho-

proteomics and interactomics studies have identified several pro-
teins in B. subtilis that are phosphorylated at Ser/Thr/Tyr residues
and are part of the gene regulatory network (Ravikumar et al.
2014, shi et al. 2014b, Rosenberg et al. 2015). For instance, phos-
phorylation of a DNA single-stranded binding protein (Ssb) by the
BY-kinase PtkA (formerly known as YwgD) and the YorK exonucle-
ase specific for single-stranded DNA is important for DNA binding
and exonuclease activities, respectively (Mijakovic et al. 2006, Jers
et al. 2010) (Fig. 2). Inactivation of ptkA in B. subtilis causes the for-
mation of multiple nucleoids the and accumulation of additional
genetic material in the cells, indicating the role of Tyr phosphory-
lation in DNA replication and cell cycle regulatory pathways (Pe-
tranovic et al. 2007). Several other proteins involved in DNA and
RNA metabolism that were identified as the target of BY-kinases
(PtkA or PtkB) based on interactome analysis include RecA (recom-
binase), DivIVA (cell division protein), MinD (cell-division regula-
tor), SalA (negative regulator of scoC expression, activator of PtkA
kinase activity), PolA (DNA polymerase I), RpoB (DNA-directed
RNA polymerase beta subunit), MutL (DNA mismatch repair pro-
tein), and TkmA/TkmB (protein tyrosine kinase activator) (Shi et
al. 2014b). DivIVA is known to be regulated by protein phosphory-
lation in other bacterial species indicating that kinase-mediated
regulation of cell division is conserved in diverse bacteria (Arora et
al. 2014, Fleurie et al. 2014, Lee et al. 2014, Chaudhary et al. 2023).

The most studied Ser/Thr kinase and phosphatase pair in-
volved in DNA regulation is the YabT kinase (Bidnenko et al. 2013)
and the SpollE phosphatase (Duncan et al. 1995). These two en-
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zymes are sporulation stage-specific and are critical to the devel-
opment and maintenance of the spore genome (discussed in the
sporulation section). Transcriptional regulators are another class
of DNA-binding proteins that are targets of phosphorylation net-
works in the bacterial system (Dworkin 2015, Kalantari et al. 2015).
The functional impact of Ser/Thr phosphorylation on the global
transcriptional regulators CodY and AbrB has been studied us-
ing phosphorylation site mutants and DNA-binding experiments.
Phosphorylation of AbrB at Ser86 hinders its DNA binding ability,
leading to deregulation of target genes involved in the production
of exoprotease, sporulation, and competence development in B.
subtilis (Soufl et al. 2010, Kobir et al. 2014), while in both B. subtilis
and B. anthracis, CodY phosphorylation was detected at a residue
(Ser215) critical for its DNA binding activity (Joseph et al. 2005,
Macek et al. 2007, Joon et al. 2017). Furthermore, our recent study
in B. anthracis shows that CodY phosphorylation at Ser215 com-
pletely abolishes DNA binding with the promoter region of one of
its target genes, atxA, leading to defects in toxin synthesis (Gang-
wal et al. 2022) (Fig. 2). Apart from these, protein phosphorylation
alsoregulates various pathways involved in bacterial competence,
the ability to uptake DNA from the environment, and its subse-
quent incorporation in the genome by specific protein channels
and import machinery, leading to variations in the bacterial geno-
type and phenotype (O’Connell et al. 2022). In B. subtilis, the TCS
RRs ComA and ComK are the most widely studied positive reg-
ulators of various early and late competence genes, respectively
(Weinrauch et al. 1990, Dubnau et al. 1994, Maier 2020). ComK is
shown to be phosphorylated by Arg kinase McsB and dephospho-
rylated by cognate phosphatase ywlE. Further, in the ywlE mutant
of B. subtilis, ComK was found to be phosphorylated at six Argi-
nine sites (R65, R157, R161, R165, R186, and R19). In the ywlE mu-
tant, ComK-dependent gene expression was upregulated which
suggests ComK activity is positively regulated by Arg phospho-
rylation (Elsholz et al. 2012). The phosphorylation status of an-
other TCS RR, DegU, plays a critical role in the activation of com-
petence genes and assists in the binding of ComK during compe-
tence (Dahl et al. 1992, Hamoen et al. 2003).

Cellular metabolism

Cellular metabolism plays a key role in bacterial growth and de-
velopment via the modulation of important processes depending
on the nutritional status and metabolic activity of the bacteria. In
Bacillus, metabolic changes help to drive cellular machinery down
to one of two paths, to produce either replicating vegetative cells
or dormant spores. Glucose serves as a common energy source for
heterotrophic bacteria and its absence triggers the uptake of other
carbon sources, such as citrate, glutamine, pyruvate, or malate
(Schilling et al. 2007). In B. subtilis, dedicated TCSs sense the pres-
ence of these additional carbon sources and thus increase the ex-
pression of membrane transporters facilitating their cellular in-
take. For example, CitST and GInKL TCSs regulate the expression
of Mg?*—citrate transporters and glutamine transporters, respec-
tively (Satomura et al. 2005, Repizo et al. 2006). The presence of
citrate or glutamine causes autophosphorylation of the respective
HKs, CitS, or GInK, followed by the activation of their respective
RRs, which in turn upregulate the expression of transporters in-
volved in the uptake of citrate or glutamine (Satomura et al. 2005,
Repizo et al. 2006).

In B. subtilis, in the absence of glucose as a major carbon source,
LytST TCS is required for the uptake of pyruvate via inducing
the transcription of YsbA, a protein involved in the upregulation
of pyruvate transporters (van den Esker et al. 2017). Similarly, in

a minimal medium, the presence of malate as the sole carbon
source activates the YufLM TCS. Phosphorylated YufM binds to
the promoter region of maeN and increases the surface expres-
sion of malate transporters to facilitate cellular growth on malate
(Tanaka et al. 2003). In B. anthracis, PhoPR is another functional
TCS, which is activated upon phosphate starvation. PhoP regu-
lates the expression of phosphate metabolism-associated genes,
e.g. phoA and pst, which help to overcome the limiting phosphate
availability (Aggarwal et al. 2017). A similar PhoPR TCS exists in B.
subtilis, which is activated under phosphate starvation and stim-
ulates the degradation of teichoic acid in the cell wall, releasing
phosphate ions, and hence fulfilling the metabolic need for phos-
phate (Pragai et al. 2004, Myers et al. 2016). Furthermore, phos-
phorylated PhoP directly increases the expression of another im-
portant TCS called ResDE, which is important for aerobic as well
as anaerobic respiration during phosphate starvation conditions
in B. subtilis (Birkey et al. 1998) (Fig. 2).

In B. subtilis, HPrK/P-mediated phosphorylation of the carbon-
flux-regulating histidine protein Crh (a paralog of HPr) acts as a
regulatory switch in carbon metabolism (Landmann et al. 2012).
Additionally, PrkC phosphorylates four major metabolic enzymes,
namely Transaldolase (YwjH), Glutamine Synthetase (GInA), Isoc-
itrate Dehydrogenase (Icd), and «a-Acetolactate Decarboxylase
(AlsD) (Pietack et al. 2010). Bacillus anthracis dual-specificity pro-
tein kinase (DSPK) PrkD phosphorylates pyruvate kinase (Pyk), an
enzyme that catalyzes the concluding step of glycolysis, resulting
in the inhibition of its specific activity (Arora et al. 2012). Pyk was
also detected in the phosphoproteome study of B. subtilis (Macek
et al. 2007) (Fig. 2). Since pyk mutant in B. subtilis produce more
carbon dioxide and have a reduced growth rate (Fry et al. 2000),
the role of Pyk phosphorylation in the growth, metabolism, and
pathogenesis of different Bacillus species needs to be studied fur-
ther.

