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ABSTRACT Intracellular transport is propelled by kinesin and cytoplasmic dynein motors that carry membrane-bound vesicles
and organelles bidirectionally along microtubule tracks. Much is known about these motors at the molecular scale, but many
questions remain regarding how kinesin and dynein cooperate and compete during bidirectional cargo transport at the cellular
level. The goal of the present study was to use a stochastic stepping model constructed by using published load-dependent
properties of kinesin-1 and dynein-dynactin-BicD2 (DDB) to identify specific motor properties that determine the speed, direc-
tionality, and transport dynamics of a cargo carried by one kinesin and one dynein motor. Model performance was evaluated by
comparing simulations to recently published experiments of kinesin-DDB pairs connected by complementary oligonucleotide
linkers. Plotting the instantaneous velocity distributions from kinesin-DDB experiments revealed a single peak centered around
zero velocity. In contrast, velocity distributions from simulations displayed a central peak around 100 nm/s, along with two side
peaks corresponding to the unloaded kinesin and DDB velocities. We hypothesized that frequent motor detachment events and
relatively slow motor reattachment rates resulted in periods in which only one motor is attached. To investigate this hypothesis,
we varied specific model parameters and compared the resulting instantaneous velocity distributions, and we confirmed this sys-
tematic investigation using a machine-learning approach that minimized the residual sum of squares between the experimental
and simulation velocity distributions. The experimental data were best recapitulated by a model in which the kinesin and dynein
stall forces are matched, the motor detachment rates are independent of load, and the kinesin-1 reattachment rate is 50 s�1.
These results provide new insights into motor dynamics during bidirectional transport and put forth hypotheses that can be
tested by future experiments.
SIGNIFICANCE Bidirectional transport of vesicles along microtubules is vital for cellular function, particularly in the highly
elongated axons and dendrites of neurons, and transport defects are linked to neurodegenerative diseases. For
developing future therapeutic strategies, a better understanding is needed for how motors, cargo adapters, and accessory
proteins coordinate their activities to transport cargo to their proper cellular locations. We approached this problem by
simulating how antagonistic kinesin and dynein motors compete in pairs. We constrain our simulations by recent
experimental results and conclude that the motors spend nearly all their time attached to the microtubule and competing
against one another. This behavior is not predicted by existing single-molecule experiments and thus provides new insights
into bidirectional transport.
INTRODUCTION

Kinesin and dynein motor proteins carry out anterograde
and retrograde transport in cells (1,2) and work together
to achieve long-distance bidirectional transport in neurons
(1,3–6). Coordinated transport is important for neuron
growth and function (7–9), and dysfunction can lead to
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neurodegenerative diseases such as amyotrophic lateral
sclerosis and Alzheimer’s disease (8,10,11). However, the
mechanisms through which kinesin and dynein cooperate
during cargo transport are unclear. Tracking of vesicles
and other cargo in cells can reveal the complex dynamics
of bidirectional transport (5,12–15), but this approach
does not allow direct observation of the motors involved,
and interpretations are complicated by the many regulatory
factors that control intracellular transport (9). Single-parti-
cle tracking and optical tweezer studies have uncovered
key details of the mechanisms by which individual motor
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proteins walk along microtubules (16–18), but apart from a
few exceptions (19–23), experiments involving antagonistic
motor pairs or teams are lacking. Computational simula-
tions provide a valuable tool to bridge the gap between sin-
gle-motor studies in vitro and cargo transport observations
in cells, and these approaches help to uncover aspects
of motor function that are difficult to observe through
experiments.

