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Abstract

The transition to electric vehicles is projected to have considerable public health co-benefits, but 

most evidence regarding air quality and health impacts comes from projections rather than real-

world data. We evaluated whether population-level respiratory health and air quality co-benefits 

were already detectable at the relatively low levels of zero-emissions vehicles (ZEV): battery 

electric, plug-in hybrid, hydrogen fuel cell vehicle) adoption in California, and evaluated the 

ZEV adoption gap in underserved communities. We conducted a zip code-level ecologic study 

relating changes in annual number of ZEVs (nZEV) per 1000 population from 2013–2019 to: 

(i) annual average monitored nitrogen dioxide (NO2) concentrations and (ii) annual age-adjusted 

asthma-related emergency department (ED) visit rates, while considering educational attainment. 

The average nZEV increased from 1.4 per 1,000 population in 2013 (standard deviation [SD]: 2.1) 

to 14.7 per 1,000 in 2019 (SD: 14.7). ZEV adoption was considerably slower in zip codes with 

lower educational attainment (p<0.0001). A within-zip code increase of 20 ZEVs per 1,000 was 

associated with a −0.41 ppb change in annual average NO2 (95% confidence interval [CI]:−1.12, 

0.29) in an adjusted model. A within-zip code increase of 20 ZEVs per 1,000 population was 

associated with a 3.2% decrease in annual age-adjusted rate of asthma-related ED visits (95% 

CI:−5.4, −0.9). Findings were supported by a variety of sensitivity analyses. Observational data 

on the early phase ZEV transition in California provided a natural experiment, enabling us to 
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document the first real-world associations between increasing nZEV and changes in air quality and 

health. Results suggest co-benefits of the early-phase transition to ZEV but with an adoption gap 

among less affluent populations which threatens the equitable distribution of possible co-benefits.

Graphical Abstract
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1. INTRODUCTION

The transition to electric vehicles (EV) is not only an important climate change mitigation 

strategy but is also projected to have considerable co-benefits for public health.1,2 On-

road vehicles are major contributors to harmful ambient air pollution through tailpipe-

related emissions, including carbon monoxide, particulate matter <2.5μm (PM2.5), and 

oxides of nitrogen (NOX) including nitrogen dioxide (NO2). Exposure to traffic-related 

air pollution (TRAP) is associated with a range of adverse health outcomes, including 

respiratory symptoms, development of asthma, asthma exacerbations, reduced lung function, 

cardiovascular disease, and premature death.3–8

Projected impacts of the EV transition on air quality and health (“co-benefits”) have 

been calculated for hypothetical scenarios for several locations around the world, with 

results depending on local features such as the electrical power generation mix used 

for EV charging. Air quality co-benefit projections anticipate reductions in NOX, PM2.5, 

carbon monoxide, volatile organic compounds, and ground-level ozone (O3)—although 

some predict some occasional increases in O3 due to lower NOX emissions.2,9–17 Health co-

benefits of EV adoption have been estimated for Turin, Italy,14 Paris, France,18 Rotterdam, 

Netherlands,19 Toronto/Hamilton area, Canada,17 Houston, Texas,9 Seattle, Washington,20 

and for the entire US1,2 with projections anticipating reductions in premature mortality, 

asthma exacerbations, and respiratory and cardiovascular hospitalizations. Indeed, in the 

United States (U.S.), a complete shift to EVs is projected to produce more than $1.2 trillion 

in cumulative health benefits by 2050, including: over 2.7 million avoided pediatric asthma 
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exacerbations; 57,200 fewer asthma-related emergency department (ED) visits; and 110,000 

lives saved.2

The transition to EVs has already begun, but there is little real-world data on observed 

co-benefits of the early transition. There is also serious concern that EV adoption is not 

equitably distributed across the population. Underserved communities potentially have most 

to gain from the transition because they are overburdened with TRAP21–23 and TRAP-

related diseases;5,7,24 however, these communities tend to lag in the EV transition due to 

multiple barriers, such as access to charging infrastructure, concerns about charge time, 

range, and real/perceived expense related to purchase, maintenance, and charging, as well as 

limited knowledge of financial incentives.25,26

Asthma is a leading chronic health conditions with documented increased exacerbations 

(leading to emergency department [ED] visits) in response to tailpipe emission 

pollutants,5,27–30 thus a compelling outcome to examine as early markers of respiratory 

health response to increased EV adoption. The annual cost of asthma in the US is 

approximately $56 billion, including $50 billion in direct healthcare costs.31 Persons 

of lower socioeconomic status and from historically marginalized communities and the 

uninsured comprise a disproportionate amount of asthma-related ED visits,32–35 highlighting 

a health equity issue.