Several other reports on B. subtilis have identified the metabolic
enzymes that are phosphorylated at Arg residues, indicating a
possible role of the McsB/YWIE system in their regulation (Elsholz
et al. 2012, Schmidt et al. 2014, Trentini et al. 2016, Zhou et al.
2019, Ogura 2020). A study by Ogura et al. (2004) showed glucose-
mediated regulation of mesB and ywlE expression in B. subtilis, sug-
gesting that Arg phosphorylation plays a role in cellular growth
in glucose-containing media. McsB and YwIE mediate reversible
Arg phosphorylation of ClpCP protease and TsaD, a tRNA mod-
ification enzyme that regulates yIxR (a nucleoid-associated pro-
tein) expression through PyIxS promoter. Y1xR is known to regulate
>400 genes, indicating the importance of glucose mediated in-
duction of gene expression through McsB and YwIE (Ogura 2020).
Interestingly, McsB has been shown to be involved in regulating
protein turnover of its substrates, causing degradation of anoma-
lous proteins through the ClpCP protease system, as discussed
later in stress response section. B. subtilis McsB and its cognate
Arg phosphatase YwIE were shown to reversibly phosphorylate
and regulate Glutamate dehydrogenase GudB degradation in the
cell (Stannek et al. 2014). The redox-sensitive modulator MgsR of
SigB regulon, controls the expression of genes involved in oxida-
tive or thiol-specific stress in B. subtilis. MgsR is phosphorylated
by McsB, which mediates its degradation through Clp proteases
(Lilge et al. 2020) (Fig. 2). Hajdusits et al. (2021) delineated that un-
der stress conditions McsB forms a closed octamer-like compart-
ment, which interconverts with monomers and other oligomers
in a phosphorylation dependent manner. Interestingly, the active
sites in the octamer are sequestered and only phosphorylate un-
folded proteins that can enter the compartment, thus mediat-
ing their degradation. Contrarily, dimerized McsB can phospho-



rylate its substrates and regulate their activity (Hajdusits et al.
2021). Additional metabolic studies showed that PtkA-mediated
phosphorylation of a Ugd family protein—UDP glucose dehydro-
genase, is important for its catalytic activation in B. subtilis (Mi-
jakovic et al. 2003, Petranovic et al. 2009) (Fig. 2). A similar PtkA-
dependent phosphorylation mechanism activates aspartate semi-
aldehyde dehydrogenase (Asd), converting aspartyl phosphate to
aspartyl semialdehyde and inorganic phosphate (Jers et al. 2010).
In different species of Bacillus, the role of UDP glucose dehydro-
genase is implicated in the production of exopolysaccharides and
cell wall organization, while Asd is involved in amino acid biosyn-
thesis (Mijakovic et al. 2004, Jakobsen et al. 2009, Naerdal et al.
2011). In B. subtilis, PtkA has been shown to regulate the cellular
localization of enzymes required for carbon metabolism, namely
Ldh (Lactate dehydrogenase) and Eno (Enolase) (Jers et al. 2010).
Phosphorylation of Eno by PrkC also affects its cellular localiza-
tion and expression in B. anthracis (Virmani et al. 2019). Addition-
ally, phosphorylation of Pgm by PrkC regulates its activity, indicat-
ing that PrkC regulates glycolysis at multiple steps (Virmani et al.
2023) (Fig. 2).

Protein phosphorylation can indirectly regulate metabolic en-
zymes through phosphorylation-mediated activation or inhibi-
tion of various transcriptional regulators. In B. subtilis, PtkA-
mediated phosphorylation of a transcriptional regulator FatR, in-
volved in the metabolism of polyunsaturated fatty acids, abro-
gates its DNA binding ability consequently leading to the dere-
pression of the fatR-cyp102A3 operon (Derouiche et al. 2013). PtkA-
mediated phosphorylation of another transcriptional regulator,
SalA, represses scoC (an aprE repressor) and activates the expres-
sion of a B. subtilis exoprotease, AprE (Derouiche et al. 2015). AprE
is an important metabolic enzyme, i.e. required by growing bac-
teria for the supply of nutrients via extracellular protein degra-
dation. In different Bacillus species, AprE synthesis is regulated
by various transcriptional regulators including CodY, AbrB, DegU,
ScoC, Hpr, SinR, and SalA that are in turn regulated by protein
phosphorylation events (Ogura et al. 2004, Derouiche et al. 2015,
Barbieri et al. 2016, Liu et al. 2020, Zhou et al. 2021, Zolfaghari
Emameh et al. 2022). These studies, therefore, suggest a functional
correlation between metabolism and protein phosphorylation.

Protein synthesis

The optimal functioning of protein synthesis machinery is vital
for cell survival and growth. Protein synthesis comprises of three
basic steps: initiation, elongation, and termination. After initia-
tion, there is a multistep elongation cycle involving three major
elongation factors, EF-Tu, EF-Ts, and EF-G (Xu et al. 2021). These
are highly conserved proteins that are essential for the survival of
bacteria. EF-Tu is a GTPase that has diverse functional roles rang-
ing from translation to pathogenesis and can interact with a vari-
ety of macromolecules including RNA, nucleotides, and other pro-
teins (Krab and Parmeggiani 2002, Maracci and Rodnina 2016, Har-
vey et al. 2019). It alternates between active (GTP-bound) and in-
active (GDP-bound) states, which is responsible for accurate selec-
tion of aminoacyl-tRNA and its binding to the ribosome (Bourne
et al. 1991, Schmeing et al. 2009, Sajid et al. 2011a, Talavera et al.
2018). These states of EF-Tu are controlled by EF-Ts, the guanine
nucleotide exchange factor. EF-G is also an essential GTPase that
translocates the ribosomes along the translating mRNA (Rodnina
et al. 1997, Agirrezabala and Frank 2009).

PrkC/PrpC-dependent reversible phosphorylation of the elon-
gation factors EF-G and EF-Tu has been widely reported in the
Bacillus genus (Gaidenko et al. 2002, Levine et al. 2006, Shah et al.
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2008, Absalon et al. 2009, Shah and Dworkin 2010, Arora et al. 2013,
2017). Ribosome-associated proteins have also been shown to be
the targets of Ser/Thr phosphorylation in B. subtilis (Absalon et al.
2009, Pompeo et al. 2012). For example, the ribosome associated
GTPase CpgA is phosphorylated by PrkC in B. subtilis. Mutation of
the phosphorylated residue Thr166 decreases the GTPase activity
of CpgA as well as its affinity to 30S ribosomal subunits. The Bacil-
lus strains expressing the CpgA-Thrl66Ala variant show growth
defects and exhibit a curly morphology, indicating the importance
of ribosome-associated protein phosphorylation in maintaining B.
subtilis growth and morphology (Pompeo et al. 2012) (Fig. 2).

Bacillus sp. also utilize secondary messengers known as alar-
mones or hyperphosphorylated (p)ppGpp nucleosides for protein
synthesis during nutrient deprivation (Bange and Bedrunka 2020).
These alarmones act as a cue for starving bacteria to shut down
various essential cellular pathways, such as transcription and
DNA replication, thereby helping them to conserve their energy
resources (Potrykus and Cashel 2008, Steinchen and Bange 2016,
Gourse et al. 2018). In B. subtilis, the cellular level of these alar-
mones is determined by dedicated (p)ppGpp synthetases such as
SasA (small alarmone synthetase A) (Nanamiya et al. 2008), which
are known to be regulated by Ser/Thr phosphorylation (Libby et al.
2019). The expression of sasA is regulated by the WalR transcrip-
tion factor, a component of the WalRK TCS. Interestingly, WalR
itself is regulated by PrkC/PrpC-mediated reversible phosphoryla-
tion, resulting in further activation of WalR activity and repression
of sasA expression (Libby et al. 2019). Thus, the protein synthesis
machinery in B. subtilis is subjected to regulation by phosphoryla-
tion, either directly by phosphorylation of translational factors or
by (p)ppGpp-mediated inhibition (Fig. 2).

Sporulation

The process of spore formation and revival provides an excel-
lent model for understanding the developmental processes in the
bacterial system. During sporulation, the entire Bacillus metabolic
pathways are reset with the help of various regulatory modifica-
tions such as protein phosphorylation to form a dormant spore
(Errington 2003, Hoch 2017, Khanna et al. 2020). In B. subtilis, initi-
ation of sporulation is triggered by adverse environmental condi-
tions, such as, nutritional stress, oxygen tension, or redox changes.
These signals are perceived by KinA-E HKs, which phosphorylate
Spo0A, the master regulator of sporulation (Fig. 3) (LeDeaux and
Grossman 1995, LeDeaux et al. 1995, Jiang et al. 1999, Fujita and
Losick 2005, Aguilar et al. 2010). The activation of SpoOA is man-
aged by a phosphorelay cascade emanating from Kin HKs (Jiang
et al. 2000). For example, KinA-mediated phosphorelay involves
SpoOF, Spo0B, and Spo0A (Burbulys et al. 1991). Activated SpoOA, in
turn, represses the expression of AbrB, a transcription repressor of
sporulation (Strauch et al. 1990). On the other hand, phosphatases
RapA and SpoOE reset SpoOF and SpoOA to an unphosphorylated
state (Ohlsen et al. 1994, Perego et al. 1994, Perego 2001). In B. an-
thracis, out of nine sensor HKs, five have been characterized and
shown to initiate sporulation via this classic phosphorelay (Brun-
sing et al. 2005). Apart from these Kin HKs, two functional TCSs,
BAS1213-1214 and BAS0540-0541, are characterized in B. anthracis
with a possible role in sporulation (Gopalani et al. 2016, Gupta
et al. 2018). The BAS1214 HK senses oxidative stress and phos-
phorylates its cognate RR, BAS1213. The phosphorylated RR thus
increases its expression and that of sporulation kinase D, which
causes a reduction in sporulation efficiency (Gupta et al. 2018).
In the BAS0540-0541 TCS, the overexpression of the BAS0540 RR
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Figure 3. Role of protein kinases during sporulation in Bacillus. The schematic diagram shows several pathways being regulated by phosphorylation
during sporulation. Every pathway involves multiple proteins’ activity regulated through phosphorylation. Black solid arrows represent
kinase-mediated substrate phosphorylation, red dotted arrows represent activation or upregulation, and black lines with terminal bars represent

inhibition or downregulation.

causes a reduction in spore counts, although the molecular mech-
anism is still unknown (Gopalani et al. 2016).