A number of stochastic stepping models have been devel-
oped to simulate microtubule-based transport by kinesin and
dynein motors (24–29). These models are parameterized
based on single-particle tracking and optical tweezer experi-
ments, and the simulation results can be used to investigate
the influence of specific motor parameters on the resulting
bidirectional transport directionality and speed. However,
one challenge is that bidirectional cargo trajectories are inher-
ently complex and involve both directional switching and
fluctuating velocities, making it difficult to quantitatively
compare simulations and experiments. A second challenge
is that simulation results are highly dependent on choices of
specific parameters that describe motor stepping and motor-
microtubule binding/unbinding kinetics, and in many cases,
these parameters are not tightly constrained by existing
experiments.

There have been several experimental developments over
the last few years that motivate the next generation of bidirec-
tional stepping models. The first is the appreciation that tradi-
tional single-bead optical tweezers create nonnegligible
vertical forces normal to the microtubule that can accelerate
the detachment of kinesin under load (30). This effect was
clearly demonstrated by the finding that, compared to the sin-
gle-bead assay, the kinesin-1 attachment duration at stall in-
creases substantially in a three-bead assay, where vertical
forces are eliminated (31). The second major development
is the finding that cytoplasmic dynein activated by cargo
adaptors such as BicD2, BicDR1, and Hook3 is highly proc-
essive and can generate forces in the range of kinesins
(32–39). A third important discovery was that activated
dynein complexes such as dynein-dynactin-BicD2 (DDB)
frequently switch between three motility states—processive,
paused, and diffusive—when engaged with a microtubule
(34,37,40). Computational simulations provide an important
tool to unravel how these different factors play into the bidi-
rectional transport achieved by pairs or teams of kinesin and
dynein motors.

The goal of the present work is to incorporate recent ki-
nesin and DDB experimental insights into a stochastic step-
ping model that recapitulates the bidirectional transport
behavior of single kinesin-1 and DDB motor pairs. Param-
eter sensitivity tests and an objective machine-learning
approach explored the influence of motor detachment/reat-
tachment dynamics and stall force parameters on the result-
ing bidirectional transport dynamics. The simulations were
tuned to match recent in vitro experiments that tracked the
dynamics of kinesin-DDB (Kin-DDB) pairs connected
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through complementary DNA hybridization. We found
that incorporating detachment and reattachment rates in-
ferred from published work resulted in directional switching
and fast plus- and minus-end velocities not observed in the
experiments. Instead, experimental data were best recapitu-
lated by a model that incorporated matched stall forces and
load-insensitive detachment for both kinesin-1 and DDB.
Thus, these simulations predict that motors working in
antagonistic pairs have different properties than motors in
isolation, and these properties enhance competition between
kinesin and dynein.
MATERIALS AND METHODS

Stochastic stepping algorithm

Kin-DDB bidirectional transport was simulated using an updated and modi-

fied version of a previously published model (27) consisting of one kinesin

and one dynein attached to a virtual cargo. At each time point, any attached

motor can step forward by 8 nm, step backward by 8 nm, or detach from the

microtubule; any detached motor can reattach to the microtubule. In the

DDB switching model, an attached DDB motor can also switch between

processive, diffusive, and stuck states. The decision for what event occurs

and the time of the transition is decided by time evolution of the system us-

ing the Gillespie stochastic simulation algorithm (41) as follows. For an

event with a first-order transition rate constant, k, the transition time is

generated as

t ¼ 1

k
ln
1

R
; (1)

where R is a uniformly distributed random number in the range 0 to 1. In a

system with N possible events, the rate of any event occurring equals the sum
of the rate constants for all possible events. Thus, at each time point, a two-

stage process (the ‘‘direct method’’ of Gillespie (41)) was used to determine

the time and identity of the next transition. First, a random number, R1, is

generated and used to compute the time to the next event, i, as follows:

t ¼ 1

PN
i ¼ 1

ki

ln
1

R1

: (2)

In the second stage, a new round of random number generation is used to

determine which of all possible events occurs; here, the probability of
any event occurring is proportional to its rate constant (27,41).