We conducted an ecologic study across California to evaluate the associations between 

adoption of zero-emissions vehicles (ZEV: battery electric, plug-in hybrid, hydrogen fuel 

cell vehicle) and air quality and asthma outcomes. Specifically, in this study we relate 

within-zip code number of ZEVs to: (a) annual averages of monitored NO2 concentrations 

and (b) asthma-related ED visits, from 2013 through 2019 (prior to the COVID-19 

pandemic), while considering zip code-level educational attainment which serves as a proxy 

for socioeconomic status. We aimed to evaluate whether population-level air quality and 

respiratory health and co-benefits were already detectable at the still relatively low levels of 

ZEV adoption and evaluate the ZEV adoption gap in underserved communities. California 

is a socio-economically diverse state heavily impacted by TRAP and is a pioneer in the 

early adoption of ZEVs36 making it an ideal setting for this analysis. Observational data 

on the early phase ZEV transition in California provided a natural experiment, enabling 

us to quantify some of the first evidence of real-world co-benefits of the transition to a 

zero-tailpipe-emissions transportation sector.

2. METHODS

2.1 Data

2.1.1. Number of zero-emissions vehicles—Annual counts of light-duty vehicles 

registered in California, by fuel type, have been publicly released by the California Energy 

Commission through a partnership with the California Department of Motor Vehicles.37 We 

tabulated the total number of ZEV vehicles (battery electric, plug-in hybrid, hydrogen fuel 

cell) for each zip code and year starting in 2013, to coincide with the availability of asthma 

ED visit data (described below in section 2.1.3.). Years with no records of ZEV vehicles 

occurred most frequently in the earliest years of the study period and were assigned counts 
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of 0. The number of ZEV (nZEV) per 1,000 population was calculated using the American 

Community Survey (ACS) estimates of population size (described below in section 2.1.4.).

2.1.2. Ambient NO2 air pollution—We selected NO2 as the air pollutant of interest 

due to on-road vehicles being its largest source of emissions38 and the greater availability of 

monitoring sites measuring NO2 compared with other traffic-related air pollutants (e.g., 

PM2.5). We obtained annual average NO2 measurements from the U.S. Environmental 

Protection Agency’s (EPA) AirData website as pre-generated data files, dated 2022-11-14, 

from all available air monitoring stations operating in California39 from 2013–2019 to 

coincide with the availability of asthma ED visit data (described below in section 2.1.3.). 

Secondary analyses considered additional data from 2020–2021. State and local monitoring 

plans guide placement of air monitoring stations, which might include areas with larger 

populations or thought to have higher pollution concentrations.40 We used annual data 

calculated according to the NO2 Annual 1971 pollutant standard, with all monitoring sites 

reporting 1 hour sample duration.41 We processed these data to ensure only one NO2 annual 

average estimate per site per year. In the few cases where multiple records existed for a 

given site-year (22 out of 843 [2.6%] site-years), we selected a single record using the 

following criteria. First, if there were records from multiple instruments, we selected the 

instrument with the longest duration of records at that site during the study period. Second, 

if there were records from two versions of the annual average including or excluding 

exceptional events as defined by the EPA (i.e., events that affect air quality but which the 

local agency has no control over, such as wildfires),41 we selected the record excluding 

exceptional events since exceptional events are unlikely to be related to local number of 

ZEV. Finally, if multiple records remained, we selected the record with the largest number of 

days contributing to the annual average. In primary analyses, we used annual average NO2 

records based on at least 50% complete data and in secondary analyses we used records with 

≥75% complete (i.e., satisfying the regulatory completeness criteria by the monitor for the 

year).41

2.1.3. Asthma emergency department visits—Data on zip code-level annual age-

adjusted rate (per 10,000) of asthma-related emergency department (ED) visits from 

2013–2019 were obtained from the California Health and Human Services (CHHS) Open 

Data Portal. These data are produced by the California Department of Public Health, 