The significance of TCSs is not limited to the initiation of sporu-
lation, they are also involved in later stages of sporulation in-
cluding forespore engulfment and mother cell lysis. In B. anthracis,
LytSR TCS functions by dissipating proton motive force, acting as
a signal for the induction of lrgAB and clhAB, transcription, which
can affect sporulation efficiency and cell viability during the sta-
tionary growth phase (Chandramohan et al. 2009). In B. thuringien-
sis, the LytSR TCS is induced by the mother cell compartment
sigma factor, SigE. Deletion of lytS-lytR causes defects in forespore
engulfment by the mother cell. LytSR can induce the expression
of a cell wall hydrolase, SpolIP, however, the exact mechanism of
this regulation is not known (Peng et al. 2017). Thus, multiple TCSs
are important for controlling sporulation (Fig. 3).

The importance of Ser/Thr phosphorylation in context of
sporulation in B. subtilis has been studied and reviewed exten-
sively (Pompeo et al. 2016). Activation of prespore specific RNA
polymerase (SigF) gene by Ser phosphorylation was one of the first
discovered examples of regulatory Ser phosphorylation in B. sub-
tilis (Min et al. 1993). This is achieved by the proteins present in
the same operon: SpolIAB (anti-SigF), SpolIAA (anti-anti-SigF), and
SpollE (serine phosphatase). SpolIAB binds and inactivates SigF,
while phosphorylation of SpoIIAA by SpolIAB at a serine residue
results in the release of SigF from the complex (Duncan and Losick
1993, Clarkson et al. 2004).

As cell-type-specific transcription factors are activated during
different sporulating stages, the expression of specific kinases and
phosphatases is also triggered during sporulation, indicating their

requirement during this process (Kroos et al. 1999, Piggot and
Hilbert 2004). For example, among the four characterized Hanks
family Ser/Thr kinases in B. subtilis, the expression of YabT and
PrkA peaks during sporulation initiation (Bidnenko et al. 2013,
Yan et al. 2015). In B. subtilis, PrkA was shown to phosphorylate
a 60-kDa protein in the crude extract at a Ser residue, but its
functional relevance remained inconclusive due to lack of in-vivo
data in the absence of this protein (Fischer et al. 1996). Later, the
role of PrkA was linked to the sporulation process due to defec-
tive sporulation in prkA null mutant strain, possibly due to the
downregulation of spore-specific transcription factor oK (Yan et
al. 2015) (Fig. 3). Interestingly, another independent study in B.
subtilis revealed sequence similarity of PrkA with ATP-dependent
protease family proteins and PrkC-mediated regulation of PrkA
protease activity was shown to be critical for the initiation of the
sporulation process (Zhang et al. 2022). The expression of YabT
kinase during sporulation initiation is required for the develop-
ment and maturation of bacterial endospores in B. subtilis (Bid-
nenko et al. 2013). DNA binding proteins such as RecA, RacA, YabA,
and single-stranded DNA binding proteins (Ssb) are the targets of
YabT kinase (Bidnenko et al. 2013, Shi et al. 2014b, Derouiche et al.
2016, Garcia-Garcia et al. 2016, 2018) (Fig. 3). Among these, RecA (a
DNA recombinase), and RacA (a chromosome-anchoring protein),
are involved in maintaining the chromosomal integrity of the de-
veloping spore (Bidnenko et al. 2013, Shi et al. 2014b, Ramirez-
Guadiana et al. 2016), while YabA is crucial for replication initi-
ation during sporulation (Noirot-Gros et al. 2006, Garcia Garcia
et al. 2018). Bacillus subtilis has two Ssb proteins, SsbA and SsbB,
that are implicated in various pathways related to genome main-



tenance and natural competence (Lindner et al. 2004, Yadav et al.
2013, 2014, Paschalis et al. 2017). Mass spectrometry (MS) anal-
ysis revealed a novel phosphorylation site (Thr38) on the SsbA
in B. subtilis (Derouiche et al. 2016), which was previously found
to be phosphorylated on Tyr82 (Mijakovic et al. 2006) and Arg/76
residues (Elsholz et al. 2012). This phosphorylation was primar-
ily mediated by YabT, which enhanced the cooperative binding to
single-stranded DNA (Derouiche et al. 2016). RecA is an SOS repair
protein that plays an important role in bacterial DNA damage re-
pair pathways (Nahrstedt et al. 2005, Million-Weaver et al. 2015,
Torres et al. 2019). The deletion mutant of yabT and nonphospho-
rylatable mutant of RecA in B. subtilis exhibits same phenotype of
increased sensitivity to DNA damage, indicating its role in DNA
integrity maintenance (Bidnenko et al. 2013).

YabA negatively regulates replication initiation by decreasing
cooperative binding of replication initiator DnaA to DNA (Noirot-
Gros et al. 2006, Schenk et al. 2017). Phosphorylation of YabA
by YabT kinase causes enhanced sporulation in B. subtilis, possi-
bly correlating with decreased DNA replication and cell division
(Garcia Garcia et al. 2018) (Fig. 3). YabT also phosphorylates the
transition-phase transcriptional regulator AbrB, which is impor-
tant for sporulation (Kobir et al. 2014). AbrB phosphorylation abro-
gates its DNA binding to the promoter of SpoOE, which is essential
for maintaining the level of the active form of SpoOA-P (Molle et al.
2003, Shafikhani and Leighton 2004) (Fig. 3). YabT also phosphory-
lates EF-Tu, leading to decreased GTP hydrolysis and stabilization
of interaction with the ribosome. This results in downregulation of
protein synthesis by causing a halt in the protein elongation cycle
in the cells undergoing a dormant state (Pereira et al. 2015). Fur-
thermore, the functional implication of Ser/Thr phosphorylation
in the context of sporulation has not been well-explored in the
pathogenic Bacillus species. A recent report on B. anthracis demon-
strated complete inhibition of the sporulation process in the ab-
sence of the STP PrpN (Gangwal et al. 2022). In a nutshell, these
studies indicate the critical role of Ser/Thr phosphorylation in the
sporulation pathway.

Bacillus spores have a multilayered structure consisting of ex-
osporium (present in only a few species), a spore coat, cortex, and
the core wall (Khanna et al. 2020). The spore coat is a thick sieve-
like protein layer that protects the endospore. In B. subtilis, CotH,
an atypical kinase present in the inner layer of the spore coat reg-
ulates the assembly of spore coat proteins (Naclerio et al. 1996,
Nguyen et al. 2016, Scott and Newton 2016). CotH in B. subtilis and
B. cereus acts as a kinase, phosphorylating two other spore coat
proteins (CotB and CotG) on Ser residues, which is essential for ef-
ficient spore coat assembly (Nguyen et al. 2016, Freitas et al. 2020,
Di Gregorio Barletta et al. 2022). Moreover, phosphorylation lev-
els of CotB and CotG by CotH were shown to be sensitive to ther-
mal variations, with higher efficiency at lower temperature (25°C)
than at higher temperature (42°C) (Isticato et al. 2020, Di Gregorio
Barletta et al. 2022). This makes CotH-mediated phosphorylation
of CotB and CotG essential for proper spore coat morphogenesis
(Fig. 3).Exosporium, an irregular-shaped layer consisting of hair-
like projections is present in the outer layer of spore coat and is
required for interaction with host cells and the surrounding envi-
ronment (Bozue et al. 2007, Stewart 2015, Wang et al. 2016). In B.
anthracis, ExsB, a CotG homolog present at the basal layer, is essen-
tial for stable attachment of exosporium to the spore coat. ExsB
was found to be the highly phosphorylated exosporium protein,
with at least 14 of its 19 Thr residues modified in its central re-
gion. This phosphorylation event is speculated to be controlled by
a homolog of CotH, as occurs in the case of B. subtilis (McPherson
et al. 2010, Freitas et al. 2020). Besides this, the deletion strain of

Gangwaletal. | 11

McsB Arg kinase in B. anthracis showed defects in sporulation, in
addition to cell growth and germination, confirming the role of
Arg phosphorylation during the sporulation process (Singh et al.
2015) (Fig. 3).