We split this stage into two steps with the goal of modularizing the code

and enabling expansion to multiple motors bound to the same cargo. We

define j ¼ 1,.M motors in the simulation (for our Kin-DDB simulations,

M ¼ 2). For each motor, j, there are i ¼ 1,.N possible transitions, where

N ¼ 4 in most cases for our model (forward step, backward step, attach-

ment, and detachment). In the first step, a uniformly distributed random

number, R2, is generated and used to choose which of theMmotors present

will make a transition (defined as the ‘‘active motor’’; Fig. S2), and in the

second step, a random number, R3, is used to choose which of the N possible

transitions for that motor will occur. Formally, using M motors, the proba-

bility of motor j, which has N possible transitions acting, is

Pj ¼
PN

i ¼ 1kijPM
j ¼ 1

PN
i ¼ 1kij

: (3)

From N possible events on motor j, the probability of event i with rate

constant kij occurring is
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Pij ¼ kijPN
i ¼ 1

kij

; (4)

where
PN

i¼ 1Pij ¼ PM
j¼ 1Pj ¼ 1. To identify the next event, the unit

interval is divided into segments corresponding to each possible transition:�
0;

k1jP
kij

�
;

�
k1jP
kij
;
k1jþk2jP

kij

�
;.;

�P
kðN� 1Þj � kNjP

kij
; 1

�
. A random number is then

used to determine which transition will occur. This method is repeated until

all motors detach from the microtubule or until a maximum run length or

run duration is reached.

In the simulations, force is defined as positive in the plus-end direction

and negative in the minus-end direction; thus, for kinesin-1, negative forces

are hindering loads and positive forces are assisting loads. The force, F,

applied to each motor is defined as the motor-cargo distance, Dx, multiplied

by stiffness of the motor, kmotor:

F ¼ kmotor � Dx: (5)

In our previous model (27), we used kkin ¼ 0.3 pN/nm and kDDB ¼ 0.065

pN/nm based on published work (42–44). For investigating the role of stiff-
ness in the present work, we simplified the model by incorporating an iden-

tical stiffness, kmotor ¼ 0.1068 pN/nm, for each motor, which sets the cargo

at the midpoint between two motors.

At every time point, the position of the virtual cargo is set by computing a

force balance between the twomotors when both motors are attached and by

setting it to the position of the attached motor if only one motor is attached.

Thus, following a motor step or detachment, the time for the system to reach

mechanical equilibrium is assumed to be negligible. This instantaneous force

balance can be justified by considering the relaxation time of the �30 nm

quantum dot attached to the Kin-DDB complex in the experiments. The

drag coefficient gQdot of a microsphere with radius rQdot ¼ 15 nm in an

aqueous solution (viscosity coefficient h ¼ 10�9 pN$s/nm2) is given by

Stokes’ law as gQdot ¼ 6phrQdot ¼ 2.8 � 10�7 pN$s/nm (45). Following a

motor step, we can calculate the characteristic relaxation time constant for

the particle to exponentially relax back to an equilibrium position as

t ¼ gQdot=kmotor , where kmotor ¼ 0.1068 pN/nm. This calculation yields a

3-ms relaxation time constant, which is negligible compared to the motor

stepping and attachment/detachment rates in the ms range or slower.
Kinesin-1 simulation parameters

The kinesin-1 stepping model incorporates a linear force-velocity relation-

ship with a constant backstepping rate, based on published optical tweezer

measurements (46,47). The kinesin unloaded velocity, v0 ¼ 515 nm/s

(Fig. S1 A), was determined by carrying out single-molecule total internal

reflection fluorescence experiments in the buffer used for the published

Kin-DDB experiments (30 mM HEPES, 1 mM EGTA, 50 mM K-acetate,

2mMMg-acetate, 10%glycerol, 1mMATP, 10mMTaxol, 0.2mg/mLcasein

[pH 7.4]) (34). Themotor velocity is equal to the net stepping rate multiplied

by the 8-nm step size, v ¼ ðkforward � kbackÞ� 8 nm. Under assisting loads,

themotor velocity is constant and equal to the unloaded velocity (46,47). Un-

der hindering loads, the velocity decreases linearly to zero at the stall force

(Fstall ¼ 8 pN), where the forward and backward stepping rates are equal,

and plateaus at a constant and load-independent backstepping rate, kback ,

of 3 s� 1 (46,47). Based on the measured unloaded velocity and the constant

backstepping rate, the unloaded forward stepping rate, k0forward is defined as

k0forward ¼ v0

8 nm
þ kback: (6)