California Breathing Asthma Program, based on a database of ED visits from all licensed 

hospitals in California maintained by the California Department of Health Care Access 

and Information.42 These data reflect the number of ED visits related to asthma during 

each calendar year for a given zip code, including ED visits that results in hospitalization, 

normalized for zip code population.42 Age-adjusted rates of asthma ED visits were 

calculated by the California Breathing Asthma Program using yearly population estimates 

from the California Department of Finance which are then age-adjusted to the 2000 U.S. 

standard population from the U.S. Census Bureau using weights for the 24 age groups from 

Centers for Disease Control and Prevention43 (L. Avendaño, California Breathing, personal 

communication, December 19–20, 2022). The use of age-adjusted rates controls for possible 

confounding by differences in population age distribution across zip codes. Asthma-related 

ED visits were identified based on the International Classification of Diseases (ICD) primary 
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discharge codes: ICD-9 493.xx or ICD-10 J45.42 Rates are approximate since they are 

based on total number of visits rather than the number of unique individuals and CHHS 

suppressed rates calculated from small counts (e.g., <12) due to statistical instability and/or 

de-identification purposes.

2.1.4. Population characteristics—Zip code-level population size and educational 

attainment, defined as percent of the population over age 25 years with at least a bachelor’s 

degree, were obtained from the 2015–2019 American Community Survey (ACS) 5-Year 

Estimates.44 Educational attainment serves as a proxy for socioeconomic status, representing 

the structural and financial barriers driving disparities rather than the lack of education 

itself. In secondary analyses we considered alternative measures of socioeconomic status, 

including: percentage of the population over age 25 with at least a high school degree, 

median household income, and percentage poverty defined as the percentage of the 

population whose income in past 12 months was below the poverty level.

2.1.5. Final analysis datasets—There were 629 records of annual average NO2 from 

107 air monitoring stations in 95 zip codes available from 2013–2019, after excluding 

one site located in a zip code with no asthma ED visit data (Miramar, ≤1 ZEV during 

study period) and dropping 30 site-year records where the annual averages had used <50% 

complete data. There were 8,170 observations of non-missing annual age-adjusted rates of 

asthma ED visits in 1,240 zip codes from 2013–2019. In our analyses, we considered only 

zip codes with non-missing population size greater than 0, which reduced the final asthma 

ED visit dataset to 8,163 observations in 1,238 zip codes. ZEV data were available for all 

years/zip codes in the NO2 and asthma ED visit datasets. All datasets used in this study 

were not collected for the purpose of our study and none of our study team had access to 

any subject identifiers (only publicly available de-identified, aggregated data were used). 

According to the Office for Human Research Protection of U.S. Department of Health 

and Human Services, these analyses do not constitute human subjects research requiring 

Institutional Review Board approval or consent.

2.2. Statistical Methods

2.2.1. Descriptive statistics—Data distributions were summarized using means and 

standard deviations (SD). Differences in characteristics between zip codes with and without 

NO2 monitor data were compared using t-tests. Longitudinal trends in the: nZEV per 1,000 

population, annual average NO2, and age-adjusted rate of asthma-related ED visits were 

visualized using spaghetti plots color coded by zip-code level educational attainment (% 

bachelor’s degree). Differences in the baseline level (in 2013) and annual rate of change of 

each of these variables by educational attainment were assessed using linear mixed effects 

models with a linear function of year (centered on 2013) and educational attainment, along 

with their interaction, and a zip code (or monitoring site) level random intercept and slope 

on year.

2.2.2. Analyses relating nZEV and NO2—The crude association between nZEV and 

NO2 was evaluated using predicted 7-year change from 2013 to 2019 estimated from 

separate simple linear regression models. For example, to obtain predicted 7-year change 
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in nZEV a separate simple linear regression model was fit relating nZEV per 1,000 to 

calendar year for each zip code to predict the 7-year change in nZEV per 1,000 for that zip 

code. To obtain predicted 7-year change in NO2, a separate simple linear regression model 

was fit relating annual average NO2 to calendar year for each monitoring site to predict the 

7-year change in NO2 for that site. For the 102 sites in 91 zip codes with >1 year of NO2 

data, we plotted the monitoring site predicted 7-year change in NO2 versus the zip code (for 

that site) predicted 7-year change in nZEV, and calculated Pearson’s correlation coefficient.