Germination

The process of germination involves the progressive metabolic
awakening of the dormant spore by reactivation of major biologi-
cal processes including cell growth and protein synthesis machin-
ery. This phenomenon is triggered by stimuli such as nutrient ger-
minants that are sensed by surface receptors on the spore mem-
brane and involve the temporal expression of about 30% of the
bacterial genome as studied in the model organism B. subtilis (Kei-
jser et al. 2007). Bacterial kinases are reported to be important in
spore germination. The Ser/Thr kinase PrkC with surface-exposed
PASTA domain, is a crucial germinant receptor, which mediates
the muropeptide (small peptide fragments released from grow-
ing bacterial membranes)-dependent germination process in B.
subtilis (Shah et al. 2008, Shah and Dworkin 2010, Squeglia et al.
2011) (Fig. 4). Furthermore, PrkC-mediated induction of the se-
cretory peptidoglycan hydrolase YocH ensures the availability of
muropeptides during the germination process by digestion of the
surrounding bacterial peptidoglycan (Shah and Dworkin 2010).
Mutant spores lacking prkC showed a muropeptide-dependent de-
fective germination profile in B. subtilis and B. anthracis (Shah et al.
2008).

Following signal acquisition to exit dormancy, the protein ma-
chinery is activated to stimulate the growth of metabolically ac-
tive vegetative cells (Sinai et al. 2015, Xing and Harper 2020). The
translation factor EF-G is identified as a common substrate of
PrkC/PrpC (Fig. 4), and its phosphorylation is important in the
regulation of protein synthesis during germination in B. subtilis
(Gaidenko et al. 2002, Shah et al. 2008, Shah and Dworkin 2010). As
mentioned, the surface-exposed PASTA domain of PrkC can sense
muropeptides, which activate PrkC and help in spore germination.
Activated PrkC, in turn, transmits the signal inside the germinat-
ing spore and phosphorylates EF-G. This signaling module sug-
gests the role of PrkC in exiting dormancy and facilitating spore
germination through protein synthesis (Shah et al. 2008). Another
translation factor, EF-Tu, was also identified as a common sub-
strate of the PrkC/PrpC pair in B. subtilis and B. anthracis, though
the functional relevance of this phosphorylation is still unknown
(Absalon et al. 2009, Arora et al. 2013) (Fig. 4).

Arg phosphorylation also plays an important role during spore
germination in B. subtilis (Zhou et al. 2019). A transposon-based
genetic screen in B. subtilis showed that genetic disruption of the
Arg phosphatase gene ywlE results in severe germination defects
(Zhou et al. 2019). In this study, the significance of Arg phosphory-
lation in spore germination was also corroborated by an acceler-
ated germination process in the absence of Arg kinase-McsB. Fur-
thermore, Arg phosphoproteome of spores identified 18 proteins,
including the translation factor Tig and housekeeping sigma fac-
tor SigA. The impact of Arg phosphorylation on these two proteins
in the context of germination was assessed by using phospho-
mimetic and phosphoablative mutants and germination defects
were observed in Tig (Arg45Asp) and SigA (Arg365Asp) mutants.
The study showed arginine dephosphorylation of Tig and SigA as
an important regulatory step for the re-establishment of bacterial
transcriptional and translational machinery by enabling Tig asso-
ciation with ribosomes and SigA activation during the germina-
tion process (Zhou et al. 2019). Interestingly, the deletion of mcsB
in B. anthracis leads to reduced germination efficiency, thus high-
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Figure 4. Role of protein kinases during spore germination in Bacillus. The schematic diagram shows multiple proteins regulated by phosphorylation
during the spore germination process. The phosphorylation of these proteins is shown by black solid arrows. Red dotted arrows represent
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lighting a strain-specific role of McsB in spore germination (Singh
et al. 2015).

Apart from the protein synthesis pathway, the germina-
tion of bacterial spores involves the reprogramming of cellular
metabolism. In fact, various studies have shown glycolytic en-
zymes as a target of Ser/Thr phosphorylation in B. subtilis and
B. anthracis (Arora et al. 2012, Rosenberg et al. 2015, Virmani et
al. 2019). In B. anthracis, phosphorylation of a glycolytic enzyme,
enolase, by PrkC plays an important role in spore germination by
modulation of enolase activity, expression, and cellular localiza-
tion (Virmani et al. 2019) (Fig. 4).

In another class of atypical STKs, the Bacillus spore coat pro-
tein CotH was shown to be important during germination in B.
subtilis (Naclerio et al. 1996). CotH-mediated Ser phosphorylation
of two other spore coat proteins, CotB and CotG, is an essential
requirement for spore germination (Nguyen et al. 2016). Although
the mechanistic aspects of the observed germination defect have
not been explored yet, it would be interesting to investigate the
functional relevance of CotH in the Bacillus genus owing to the
presence of its orthologs across different genera including spore-
forming bacteria and even eukaryotic species (Nguyen et al. 2016)

(Fig. 4).

Biofilm

Biofilm is a multicellular structure with complex cellular differen-
tiation that helps bacteria to deal with external stresses such as
nutrient deprivation, antibiotics, and low oxygen tension, allowing
them to survive in adverse conditions (Hoiby et al. 2010, Kostakioti
et al. 2013, Yin et al. 2019, Arnaouteli et al. 2021). As mentioned
before, B. subtilis has five HKs (KinA-E) that autophosphorylate
upon sensing environmental signals and regulate SpoOA phos-
phorylation (Burbulys et al. 1991). Apart from inducing sporula-

tion, SpoOA is known to be vital in the formation of biofilm under
low oxygen conditions, and deletion of spoOA restricts the cells to
a monolayer pattern rather than a three-dimensional structure
(Hamon and Lazazzera 2001, Mielich-Suss and Lopez 2015). Also,
while KinA primarily controls sporulation, KinC-mediated activa-
tion of SpoOA is mainly linked to biofilm formation (Shemesh et
al. 2010, Devi et al. 2015). With the aid of mathematical model-
ing, the activation of SpoOA by KinC was shown to be dependent
on the bacterial growth phase and concentration of KinA (Chen
et al. 2022). Another HK, KinD is reported to possess both kinase
and phosphatase activities and is activated by lipoprotein Med
(Aguilar et al. 2010, Banse et al. 2011). KinD-mediated phospho-
relay fine-tunes SpoOA phosphorylation levels, thus becoming a
switch to trigger either sporulation or biofilm formation (Aguilar
et al. 2010). Small molecule inducers including r-malic acid re-
leased by tomato roots activate KinD, hence triggering the tran-
scription of matrix-producing genes leading to bacterial biofilm
formation on tomato roots (Chen et al. 2012). A combination of
glycerol and manganese is also reported to initiate biofilm forma-
tion via specifically activating KinD-mediated signaling (Shemesh
and Chai 2013). Also, in B. subtilis biofilm defects in spoOA mutants
were rescued by mutations in abrB transcription factor, suggesting
that SpoOA-mediated repression of abrB is essential for biofilm for-
mation (Hamon and Lazazzera 2001).

In B. subtilis, the CssRS TCS stabilizes the biofilm by limiting
the expression of the repressor tasA, thereby increasing the pro-
duction of the extracellular matrix, which is crucial for success-
ful biofilm formation (Steinberg et al. 2020). Also, the deletion of
cssRS causes a sharp increase in the population of motile bacteria
(Steinberg et al. 2020). Even after the biofilm is formed, another
TCS, DegS-DegU induces the secretion of YIT toxin within the
biofilm to destroy sensitive cells and attack any incoming com-
petitor cells (Kobayashi and Ikemoto 2019). DegSU also controls



the expression of extracellular proteases and enzymes that are
crucial for biofilms (Kobayashi 2007). In rhizobacterium, B. amy-
loliquefaciens, the ResDE TCS is reported to sense oxygen depriva-
tion. It triggers biofilm formation by increasing the expression of
terminal oxidases (Zhou et al. 2018). Apart from histidine kinases,
Ser/Thr kinases also regulate biofilm formation and maintenance
(Fig. 5).