Under hindering loads up to the limit where kforwardðFÞ ¼ 0 at F ¼
k0forward�Fstall

k0
forward

� kback
, the load-dependent forward stepping rate is
kforwardðFÞ ¼ k0forward �
�
k0forward � kback

�
�
� jFj
Fstall

�
: (7)

The kinesin-1 microtubule detachment rate, kdetachðFÞ, varied exponen-

tially with load (F):

kdetachðFÞ ¼ k0detach � e
jFj

Fdetach : (8)

Here, k0detach is the unloaded detachment rate, and the detachment force

parameter Fdetach ¼ kBT
d
, where kB is the Boltzmann constant, T is the abso-
lute temperature, and d is a distance parameter that defines the load sensi-

tivity of detachment. Based on Andreasson et al. (47), the unloaded

detachment rate, k0detach, and the detachment force parameter, Fdetach, were

set to 1.11 s� 1 and 6.83 pN under hindering loads and 7.4 s� 1 and 12.8

pN under assisting loads, respectively.
DDB simulation parameters

The DDB kinetic model is based on load-dependent velocity measurements

by Elshenawy et al. (33), with simplifications to enablemore straightforward

parameter sensitivity tests. The DDB step size in both directions was set to

8 nm, the stall force was set to 3.6 pN, and a constant and load-independent

backstepping rate, kback ¼ 15 s� 1, was included (33). The unloaded velocity

of DDB was set to 328 nm/s based on published control experiments carried

out in parallel with the Kin-DDB experiments (34). Under hindering loads

(which are positive for DDB), a linear DDB force-velocity curve was used,

similar to Eq. 7 for kinesin, up to the force at which kforwardðFÞ reached

zero. Under assisting loads (which are negative for DDB and occur only in

rare instances where DDB is positioned to the plus end of kinesin-1), the

load-dependent DDB velocity was taken from published work (33):

vðFÞ ¼ vmin �
h
1 � eðFstall �FÞ� d

kBT

i
: (9)

Here, vmin is the asymptotic velocity under super stall force, equal to

�201 nm/s, and d is the characteristic distance of 1.5 nm that defines the
load dependence of the stepping rate (33). In these assisting load cases,

the load-dependent forward stepping rate, kforwardðFÞ, was calculated as

kforwardðFÞ ¼ vðFÞ
8 nm

þ kback: (10)

The DDB detachment rate, kdetach, was modeled with an exponential

load dependence similar to kinesin (Eq. 8), with k0detach of 0.1 s�1 and

Fdetach of 3 pN, based on experimental work from Belyy et al. (32).
DDB state-switching model

In a subset of simulations, we incorporated DDB state switching based on

work from Feng et al. showing that DDB switches between processive,

diffusive, and stuck states during movement (34). To simulate this behavior,

three motility states for DDB were integrated into the model as follows. In

the processive state, DDB can move forward or backward or can detach; in

the stuck state, DDB cannot move or detach from the microtubule; and

in the diffusive state, DDB offers no resistance to kinesin movement and

can also detach from the microtubule. From every state, the motor can tran-

sition to either of the remaining states, with transition rates as follows:

the processive-to-stuck switching rate was 1 s� 1 with a reverse rate of

1.8 s� 1; the stuck-to-diffusive switching rate was 0.07 s� 1 with a reverse

rate of 0.33 s� 1; and the diffusive-to-processive switching rate was

3.9 s� 1 with a reverse rate of 0.23 s� 1 (34). In the state-switching model

simulations, these transitions were added to the stepping and attachment/

detachment transition possibilities for DDB. For the majority of the simu-

lations, this state switching was turned off.
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Data processing