The adjusted association between annual average NO2 (Yijk) at monitoring site k in zip code 

i at year j and nZEVs per 1,000 population (Xij) in zip code i at year j was estimated using 

the linear mixed effects model:

Y ijk = β0 + U0i + U0ik + β1Xij + β2Zi + β3 + U1i tij − 2013 + β4 tij − 2013 2 + εijk

where β1 quantifies the association of within-zip code changes in nZEV with within-

monitoring site changes in annual average NO2, adjusting for educational attainment (Zi) 

and calendar year (tij, centered at 2013; linear and quadratic effects included) to account 

for secular trends. Random intercepts for zip code (U0i) and site within zip code (U0ik) 

account for correlation in the longitudinal, multilevel data and the zip code-level random 

slope on the linear effect of year (U1i) allowed for variation in secular trends by zip code. 

No random slope was specified for year squared due to convergence issues, likely due to the 

smaller number of zip codes in this analysis (N=95) and the complexity of random intercepts 

for monitoring sites nested in zip codes. All random effects were assumed to be normally 

distributed and zip-code level random effects (U0i, U1i) were allowed to be correlated.

2.2.3. Analyses relating nZEV and asthma ED visits—The adjusted association 

between log transformed annual age-adjusted rate of asthma ED visits (Yij) in zip code i at 

year j and nZEVs per 1,000 population (Xij) in zip code i at year j was estimated using the 

linear mixed model:

Y ij = β0 + U0i + β1Xij + β2Zi + β3i + U1i tij − 2013 + β4i + U2i tij − 2013 2 + εij

where β1 quantifies the association of within-zip code changes in nZEV with within-zip 

code changes in log annual age-adjusted rate of asthma-related ED visits, adjusting for 

educational attainment (Zi) and calendar year (tij, centered at 2013; linear and quadratic 

effects included) to account for secular trends. Zip code level random intercepts (U0i) 

and random slopes on both terms for year (U1i, U2i) allowed for variation across zip 

codes in baseline age-adjusted rate of asthma ED visits and in secular trends. All random 

effects were assumed to be normally distributed and zip-code level random effects (U0i, 

U1i, U2i) were allowed to be correlated. Age-adjusted rate of asthma ED visits was 

natural log transformed to better satisfy modeling assumptions. Secondary analyses included 

investigating a nonlinear association with nZEV, using a generalized additive mixed model 

(GAMM)45 analogous to the linear mixed model above but that replaces the term β1Xij 

with the smooth function, s(Xij), estimated using a thin plate regression spline basis with 

automated selection of effective degrees of freedom.
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When developing the primary models presented above, a variety of models were evaluated to 

identify key model features, and to assess the sensitivity of the results to various model 

specification and data inclusion choices. Results of sensitivity analyses are presented. 

Models were estimated using lme() and gamm() in the nlme46,47 and mgcv45 packages 

of R version 4.2.1.48

3. RESULTS

3.1. Descriptive statistics

Distributions of selected zip code demographic and socioeconomic characteristics are 

presented in Table 1. Among the 1,238 zip codes in the asthma ED visit analysis, the mean 

population size was 31,296 (min: 702 and max: 111,165) and the total population size across 

all 1,238 zip codes was 38,743,804. Zip code level educational attainment ranged from 1.1% 

to 87.1% of adults over age 25 years with at least a bachelor’s degree, with a mean (SD) of 

33.4% (20.1%). The zip code level nZEV per 1,000 population had a mean (SD) of 1.4 (2.0) 

in 2013 and 14.7 (14.7) in 2019 (Supplemental Table 1). Zip code level number of ZEV per 

1,000 in 2019 was highly correlated with measures of socioeconomic status, with Pearson’s 

correlation of: 0.84 for % bachelor’s degree, 0.83 for median household income, 0.55 for % 

high school degree, and −0.51 for % poverty. Zip code level annual age-adjusted asthma ED 

visit rates had a mean (SD) of 49.5 (30.5) per 10,000 in 2013 and 43.0 (27.5) per 10,000 in 

2019 (Supplemental Table 1).

Annual NO2 data were available from 107 monitoring locations, which were located in 

a subset of 95 of the 1,238 zip codes. The 95 zip codes covered a total of 4,246,931 

people, representing 11.0% of the population included in the asthma ED visit analysis. 