The formation of biofilm, as already mentioned, depends on en-
vironmental cues to which the bacteria are exposed. These cues
are sensed by surface proteins that mediate proper colonization.
The Ser/Thr kinase PrkC, which possesses a surface-exposed sen-
sor domain is crucial for biofilm formation. Interestingly, prkC
deletion in B. anthracis also leads to the abrogation of biofilm for-
mation. Mechanistic insights on the signaling pathway mediated
by Ser/Thr phosphorylation driving biofilm formation in B. an-
thracis have emerged from the linkage of PrkC and one of its sub-
strates, the GroEL chaperone (Arora et al. 2017b). GroEL has also
been shown to be involved in biofilm formation in various other
organisms like Mycobacteria and Streptococci (Ojha et al. 2005, Yin
et al. 2019). MS studies revealed GroEL as one of the substrates
of PrkC, and overexpression of native GroEL resulted in partial re-
sumption of biofilm formation in a biofilm-defective prkC deletion
strain (Fig. 5) (Arora et al. 2017b). Furthermore, phosphorylation of
YabA by Ser/Thr kinase YabT negatively regulates biofilm forma-
tion by increasing the cellular level of SpoOA-P, the key regulator of
genes involved in biofilm formation and sporulation (Garcia Gar-
cia et al. 2018). Although the mechanism of tyrosine phosphory-
lation in biofilm formation is still unknown, null mutant strains
of ptkA and ptpZ showed an altered biofilm phenotype in B. sub-
tilis (Kiley and Stanley-Wall 2010). The biofilm formed in these
conditions showed loss of “fruiting bodies” for sporulation and
the absence of typical biofilm complex radial structures. The rea-
son for this phenotype was attributed to the defective sporulation
efficiency of the bacterial cells that were growing in the biofilm
colony. Complete loss of biofilm formation was observed in the
strains lacking both the BY kinases, ptkA and ptkB (Gerwig et al.
2014). Apart from this, flagellar motility of several Bacillus species
that helps the bacteria to swim and slide across surfaces is often
linked to biofilm initiation and development (Houry et al. 2010,
Guttenplan and Kearns 2013, Liagat et al. 2018, Li et al. 2022). In-
hibition of motility promotes biofilm formation and in B. subtilis,
flagellar motility and swarming properties of the bacteria are reg-
ulated by the phosphorylation status of the transcriptional regu-
lator DegU by its cognate HK, DegS (Verhamme et al. 2007, Mur-
ray et al. 2009). Altogether, these studies indicate the central role
of protein phosphorylation during biofilm formation in Bacillus

(Fig. 5).

Stress response

Bacterial populations encounter various stressful conditions
throughout their life cycle ranging from alterations in tempera-
ture, pH, osmolytes, nutrient deficiency, and exposure to antibi-
otics. To combat this, bacteria have evolved sophisticated stress
responses that involve a wide range of cellular and morphological
changes (Marles-Wright and Lewis 2007, Ultee et al. 2019, Cheng-
Guang and Gualerzi 2020). This section presents current knowl-
edge on the role of protein phosphorylation during stress condi-
tions in Bacillus sp. including activation of SigB, the master regu-
lator of general stress response (GSR) via a protein phosphoryla-
tion cascade involving Rsb (Regulator of sigma B) family proteins

(Fig. 6).
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Protein Arg phosphorylation in the Bacillus is primarily linked to
the maintenance of overall protein quality by regulated proteoly-
sis of misfolded or aggregated proteins during stress conditions
(Mijakovic et al. 2016). This is achieved by a regulatory system
thatinvolves McsB (Arg kinase)-mediated inhibition of CtsR (stress
response transcriptional regulator) repressor activity, activation
of the ClpCP proteolytic machinery, and phospho-Arg tagging of
the misfolded proteins (Fuhrmann et al. 2009, Elsholz et al. 2011,
Tao et al. 2012, Trentini et al. 2016). The kinase activity of McsB
is further modulated by its repressor CtsR, binding of phospho-
Arg polypeptides at its catalytic site, ClpC (stress response-related
ATPase, AAA+ superfamily), McsA (Arg kinase activator protein),
and finally by the activity of its cognate Arg phosphatase (YWIE)
(Kirstein et al. 2005, 2007, Elsholz et al. 2011, 2012, Fuhrmann et al.
2013, Suskiewicz et al. 2019). Strains lacking mcsB and clpC in B. an-
thracis show growth defects at elevated temperature (43°C) (Singh
et al. 2015). The importance of Arg phosphorylation in stress re-
sponse pathways was demonstrated by the global phosphopro-
teome of the B. subtilis Arg phosphatase (ywlE) mutant strain.
Phospho-Arg sites were detected in proteins involved in GSR (con-
trolled by SigB), such as stress on the cell envelope by antibiotics
and osmolarity changes, heat shock, cold shock, and oxidative
stress (Elsholz et al. 2012). Given the widespread role of Arg phos-
phorylation in bacterial stress response, another Arg phosphopro-
teome study, focusing specifically on heat and oxidative stress,
identified key bacterial stress RRs such as CtsR, GroEL, ClpC, and
ClpP as targets of Arg phosphorylation in B. subtilis (Schmidt et
al. 2014). Furthermore, the YwIE phosphatase is inactivated dur-
ing oxidative stress conditions as a regulatory mechanism for the
induction of stress-related genes and McsB-mediated Arg phos-
phorylation (Fuhrmann et al. 2016). These studies highlight the
importance of protein Arg phosphorylation during stress condi-
tions in Bacillus.

The documented role of Tyr phosphorylation in Bacillus stress
pathways, on the other hand, is limited to only a few studies. The
chaperone protein Dnak (Hsp70 family protein) is a widely studied
heat shock protein, i.e. a member of chaperone machinery acti-
vated during stress conditions and is also reported to be a target of
protein phosphorylation in other bacteria (Sherman and Goldberg
1993, Seeger et al. 1996, Peake et al. 1998, Mayer and Bukau 2005,
Roncarati and Scarlato 2017, Rigo et al. 2020). DnaK was identi-
fied as a substrate in Ser/Thr/Tyr phosphoproteomes (Eymann et
al. 2007). Later, it was identified that PtkA/PtpZ-mediated regula-
tion of DnaK by phosphorylation at a Tyr residue was responsible
for controlling its chaperone activity, which affects survival of B.
subtilis under heat shock conditions. (Shi et al. 2016). Deletion mu-
tants of two low molecular weight Tyr phosphatases, YWIE (also an
Arg phosphatase) and Ykf] showed reduced bacterial resistance to
ethanol stress in B. subtilis, suggesting their possible roles in gen-
erating resistance to stress (Musumeci et al. 2005).

Various environmental stresses encountered by bacteria acti-
vate specific TCSs. Two different TCS can activate the same set of
downstream target genes. One such example is the Heme sensing
TCS (HssRS) and the HssRS-interfacing TCS (HitRS) in B. anthracis
(Mike et al. 2014, Pi et al. 2020). Alterations in cell envelope in-
tegrity activates HitRS, that in turn interacts with HssRS and co-
ordinate heme and cell envelope stress response (Mike et al. 2014).
Similarly, the HssRS and HitRS TCSs exist in B. thuringiensis, which
indirectly control the growth in the presence of heme through the
uncharacterized operon hrmXY (Schmidt et al. 2016).

In B. subtilis, adaptation to cold temperature is achieved by
the DeskKR TCS. DesK (HK) senses the ordered lipid pattern in
the membrane and autophosphorylates, followed by DesR (RR)
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phosphorylation (Albanesi et al. 2004, Abriata et al. 2017). Active
phospho-DesR then binds to the promoters of genes involved in
the synthesis of the fatty acid desaturase DesA (Cybulski et al.
2004). DesK also responds to changes in pH; acidic pH breaks hy-
drogen bonds in the helix connecting the DesK transmembrane
domain to the cytosolic domain, and thus abolishes the DesK-
dependent synthesis of unsaturated acids, providing rigidity to
the bacilli (Bortolotti et al. 2020). Apart from temperature and pH
sensing, DesKR is highly expressed in low-pressure conditions in
B. subtilis strain WN1106 (Fajardo-Cavazos et al. 2012). In B. cereus,
adaptation to a cold environment occurs by higher expression of
unsaturated fatty acid to maintain membrane fluidity at a lower
temperature (Diomande et al. 2014). The CasKR TCS activates the
expression of fatty acid desaturase DesA under cold conditions
by ceasing repression of the desA promoter (Diomande et al. 2015,
2016).