After running the simulations, the rawdatawere processed tomatch the exper-

imental conditions (34) as follows. To match the 20-fps frame rate (34), the

cargo position was averaged over 50-ms windows. To account for uncer-

tainties infitting the experimental point spread function, a normallydistributed

errorwith an 8-nmstandard deviationwas added to cargoposition at each time

point. The instantaneous velocity at each time point was calculated by taking

three-point slope of positions 50 ms before and after each point.

The instantaneous velocity distributions from experiments and simula-

tions were fitted by a Gaussian mixture model. The MATLAB build-in

function ‘‘fitgmdist’’ was used to find different velocity peaks. Based on ki-

nesin and DDB control experimental results, we set the initial values for the

fitting as three normal distributions with means at �300, 0, and 500 nm/s.
Parameter optimization

As an alternate approach for parameter identification, we used a Bayesian

optimization method for minimizing the residual sum of squares (RSS) be-

tween the experimental and model instantaneous velocity distributions. The

instantaneous velocity probability density functions (PDF) from �2000 to

2000 nm/s with 10 nm/s bin widths were calculated for both experimental

data and simulation results, where Pi is the probability density function of

instantaneous velocity i. For each parameter set, a velocity probability den-

sity function was generated from 1000 trajectories having a maximal run

time of 50 s. The MATLAB function ‘‘bayesopt’’ was used with 100 itera-

tions to identify parameter sets that minimized the RSS function:

RSS ¼
X
i

�
PExp
i � Pmodel

i

�2
: (11)

RESULTS

Formulation of bidirectional stepping model

In recently published experiments, we reconstituted bi-
directional cargo transport in vitro by connecting a truncated
kinesin motor to an activated DDB complex through com-
plementary single-stranded DNA oligonucleotides (34). A
quantum dot was then linked to a biotin on one end of the
DNA (Fig. 1 A), and the position of the fluorescent cargo
was tracked via total internal reflection fluorescence micro-
scopy at 20 fps. Consistent with previous work (33), the re-
sulting complexes moved slowly for long durations along
immobilized microtubules, with some complexes moving
net plus end and others moving net minus end (Fig. 1 C)
(34). To better understand the kinesin and dynein motor dy-
namics underlying this bidirectional transport, we adapted
a previously published Kin-DDB transport bidirectional
transport model, carried out simulations, and compared pre-
dictions from the simulations to the new experimental data.
The model uses the Gillespie stochastic simulation algo-
rithm (41), as described in the materials and methods and
our previous publication (27). At every time point, either
motor can step forward, step backward, or detach from or
reattach to the microtubule, with the probability of each
transition being proportional to its first-order rate constant
(Fig. 1 B; diagram of the algorithm is given in Fig. S2).
The simulated cargo has neither mass or drag, and its posi-
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tion is updated following every step to maintain force bal-
ance. The parameters for this ‘‘basic’’ model are shown in
Table 1.
Comparing bidirectional stepping simulations to
experimental data

We next simulated bidirectional stepping of a complex con-
taining one kinesin-1 and one DDB motor to determine the
degree to which the simulations can recapitulate the experi-
mental results (Fig. 1 C). The mean velocities of trajectories
from the simulations (�4.4 5 115 nm/s mean and standard
deviation; N¼ 1000) were similar to the experimental veloc-
ities (�8.25 47 nm/s mean and standard deviation;N¼ 30).
However, the simulated trajectories contain fluctuations and
directional switching not seen in the experiments (Fig. 1, C
and D). One explanation for the larger fluctuations in the
simulated traces is that experimental temporal and spatial
resolution limits are obscuring fluctuations in the experi-
mental data. Therefore, to enable a more accurate compari-
son between experiments and simulations, we added
simulated experimental noise and reduced the temporal res-
olution to the simulations, as follows. From the quantum
dot tracking experiments (34), we determined the experi-
mental error in the Gaussian fits to the point-spread function
data to be 8 nm; thus, we added a normally distributed noise
term with a standard deviation of 8 nm to each point in the
simulation. Second, we binned the simulated data to 50 ms
to match the 20-per-s frame rate of the experiments.