Compared to zip codes without NO2 monitors, the 95 zip codes with NO2 monitors had 

higher average population size (p<0.001), lower educational attainment (p=0.01–0.02), 

lower household income (p=0.005), higher level of poverty (p=0.003), fewer ZEV per 1,000 

in 2019 (p<0.001), and higher age-adjusted rates of asthma ED visits in 2019 (p=0.006; 

Table 1 and Supplemental Table 1). Extensive longitudinal data were available over the 

7-year study period, from 2013–2019, with 100% of zip codes having nZEV data for all 7 

years, 80.4% of included monitoring sites having 5 or more years of NO2 data, and 93.0% of 

included zip codes having 5 or more years of asthma ED visit data.

3.2. Longitudinal trends in nZEV, annual average NO2, and asthma-related ED visits

There was considerable growth in nZEV from 2013–2019 in California (Figure 1a), and 

growth in nZEV was slower for zip codes with lower educational attainment (p<0.0001). 

For example, we estimated that a typical zip code at the 25th percentile of educational 

attainment (17.1% bachelor’s degree) had an annual increase in nZEV per 1,000 of 0.70 

(95% Confidence Interval [CI]: 0.61, 0.78) while a typical zip code at the 75th percentile 

of educational attainment (47.2% bachelor’s degree) had an annual increase in nZEV per 

1,000 of 3.55 (95% CI: 3.47, 3.63). Declines in annual average NO2 and in age-adjusted 

rates of asthma-related ED visits were more modest over the study period (Figure 1b–c). The 

2013 level of annual average NO2 was negatively associated with educational attainment 

(p<0.001), but the annual rate of change was not (p=0.48). Similarly, the 2013 level of 
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age-adjusted asthma-related ED visits was negatively associated with educational attainment 

(p<0.001), but the annual rate of change was not (p=0.30).

3.3. Associations of nZEV with monitored annual average NO2 concentrations

Higher nZEV was associated with lower annual NO2 concentrations measured at monitoring 

sites, though not statistically significant in the primary model. Results were consistent both 

in a crude analysis (Figure 2) and in a linear mixed model adjusting for confounders (Table 

2) where we estimated that a within-zip code increase of 20 ZEVs per 1,000 population 

was associated with a −0.41 ppb change in annual average NO2 concentration (95% CI: 

−1.12, 0.29; p-value=0.25). The estimated association remained negative in a variety of 

sensitivity analyses (Supplemental Table 2) and had even greater magnitude of associations, 

some statistically significant, when: adjusting for alternative measures of socioeconomic 

status, adjusting for a fixed effect of monitoring site, or excluding the random slope 

on year. Inclusion of additional data from 2020–2021 or only 2021 (to avoid 2020, 

which was heavily impacted by the COVID-19 pandemic) resulted in greater magnitude 

negative associations that were statistically significant, even when restricting to the subset of 

observations that satisfied regulatory requirements for completeness (≥75%; Supplemental 

Table 2).

3.4. Associations of nZEV with asthma-related emergency department visits

Higher nZEV was statistically significantly associated with fewer ED visits for asthma. 

Adjusting for zip code educational attainment and secular trends (Table 2), we estimated 

that a within-zip code increase of 20 ZEVs per 1,000 population was associated with a 

3.2% decrease in annual age-adjusted rate of asthma-related ED visits (95% CI: −5.4, −0.9; 

p-value=0.006). The estimated association remained negative and statistically significant in 

a variety of sensitivity analyses (Supplemental Table 3). In a secondary analysis evaluating 

nonlinearity (Supplemental Figure 1), there was statistical evidence of the association being 

nonlinear (p-value = 0.002 for a test of nonlinear vs linear) with a negative association 

between nZEV and asthma ED visits which was stronger at higher levels of nZEV. However, 

much of the evidence for nonlinearity was driven by the 4 observations with nZEV greater 

than 82 (from zip codes 94022 and 95070 in Santa Clara County, in 2018 and 2019). Upon 

excluding these observations evidence for nonlinearity was more modest (p=0.03).