In B. anthracis, a novel TCS named the Envelope Disruption Sys-
tem EdsRS is critical for managing the stress induced by targocil,
an inhibitor that targets the cell envelope (Laut CL 2020). Com-
promised membrane integrity is detected by EdsS (HK), which
results in its autophosphorylation and subsequent phosphory-
lation of EdsR (RR). Phosphorylated EdsR binds and activates
the promoter of the BAS1661-BAS1663 operon encoding the car-
diolipin synthase CIsT for the repair of the cell envelope in
targocil-exposed vegetative cells. Exposure of Bacillus spores to
targocil is reported to be highly toxic, as spore outgrowth re-
quires rapid membrane generation (Laut CL 2020). In B. thuringien-
sis, the YvqEC and YvcPQ TCSs sense disturbances in the cell
envelope and provide resistance against the cell wall targeting
compounds vancomycin and bacitracin, respectively (Zhang et

al. 2015, 2016). In B. subtilis, the LiaSR TCS manages the exoge-
nous stress induced by the presence of peptide antibiotics target-
ing cell wall synthesis (bacitracin, nisin, vancomycin, and ramo-
planin) (Mascher et al. 2004, Kesel et al. 2013). The LiaR-dependent
promoter lial is expressed during the transition from the expo-
nential to stationary phase, suggesting an additional sensor sig-
nal for LiaS, other than antibiotics (Jordan et al. 2006, 2007). In
B. subtilis, BceRS is a dedicated TCS that responds to the pres-
ence of bacitracin via its specific binding to BceB (permease)
(Ohki et al. 2003, Dintner et al. 2014). BceS (HK) works in coor-
dination with BceB (permease) and the level of BceS (HK) au-
tophosphorylation is dependent on the BceA-bacitracin complex
(Dintner et al. 2014).

WalRK plays an important role in cell wall homeostasis under
physiological conditions in B. subtilis. Apart from this, WalRK is
equally important for growth and cell proliferation under heat
stress (Takada et al. 2018). WalK (HK) is activated upon heat stress
and its activity is negatively modulated by two membrane pro-
teins WalH and Wall (Takada et al. 2018). The presence of WalH
and Wall is crucial to avoid overexpression of downstream en-
dopeptidase genes, thus avoiding cell lysis. Even in B. anthracis, the
expression of WalRK is induced either by temperature or in the
presence of the bactericidal drug fosfomycin, an inhibitor of cell
wall synthesis (Dhiman et al. 2015). In B. subtilis, the CssRS TCS
is important in managing secretion stress, which happens when
misfolded proteins accumulate outside the membrane and inter-
fere with protein secretion. This inefficient protein secretion is de-
tected by CssRS, which then increases the expression of the chap-
eronic proteases HtrA and HtrB (Westers et al. 2006, Noone et al.
2012).
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Figure 6. Ser/Thr phosphorylation in the activation of the SigB (o) regulon. In unstressed conditions, the RsbT kinase forms a complex with other Rsb
family proteins (RsbS antagonist and RsbR coantagonist with its paralogues). Upon environmental stress, the RsbT kinase phosphorylates RsbS and
RsbR with its paralogues at Ser/Thr residues and is released from the complex. RsbT then interacts with the RsbU phosphatase resulting in its
activation and dephosphorylation of a downstream antagonist, RsbV, which is further regulated by RsbW-mediated phosphorylation.
Unphosphorylated RsbV dissociates the oE-RsbW kinase complex by binding to RsbW, thereby releasing o®, which in turn associates with RNA
Polymerase and activates o® regulon gene expression. The RsbX phosphatase resets the entire stressosome machinery by dephosphorylation of RsbS
and RsbR. Under energy-deficient conditions, a separate pathway is activated involving dissociation of another complex comprised of the RsbP
phosphatase and a stress RR, RsbQ. The released RsbP results in the dephosphorylation of RsbV, which triggers downstream signaling pathways.
During cold stress, bacteria respond by triggering another independent pathway involving RsbW. The complex of RsbW and ¢® modulates the

expression of genes regulated by o®.

Another bacterial GSR involves the activation of sigma factor,
SigB (master regulator of GSR), which regulates the expression of
over 100 genes in B. subtilis during stress conditions (Haldenwang
and Losick 1979, Bernhardt et al. 1997, Hecker and Volker 1998).
Activation of the SigB regulon is achieved by a signaling cascade
that involves Ser/Thr phosphorylation of Rsb (regulator of sigma
factor) family proteins comprising TCS such as Ser/Thr kinases
(RsbT and RsbW); PP2C-type phosphatases (RsbP, RsbX, and RsbU);
antagonists (RsbS and RsbV), and coantagonists (RsbRA, RsbRB,
RsbRC, and RsbRD) (Price et al. 2001, Hecker et al. 2007, Rodriguez
Ayala et al. 2020).

In normal conditions, Ser/Thr kinase RsbW phosphorylates
the antagonist RsbV, causing its inactivation and also acts as
a negative regulator of SigB that blocks its binding to the RNA
polymerase core enzyme (Alper et al. 1996, Yang et al. 1996,
Rodriguez Ayala et al. 2020). Environmental stress conditions
(acid/ethanol/salt) trigger dephosphorylation of RsbV by RsbU.
RsbU is activated by interacting with RsbT Ser/Thr kinase that
acts as a mediator and conveys environmental stress signals to
initiate the downstream signaling. In the absence of stress, RsbT
is entrapped in a 25S multiprotein oligomeric complex consist-
ing of RsbS (antagonist) and RsbRAs (coantagonist) and its par-
alogues such as YkoB (RsbRB), YojH (RsbRC), YghA (RsbRD), and
YtvA (Akbar et al. 2001, Chen et al. 2003, Kim et al. 2004a). Un-
der stress conditions, RsbT phosphorylates RsbRA, which facil-
itates phosphorylation of RsbS. Then RsbT is released from the

complex, thus activating RsbU (Chen et al. 2004, Kim et al. 2004b).
Activated RsbU dephosphorylates RsbV, which then binds to the
RsbW kinase (RsbV-RsbW), thereby dissociating the RsbW-SigB
complex. The SigB released from the complex binds to RNA poly-
merase, thus activating the SigB regulon (Dufour and Haldenwang
1994). This signaling pathway is reset by RsbX STP that dephos-
phorylates RsbS and RsbRA, and serves as a fine-tuning mecha-
nism resulting in the sequestration of RsbT in the stressosome
complex (Yang et al. 1996, Price et al. 2001, Chen et al. 2004). Fur-
thermore, the absence of the RsbX protein in the B. subtilis system
results in uncontrollable activation of the SigB regulon (Voelker et
al. 1997) (Fig. 6). Under energy stress conditions (glucose, oxygen,
and phosphate starvation), RsbV dephosphorylation is mediated
by a complex of RsbP phosphatase and RsbQ hydrolase, thus acti-
vating the SigB regulon (Vijay et al. 2000, Brody et al. 2001). In the
case of cold shock, the signaling pathway works independently
of RsbP, RsbU, and RsbV. The degree of stability of the RsbW-SigB
complex regulates the silencing or transcription of stress-related
genes (Brigulla et al. 2003) (Fig. 6).

In B. cereus, SigB activation is achieved by a protein complex
comprising RsbK (sensor kinase), RsbW (kinase), RsbV (antago-
nist), and RsbY (phosphatase). Following stress conditions, the
sensor kinase RsbK phosphorylates and activates RsbY¥, which in
turn dephosphorylates the RsbV antagonist. Unphosphorylated
RsbV sequesters RsbW (a negative regulator of SigB), thus activat-
ing the SigB regulon (van Schaik et al. 2005, de Been et al. 2010).
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Virulence

While the majority of Bacillus species are nonpathogenic, a few
of them belonging to the B. cereus group are known to cause
disease in animals and humans (Ehling-Schulz et al. 2019). The
pathogenicity of this group is attributed to two major factors-
secreted toxins or capsule. These factors are paramount for the
survival of the bacteria inside the host, and thus it is important
to study the network that regulates their synthesis for the de-
velopment of novel prophylactics (Moayeri et al. 2015). In B. an-
thracis, the most studied protein, which is involved in the synthe-
sis of toxins and capsule is the master virulence regulator, AtxA
(Anthrax toxin activator) (Fouet 2010, McCall et al. 2019). The B.
anthracis null mutant of atxA is avirulent in the mouse model
of infection (Dai et al. 1995). Furthermore, the cellular level of
AtxA decides the fate of associated pathways and thereby mod-
ulates the pathogenic cycle. High levels of AtxA in the cell are
conducive to toxin gene expression while inhibiting sporulation
in B. anthracis (Dale et al. 2018). The global transcriptional regula-
tors CodY and AbrB regulate the synthesis of AtxA (Strauch et al.
2005, van Schaik et al. 2009, Gangwal et al. 2022), and are them-
selves targeted by Ser/Thr phosphorylation machinery (Macek et
al. 2007, Kobir et al. 2014). This regulation is achieved either by
direct binding of the transcriptional regulator to the promoter re-
gion of the toxin-producing genes (Dale et al. 2012, Chateau et
al. 2013) or by an unknown post-translational mechanism (van
Schaik et al. 2009).