To better compare the fluctuations in the traces resulting
from motor stepping dynamics, we examined 5-s segments
of experimental and simulated traces. Despite the downsam-
pling, larger and more frequent fluctuations can be seen by
eye in the simulated traces compared with the experimental
traces (Fig. 2, A and B). A mean-square displacement anal-
ysis quantitatively confirmed this: simulated traces had an
apparent diffusion coefficient of 11,800 nm2=s compared
with 996 nm2=s for the experiments (Fig. S1 B). To better
compare the experimental and simulated velocities, we
calculated the instantaneous velocities over 100-ms time
windows for both the experimental and simulation results
and plotted the instantaneous velocity distributions (Fig. 2
C). The experimental instantaneous velocity distribution
had a prominent single peak centered at �12 nm/s, and
95% of the distribution was between �394 and 371 nm/s.
In contrast, the simulated instantaneous velocity distribution
had a distinct central peak that was right shifted compared to
the experiments, along with distinct side peaks correspond-
ing to the unloaded velocities of DDB and kinesin-1. Using
a Gaussian mixture model, the velocity distribution was fit
well by three normal distributions: a peak centered at
127 nm/s that accounted for 53% of the population, a minor
peak at �334 nm/s that accounted for 41% of the popula-
tion, and another minor peak centered at 587 nm/s that ac-
counted for 6% of the population (Table 2). The motor



FIGURE 1 (A) Schematic of Kin-DDB bidirec-

tional transport tracking experiment in which mo-

tors are connected together by a complementary

single-stranded DNA and attached to a quantum

dot for visualization by fluorescence microscopy

(34). (B) Stochastic model of Kin-DDB bidirec-

tional transport showing the different rate constants

incorporated into the simulations. (C) Example in-

dividual distance versus time traces of experi-

mental data from published work by Feng et al.

(34). (D) Simulation traces from the basic model.

Kinesin and DDB images adapted from PDB:

6A1Z and 3VKH (48–50).
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reattachment rate in our simulations was 5 s�1 based on pub-
lished experimental data for kinesin-1 (51–53), and because
equivalent experimental data are not available for dynein,
we chose the same value for the DDB complex (Table 1).
This relatively slow reattachment rate means that when
either motor detaches from the microtubule, it will take,
on average, 200 ms to reattach, giving the other motor
time to move at its unloaded velocity. Thus, these lateral
peaks in the simulated velocity distribution can be explained
by the simulations having more periods when only one mo-
tor is attached than the experiments do, and their positions
are close to the unloaded kinesin and DDB velocities.

To better understand the underlying motor dynamics that
lead to the experimental Kin-DDB traces being relatively
smooth and the velocity distribution having a single peak
centered around zero, we investigated how the modeled prop-
erties of kinesin-1 and DDB contribute to the distinctive
instantaneous velocity distribution of our basic model
TABLE 1 Parameters used for the initial basic model and the final