4. DISCUSSION

4.1. Air quality and health co-benefits of ZEV adoption

This study provides real-world evidence supporting air quality and respiratory health co-

benefits from the ZEV transition, using observational data during a natural experiment of 

the early phase ZEV transition in California. We found statistically significant evidence 

that within-zip code increases in ZEV adoption were associated with decreases in rates of 

asthma ED visits. There was some evidence that this inverse association was nonlinear, with 

a suggested greater health co-benefit at higher levels of ZEV adoption—but caution must 

be taken not to overinterpret these nonlinear effect estimates at this early stage of the ZEV 

transition. As the number of ZEV increases in future years, researchers will increasingly 

be better positioned to evaluate evidence of nonlinear exposure-response functions. For 
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air quality co-benefits, while the association of ZEV with annual average monitored NO2 

concentrations was not statistically significant, it was in the hypothesized direction (inverse 

association) and relatively large in magnitude. We considered only air quality data from 

U.S. EPA monitoring sites, and these tended to be in zip codes that also had lower levels 

of ZEV adoption during the study period. We observed an adoption gap, wherein zip codes 

with a greater percentage of residents with lower educational attainment lagged in the ZEV 

transition. The strong evidence for health co-benefits and suggestive evidence for air quality 

co-benefits is remarkable given the still low rate of ZEV adoption in California in 2013–

2019. Taken together, these results suggest that increasing ZEV adoption has the potential 

to improve both air quality and neighborhood-level asthma health outcomes, but the already 

evident adoption gap raises equity concerns.

While most studies have estimated environmental health impacts of EV adoption under 

hypothetical scenarios,9,14,17,18,20 our findings are consistent with the few studies that have 

investigated real world co-benefits of the transition to EVs or other alternative fuels.49,50 

Lovasi et al. evaluated the air quality effects of the Clean Fuel Bus Program, which 

adopted lower-emissions buses including compressed natural gas, hybrid-electric, and ultra-

low-sulfur diesel buses, in New York City, New York from 2009 to 2014.49 They reported 

that the shift toward clean bus service was associated with larger improvements in local 

NO and NO2 concentrations and areas with more bus service and higher proportional shifts 

towards clean buses had the largest declines in these pollutants.49 Adar et al. evaluated 

the air pollution and pulmonary health effects of adopting clean air technologies (e.g., 

diesel oxidation catalysts and crankcase ventilation systems used to reduce tailpipe and 

engine emissions) and fuels (e.g., ultra-low-sulfur diesel and a biodiesel mixture) on school 

buses in Seattle and Tahoma, Washington from 2005 to 2009.50 With these adoptions they 

found lower in-vehicle concentrations of fine and ultrafine particulate matter and lower 

pulmonary inflammation, improved lung growth, and reduced risk of school absenteeism 

among the schoolchildren bus riders.50 These studies provide important critical data on the 

environmental health impacts of vehicle technology/fuel transitions, and the present study 

furthers the literature by presenting the first results from a large, state-wide, population-

based observational analysis of light duty vehicles.

4.2. ZEV adoption gap

Historically marginalized communities disproportionately experience higher exposure to 

air pollution, including TRAP,21–23 and adverse TRAP-related health outcomes such as 

asthma-related ED visits;33,35 thus ZEV adoption can be particularly beneficial in these 

communities. During this early phase of the ZEV transition, most adopters have been of 

higher education and income,26 aligning with the Diffusion of Innovation theory that early 

adopters of new technologies tend to be of higher socioeconomic status.51 This highlights a 

challenge for equitable transition to ZEVs and equitable distribution of related co-benefits 

for air quality and health. Indeed, we observed evidence for an adoption gap, with 

communities with lower educational attainment lagging in the ZEV transition—educational 

attainment here serving as a proxy for socioeconomic status and representing structural 

and financial barriers propelling disparities rather than the lack of education itself. While 

multiple potential barriers exist,25,26 increasing ZEV adoption in and around underserved 
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and health-disparate communities could potentially help to improve local air quality and 

subsequently reduce adverse health impacts through a reduction in tailpipe emissions.52 Our 

results provide evidence to inform policy makers for the development of programs to ensure 

a just ZEV transition where underserved communities are able to fully realize health and air 

quality co-benefits.