In the nonpathogenic B. subtilis, phosphorylation of AbrB at a
Ser residue inhibits its DNA binding property (Kobir et al. 2014),
whereas in B. anthracis, CodY phosphorylation at a Ser residue ab-
rogates its DNA binding to the atxA promoter, leading to deple-
tion of toxin proteins (Gangwal et al. 2022). In B. anthracis, PTS-
mediated phosphorylation of AtxA at conserved His residues in
the PRD domain (PTS-regulated domain) regulates its activity and
affects toxin synthesis (Tsvetanova et al. 2007, Raynor et al. 2018).
Interestingly, PTS proteins HPr and Enzyme I were also shown to
be required for atxA expression and their deletion mutant B. an-
thracis strain showed defective toxin production and attenuated
virulence in an animal model of anthrax (Bier et al. 2020). More
recently, another STP—PrpN was shown to regulate AtxA synthe-
sis via phosphorylation-mediated regulation of CodY DNA binding
activity. CodY was confirmed as a target of the PrkC and PrpN and
the null mutant strain of prpN demonstrated a significant reduc-
tion in anthrax toxins and AtxA. Functional implication of PrpN-
mediated dephosphorylation on CodY activity was examined us-
ing phosphomimetic and phosphoablative CodY mutants. While
phosphorylation of CodY at a Ser residue resulted in complete
abolishment of its DNA-binding ability at the atxA promoter re-
gion, unphosphorylated CodY was reported as a positive regulator
of anthrax toxins (Gangwal et al. 2022). This highlights the impor-
tance of protein Ser/Thr and His phosphorylation in maintaining
the optimum AtxA level for toxin production (Fig. 7).

Toxin biosynthesis is often correlated with carbon sources in
pathogenic bacteria (Poncet et al. 2009, Chiang et al. 2011). In Bacil-
lus sp., this is mediated by a carbon catabolite protein (CcpA) and
phosphotransferase system (PTS) component, HPr, via the clas-
sical carbon catabolite repression (CCR) mechanism (Khan and
Banerjee-Bhatnagar 2002, Lorca et al. 2005, Singh et al. 2008). Hpr
is phosphorylated by Hpr Kinase (Poncet et al. 2004, Choi et al.
2006) and PrkC (Macek et al. 2007, Pietack et al. 2010). While the
functional relevance of phosphorylation by PrkC is still unknown,
the phosphorylation by Hpr kinase plays an important role in
modulating Hpr activity and binding to CcpA, resulting in differ-

ential expression of multiple genes in B. subtilis (Blencke et al. 2003,
Deutscher et al. 2014) (Fig. 7).

Chain formation is another factor that contributes to the viru-
lence of bacteria including B. anthracis by helping the pathogen to
evade the host immune response (Moller et al. 2012, Rodriguez et
al. 2012, Prashar et al. 2013, Jouvion et al. 2016). In B. anthracis, prkC
deletion results in severe defects in chain formation as compared
to wild type strain, indicating the role of PrkC in the regulation of
chain length in B. anthracis (Dhasmana et al. 2021). Earlier stud-
ies have also shown that B. anthracis lacking the prkC/prpC pair
showed impaired survival within macrophages and attenuated
virulence in an animal model (Shakir et al. 2010). These studies
provide a possible regulatory link between Ser/Thr phosphoryla-
tion and virulence via chain formation in B. anthracis.

When B. anthracis infects its host, it secretes lethal and edema
toxins, which target smooth muscle cells and epithelial cells, ex-
acerbating the infection. The BrrAB TCS regulates the expression
of these toxins during infection. Deletion of any one of the com-
ponents of BrrAB causes downregulation of atxA and a signif-
icant reduction in the toxin-producing ability of the pathogen,
thus decreasing the virulence (Vetter and Schlievert 2007). In ad-
dition to exotoxins, secreted proteases facilitate the infection via
degrading the host tissue and mobilizing the bacteria inside the
host (Chung et al. 2006). A novel TCS encoded by BAS2109-2108
regulates the expression of eight intracellular and extracellular
proteases (Gupta et al. 2017). Activated BAS2108 (HK) transfers
the phosphate group to its cognate RR, BAS2109, which binds to
the promoters of many proteases, such as metalloendopeptidase,
bacillolysin, and several Ser proteases; few of these proteases are
involved in pathogenesis. Additionally, the expression of BAS2109
(RR) increases in the presence of carbon dioxide or nutritional
stress (Gupta et al. 2017) (Fig. 7).

The food-borne pathogen B. cereus has a TCS, ResDE, which con-
trols the production of hemolysin BL and nonhemolytic entero-
toxins under anaerobic conditions, thus controlling levels of viru-
lence (Duport et al. 2006). ResE responds to the acidic environment
and oxygen limitation in the gut and helps bacteria to secrete ex-
tracellular toxins to establish infection (Duport et al. 2006). YviTU
TCS controls the expression of a major pleiotropic virulence gene
regulator, PIcR in B. cereus (Gohar et al. 2008, Brillard et al. 2008). Al-
though plcR expression is decreased in yufTU mutant bacilli, there
are only minor differences reported in the expression of the plcR
regulon (Brillard et al. 2008).

Cross-talk and cross-phosphorylation

A recent surge in the number of protein-protein interactome and
phosphoproteome studies of bacterial systems including that of
Bacillus have revealed multisite phosphorylation of several pro-
teins by different kinases. These kinases exhibit promiscuous ac-
tivity and can phosphorylate each other as well as have com-
mon substrates, thereby contributing to the biological complex-
ity, adding another regulatory layer to the protein phosphory-
lation network in the bacterial system (Lin et al. 2009, Chao et
al. 2010, Kobir et al. 2011, Baer et al. 2014, Shi et al. 2014a, b,
Willett and Crosson 2017, Pinas et al. 2018, Shen et al. 2020).
To differentiate these two regulatory networks, we have used
the term “cross-talk” to define phosphorylation and dephos-
phorylation of a substrate at multiple amino acid residues by
different kinases/phosphatases and “cross-phosphorylation” to
define phosphorylation/dephosphorylation between different ki-
nases/phosphatases (Fig. 8).
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In B. subtilis, an interaction network linking different classes
of protein kinases/phosphatases was generated using yeast two-
hybrid interactome studies and in-vitro kinase assays (Shi et al.
2014a, b). A direct interaction was predicted between Ser/Thr
kinase-YabT and BY-kinase/PTP PtkB and cognate Phosphatase
PtpZ. Anindirect interaction was also observed via TkmA (the spe-
cific modulator for BY-kinase PtkA) between YabT and another
BY-kinase, PtkB. The two BY-kinases, PtkA and PtkB show possi-
ble cross-interaction through the PtkA-modulator TkmA. Also, the
Tyr phosphatase PtpZ interacts with TkmA and PtkA. RsbT, a two-
component-like Ser/Thr kinase regulating the stressosome com-
plex of B. subtilis interacts with BY-kinase/phosphatase PtkA/PtpZ
and Ser/Thr kinase PrkD. DegsS, an HK, was shown to be phospho-
rylated by Ser/Thr kinases including interacts with the PrkD and
YabT/SpollE pair (Jers et al. 2011, Shi et al. 2014a, b).

Furthermore, cross phosphorylation among the kinases has
been defined by categorizing the kinases into two broad classes.
The first class consists of PrkD, PrkC, YabT, and PtkA kinases that
can autophosphorylate and phosphorylate other kinases. Among
these, PrkC, PrkD, and YabT show intermolecular phosphoryla-
tion, while YabT and PtkA can cross-phosphorylate each other.
Also, PrkC can phosphorylate PtkA near its autophosphorylating
site. The other class includes PtkA and two-component Ser/Thr
kinases such as RsbW and SpolIAB, which are phosphorylated
by other Ser/Thr kinases. Additionally, HPr kinase/phosphorylase
(PTS component) is phosphorylated by PrkD, PrkC, and PtkA, while
RsbT interacts with PrkD, and YabT (Shi et al. 2014a). Another
example of cross-phosphorylation involves phosphorylation of
TCS proteins DegS (HK) and WalR (RR) by STKs. Phosphoryla-
tion of DegS by STKs (PrkD and YabT) at the Ser76 residue en-
hances the phosphotransfer to DegU (RR) and was found to be
important in the regulation of competence development, com-
plex colony formation, and swarming (Macek et al. 2007, Jers et

al. 2011). Furthermore, PrkC-mediated phosphorylation of WalR
(RR) at Thr101 regulates the expression of genes involved in cell
wall metabolism (Libby et al. 2015). These studies suggest differ-
ent kinase classes work in tandem in a network and illustrate the
biological complexity of cross-phosphorylation in Bacillus genus
(Fig. 8).

Interestingly, in a high-throughput experiment, multisite phos-
phorylation of substrates was predicted with different classes of
kinases/phosphatases. For example, RecA is phosphorylated by
YabT, PtkA and Arg kinase (Soufi et al. 2010, Elsholz et al. 2012,
Bidnenko et al. 2013, Shi et al. 2014b). Phosphorylation of SalA
by PtkA was also validated by an in-vitro kinase assay (Derouiche
et al. 2015). Another phosphoproteome study reported phospho-
rylation of known substrates of Tyr kinase PtkA such as aspar-
tate semialdehyde dehydrogenase (Asd), Enolase (Eno), and YjoA
at Ser/Thr residues (Jers et al. 2010, Ravikumar et al. 2014). Out
of these, Eno was identified as a substrate of the McsB/YWIE pair
in an Arg phosphoproteome analysis (Schmidt et al. 2014). In B.
anthracis Eno was also shown to be phosphorylated at Ser/Thr
residues by PrkC (Virmani et al. 2019). This PrkC-mediated mul-
tisite phosphorylation of Eno imprints phenotypic memory in B.
anthracis spores and is important for spore germination. The global
transcriptional regulator AbrB is also phosphorylated at Ser and
Tyr residues. Phosphorylation at the Ser residue is mediated by
STKs (PrkC/PrkD/YabT), while Tyr phosphorylation was detected
in the B. subtilis phosphoproteome (Kobir et al. 2014, Ravikumar et
al. 2014).

Cross-talk among B. subtilis phosphorylation pathways involve
Ssb (SsbA and SsbB) required for DNA replication that are phos-
phorylated by PtkA and McsB (Mijakovic et al. 2006, Elsholz et al.
2012). Interestingly, SsbA is also phosphorylated by Ser/Thr ki-
nases (PrkD, PrkC, and most efficiently by YabT), which aids in
the cooperative binding of SsbA tetramers to DNA (Derouiche
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et al. 2016). Another example of cross-talk involves phosphory-
lation of a PTS protein, Hpr, at multiple residues. Phosphoryla-
tion at Ser residues is mediated by either a bifunctional ATP de-
pendent Hpr kinase/phosphorylase (Reizer 1989) or Ser/Thr ki-
nase/phosphatase pair PrkC/PrpC (Singh et al. 2007, Pietack et
al. 2010), while phosphorylation at His is catalyzed by another
PTS protein, Enzyme I (Reizer 1989). Phosphorylation of Hpr at

the Ser/Thr/Tyr residues was also observed in phosphoproteome
studies of B. subtilis (Ravikumar et al. 2014, 2018) (Fig. 8).

Arg phosphoproteome analysis identified several substrates
such as GroEL, DegU, and the elongation factors EF-Tu and EF-
G in B. subtilis that were previously shown to be phosphorylated
at other residues (described in above sections), indicating multi-
site phosphorylation and possible cross-talk among the different



families of kinases (Elsholz et al. 2012, Schmidt et al. 2014, Tren-
tini et al. 2014). EF-Tu and EF-G were also identified as targets of
Tyr phosphorylation in the B. subtilis germinating spore phospho-
proteome (Rosenberg et al. 2015).

Compared to B. subtilis, B. anthracis has lost some Tyr ki-
nases during evolution. Consequently, two unique DSPKs, PrkD,
and PrkG, were identified in B. anthracis, belonging to different
classes defined on the basis of their target residues. PrkD be-
longs to “dual-specificity tyrosine phosphorylation-regulated ki-
nase” (DYRK), which autophosphorylates on Ser, Thr, and Tyr but
phosphorylates its substrates only on Ser and Thr. PrkG was iden-
tified as a bonafide DSPK that can autophosphorylate and mediate
substrate phosphorylation on Ser/Thr/Tyr residues. Interestingly,
the STP PrpC also exhibits dual specificity (Arora et al. 2012). It can
dephosphorylate both PrkD and PrkG, in addition to PrkC (Obu-
chowski et al. 2000, Shakir et al. 2010).

Conclusions and future directions

In this review, we assessed the role of protein phosphorylation in
different life stages of Bacillus species (Table 1). Bacillus sp. have
the ability to metamorphosize into different forms such as spores,
vegetative cells, or biofilms, which is vital for their survival in
the environment or in the host. The shift in metabolic needs be-
tween these stages is a complex process (Fouet and Mock 2006,
Tan and Ramamurthi 2014, Christie and Setlow 2020, Setlow and
Christie 2020). Besides basic control of gene expression, PTMs
such as phosphorylation, provide an additional layer of regula-
tion. Over the years, the importance of His/Asp and Ser/Thr/Tyr
protein phosphorylation has been unraveled in different cellular
pathways. More recently, phosphorylation of other residues in-
cluding Lys, Arg, and Cys have also been discovered. Genetic regu-
lation extends beyond the identification of direct signaling path-
ways, as many of these phosphorylation events are controlled by
more than one phosphorylation scheme, as discussed in the cross-
talk section.

Most of the early research on the role of protein phosphory-
lation was performed using the model organism B. subtilis (Coz-
zone 1988, Perego et al. 1989, Mukai et al. 1990). Over the years,
it has been established that protein phosphorylation schemes are
ubiquitous throughout the Bacillus species, though some members
of the Cereus clade have lost some Tyr kinases and gained dual-
specificity protein kinases that can perform the function of both
Ser/Thr and Tyr protein phosphorylation (Arora et al. 2012).

Of the different phosphorylation systems, early discoveries em-
phasized the role of His/Asp-based TCSs in sensing environmen-
tal stress and regulating cellular behavior, while recent advances
in this field indicate that Ser/Thr/Tyr/Arg protein phosphorylation
may play an even larger role. Though many phosphorylated pro-
teins have been recognized in recent literature, our understanding
of upstream sensing stimuli is still limited. Among the Ser/Thr
protein kinases, the role of muropeptides as sensory signals to
PrkC is well-established (Dworkin and Shah 2010, Squeglia et al.
2011, Pompeo et al. 2018b). Recent studies on the PrkC homolog
PknB in Mycobacterium tuberculosis indicate that lipid moieties can
also be sensory signals (Kaur et al. 2019). Further work is needed
to understand if in addition to muropeptides, lipid II, can also act
as sensing signals to PrkC. These studies show that protein kinase
signaling in Bacillus species is highly evolved and regulated by spe-
cific sensory signals.

Recent advancement in the MS techniques have facilitated
increase in phosphoproteome studies. They range from non-
specific simple gel-based studies to more specific and complex
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MS studies. Improved phosphopeptide enrichment methods cou-
pled with novel MS-based systemic approaches provides a better
blueprint of the global phosphoproteome (Liu et al. 2021, Paulo
and Schweppe 2021, Pina et al. 2021, Xiao et al. 2023). An in-depth
description of these techniques is beyond the scope of this re-
view but has been reported elsewhere (Engholm-Keller and Larsen
2013, Ed Dudley 2014, Yague et al. 2020). Importantly, phosphory-
lation at specific residues in a protein differs in lability, stoichiom-
etry, and abundance. For instance, compared to phosphorylation
at other residues, phospho-Asp/His and Arg are relatively unsta-
ble (Gonzalez-Sanchez et al. 2013, Huang et al. 2021). For this rea-
son, enrichment and phosphoproteome studies on Asp/His/Arg
phosphorylation are challenging and extensive research is needed
in this field.

Unlike protein kinases, there is limited literature on the role
of cognate protein phosphatases in cellular processes (Kennelly
2002, Sajid et al. 2015). Also, many regulatory mechanisms of
phosphatases have been reported. For example, in M. tuberculosis,
in a feedback loop system, PstP (homolog of B. anthracis PrpC) is
phosphorylated by its cognate kinases PknA and PknB, causing its
activation, though a similar mode of regulation has not been re-
ported in Bacillus (Sajid et al. 2011b). The phosphatases of stresso-
some complexes are also shown to be regulated by a similar mech-
anism (Misra et al. 2019). The existing literature also suggests that
similar to eukaryotes, a cross-talk and cross-phosphorylation net-
work is also present in the bacterial systems and might provide
another layer of regulation for phosphorylation pathways, thus
enabling the efficient regulation of principal processes such as
growth, DNA repair, cellular metabolism, and stress response.

In conclusion, phosphorylation is the key regulator of every
aspect of Bacillus life, yet information about what triggers these
events and how they maintain control over different pathways
and cross-talk with each other is somewhat limited. Having sev-
eral conserved processes, the Bacillus species are one of the best
prokaryotic model systems utilized to study various aspects of
bacterial physiology (Getz et al. 2019). Continued studies in this
field can help to unravel more bacterial signaling systems and
networks.
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