4.3. Strengths and limitations

Our study has several strengths. First, is the use of publicly available data from the large and 

diverse state of California, which is at the forefront of the ZEV transition in the U.S., and 

contains one of the densest air quality monitoring networks in the U.S. This study setting is 

ideal to evaluate the environmental health co-benefits of the early ZEV transition. Second, 

using monitored NO2 concentration to study air quality benefits avoided potential issues 

with spatial-temporal ambient air pollutant models which might not yet fully account for 

the changing transportation fleet. Third, by studying within-zip codes trends over time, we 

were able to take advantage of the natural experiment afforded by the early phase ZEV 

transition. Finally, the study period ended in 2019, avoiding potential confounding related to 

the COVID-19 pandemic. Considerable growth in ZEVs has continued.

Our study also has limitations which should be taken into consideration when interpreting 

results. First is the use of number of ZEVs per zip code population as our measure for 

ZEV adoption, which does not consider ZEV miles driven or if internal combustion engine 

vehicles are taken off the road in response to ZEV adoption. Furthermore, the use of 

this metric only evaluates local, zip code level effects (based on the vehicle registration 

zip code); it does not consider impacts in other localities as vehicles are in operation, 

nor are we directly considering the air pollution from the power generation mix used to 

charge the vehicles or the total life cycle impacts of ZEVs which have been evaluated 

elsewhere.52 Second, we only evaluated the impact of light duty ZEV and did not include 

zero-emissions public transit or freight transport which are also key components of the ZEV 

transition, since these data were unavailable. Many public agencies and regulatory efforts 

are shifting towards low- and zero-emissions transport and continued release of temporally 

and spatially resolved data would allow for better evaluation of associated health co-benefits, 

potentially beneficial for cost-benefits analyses of such policy efforts. Third, due to the 

realities of relying on data from an air monitoring network—which is relatively extensive 

in California compared with other U.S. states—our analysis on the air pollution effects 

of the ZEV transition was in only 96 zip codes across the state. Although these locations 

do not represent the full spatial coverage across California, monitors are generally placed 

near population centers. Fourth, our ecologic analyses were conducted at the zip code level, 

which is a suboptimal geographic unit for population health studies because zip codes were 

designed for postal delivery. They represent varying geographic and population sizes, they 

can cross city/county/census boundaries, and they may change over time. This, however, was 

the finest spatial resolution available for the publicly available ZEV data. The challenges 

with zip code-level analyses are outweighed by the advantages of fine spatial resolution, 

especially in a state like California where a county-level analysis effectively combines a 

large percentage of the state’s population because some counties are so large (e.g., Los 

Angeles County contains ~25% of California’s population). Last, as in most observation 
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studies, unmeasured confounding might have biased our estimated associations. We did 

adjust for area-level educational attainment—as a proxy for socioeconomic status—and 

our analyses included random intercepts for zip code which provides some control for 

possible unmeasured zip code-level confounding factors, and we additionally conducted 

various sensitivity analyses changing model specifications, adjusted covariates, and other 

data inclusions/exclusions; however, caution is warranted not to overinterpret results.

4.4. Future research

This study of the co-benefits of the early phase ZEV transition lays the foundation for 

future work. Research studying trends in the adoption of EV technology suggests that the 

U.S. entered the “takeoff” phase of EV adoption in 2017, marking the transition from an 

introductory phase to a phase of growth and mass adoption.53 With increasing numbers 

of ZEV, future studies can focus solely on the EV transition (excluding plug-in hybrids 

which are included in the present analysis) and/or with co-benefits analysis investigating a 

variety of health outcomes (including differences by vulnerable subgroups) and investigating 

a full set of ambient air pollutants (e.g., not only NO2 which has key tailpipe sources, 

but also PM2.5 which is impacted by brake and tire wear and might have a more complex 

association with EV adoptions given that EVs are on average heavier than their gasoline 

combustion counterparts54). Evaluation of possible nonlinear associations with co-benefits 

across a broader numerical range of ZEVs will be possible as their numbers increase. 

Additionally, the impact of electrification of other vehicle classes (e.g., such as heavy-duty 

on-road vehicles used in freight transport) or of transit systems (e.g., public transit, school 

buses) will enable new studies of observed associated public health co-benefits, including in 

high-traffic communities who are disproportionately exposure to TRAP.

5. CONCLUSIONS

This study leveraged a natural experiment and documents the first real-world associations 

between increasing nZEV and changes in air quality and health, suggesting co-benefits of 

the early-phase transition to ZEV in California, along with the adoption gap which threatens 

the equitable distribution of these co-benefits. These early results provide crucial evidence 

for informing future policies for a just and equitable transition to an electrified transportation 

sector, to both mitigate climate change and realize environmental and health co-benefits for 

all.
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DATA SHARING

The data that support the findings of this study are openly available in California 

Health and Human Services (CHHS) Open Data Portal at https://data.chhs.ca.gov/dataset/

asthma-emergency-department-visit-rates; American Community Survey Data at https://

www.census.gov/programs-surveys/acs/data.html; U.S. Environmental Protection Agency’s 

(EPA) AirData website at https://aqs.epa.gov/aqsweb/airdata/download_files.html; and 

California Energy Commission at http://www.energy.ca.gov/zevstats.

Abbreviations

ACS American Community Survey

CHHS California Health and Human Services

ED Emergency department

EV Electric vehicles

ICD International Classification of Diseases

NO2 Nitrogen dioxide

NOX Oxides of nitrogen

nZEV Number of zero-emissions vehicles

O3 Ozone

PM2.5 Particulate matter <2.5μm

SD Standard deviations

TRAP Traffic-related air pollution

ZEV Zero-emissions vehicles
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HIGHLIGHTS

• Real-world data use to quantify co-benefits of early electric vehicle transition

• More zero-emissions vehicles non-significantly associated with lower 

pollution

• Increases in zero-emissions vehicles linked with fewer asthma emergency 

room visits

• Zero-emissions vehicles adoption gap threatens equitable co-benefits 

distribution
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Figure 1. 
Longitudinal trends, from 2013–2019 in: (a) number of zero-emissions vehicles (ZEVs) per 

1,000 population in 1,238 California zip codes, (b) annual average nitrogen dioxide (NO2) 

concentrations observed at 107 California monitoring stations, and (c) annual age-adjusted 

rate of asthma-related emergency department (ED) visits per 10,000 in 1,238 California zip 

codes. Color indicates educational attainment (% of adults age 25+ with at least a bachelor’s 

degree) at the zip code level, from lower (purple) to higher (green).
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Figure 2. 
Crude association between predicted 7-year change in nitrogen dioxide (NO2) versus 7-year 

change in number of zero-emissions vehicles (ZEVs) based on data from 102 air monitoring 

sites in 91 zip codes in California, with color indicating zip code level educational 

attainment (low: purple; high: green).
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Table 1.

Distribution of selected demographic and socioeconomic characteristics among zip codes included in the 

asthma ED visit rate and nitrogen dioxide (NO2) analysis. Mean (standard deviation) presented, unless 

otherwise indicated.

Characteristic Zip codes in asthma ED visit analysis Zip codes in NO2 analysis P-value a

N 1,238 95

Population size 31,295.5 (21,311.5)
(min: 702; max: 111,165)

44,704.5 (19,253.9)
(min: 1771; max: 88,979)

<0.001

Educational attainmentb

 % Bachelor’s degree or higher 33.4 (20.1) 29.2 (17.8) 0.019

 % High school degree or higher 83.8 (13.1) 80.7 (12.2) 0.013

Income

 Median household income $79,385 ($34,477) $71,248 ($28,645) 0.005

 % Poverty c 13.7 (8.6) 16.3 (8.6) 0.003

a
P-value from t-tests comparing differences in characteristics between zip codes with and without NO2 monitor data.

b
Among adults over age 25 years.

c
Percentage of the population whose income in past 12 months was below the poverty level.
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Table 2.

Adjusted model results for change in annual average nitrogen dioxide (NO2) concentration (ppb) and percent 

difference in age-adjusted asthma-related emergency department (ED) visits associated with a within-zip code 

increase of 20 zero-emissions vehicles (ZEVs) per 1,000 population.

Model Estimate 95% CI P-value

NO2 and ZEVs a −0.41 (−1.12, 0.29) 0.252

Asthma ED visit rate and ZEVs b −3.2 (−5.4, −0.9) 0.006

a
NO2 model estimated using a linear mixed effects model adjusted for % bachelor’s degree, calendar year (linear and quadratic effect, centered at 

2013), with random intercepts for zip code and site within zip cope, and a zip code-level random slope on the linear effect of year.

b
Asthma ED visit rate model estimated using a linear mixed effects model adjusted for % bachelor’s degree, calendar year (linear and quadratic 

effect, centered at 2013), with random intercepts for zip code, and a zip code-level random slope on the linear and quadratic effects of year.
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