Parameter

Basic model Best-fit model

Kinesin-1 DDB Kinesin-1 DD

Unloaded velocity (nm/s) 515 328 515 32

Backstepping rate (s� 1) 3 15 3 1

Stall force (pN) 8 3.6 6 6

Unloaded detachment

rate (s� 1)a
1.11 0.1 1.11 0

Detachment force (pN)a 6.8 3 ideal id

Reattachment rate (s� 1) 5 5 50 5

Stiffness (pN/nm) 0.1068 0.1068 0.2 0

Parameters for the better-fit model are given in Table S1.
aFor kinesin under assisting loads, the unloaded detachment rate extrapolation w

under assisting loads, the unloaded detachment rate and the detachment force w

detachment) corresponds to Fdetach equal to infinity.
described above. We hypothesize that there are properties
of kinesin-1 and/or DDB motors that differ when the motors
are joined in a two-motor complex compared with when they
are in their isolated states in the single-molecule fluorescence
and optical trapping experiments used to develop the basic
model. To test this overarching hypothesis, we varied motor
parameters and quantified the change in performance, with
the goal of reducing the magnitude of the fast plus- and
minus-end velocity peaks in the instantaneous velocity histo-
gram (Fig. 2 C) to better match the experimental results.
Testing the influence of dynein motor properties
on bidirectional transport

The first hypothesis we tested was that the simulations differ
from the experiments because the motile properties of DDB
in a bidirectionally moving Kin-DDB complex differ from
the DDB properties measured in single-motor optical
best-fit model

ReferenceB

8 Feng et al. (34), Fig. S1 A

Elshenawy et al. and Andreasson et al. (33,46)

Kunwar et al.. Elshenawy et al., and Andreasson et al. (29,33,46)

.1 Belyy et al.. McKenney et al., Schlager et al., and Andreasson

et al. (32,37,40,47)

eal Belyy et al., McKenney et al., Schlager et al., and Andreasson

et al. (32,37,40,47)

Feng et al. (51)

.2 Coppin et al., Bruno et al., and Oiwa and Sakakibara (42–44)

as 7.4 s� 1 and the detachment force was 12.8 pN, based on (47). For DDB

ere identical to the hindering load condition. Ideal bond (load-independent
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FIGURE 2 Comparison between simulation re-

sults and experimental data from Feng et al. (34).

(A and B) Example individual distance versus

time traces over a 5-s window, showing that simu-

lation traces contain more fluctuations than the

experimental traces. Model traces were down-

sampled to 20 Hz, and positional noise was added

to more accurately match experimental conditions.

(C) Instantaneous velocity distribution (averaged

over 100-ms windows with 10 nm/s bin width),

showing three peaks in the simulation results

(red, N ¼ 1000 traces) but only a single central

peak in the experimental distribution (blue, N ¼
30 traces). Parameters for Gaussian mixture model

fit are given in Table 1.
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tweezer experiments. To test this possibility, we first inves-
tigated whether either including experimentally observed
pausing and diffusive states of the DDB complex could bet-
ter align the simulations with the experiments. In virtually
all published unloaded single-molecule studies, DDB ex-
hibits long processive runs but also undergoes episodes of
1D diffusion along the microtubule and spends a significant
fraction of the time stuck to the microtubule in an immobi-
lized state (32,34,37,38). Feng et al. found that DDB spent
65% of the time in a processive state, 31% of the time in
a stuck state, and 4% of the time in a diffusive state, and
they also quantified the switching rates between states
(34). We incorporated this DDB switching behavior as a se-
ries of transitions into our model. We assumed that the diffu-
sive state of DDB offered no resistance to kinesin stepping
and that, in the stuck state, DDB neither moved nor detached
TABLE 2 Gaussian mixture model fits to instantaneous

velocity distributions

Experiments Basic model Best-fit model

Central peak, nm/s (%) �18 (65) 127 (53) �8 (93)

Plus-end peak, nm/s (%) 98 (23) 587 (6) 452 (0.5)

Minus-end peak, nm/s (%) �204 (11) �334 (41) �319 (6.5)

Residual sum of

squares (RSS)

– 3.93 � 10�5 2.76 � 10�6

Experimental data from Feng et al. (34) include N ¼ 30 traces, and basic

and best-fit models both include N ¼ 1000 traces. Percentages are the rela-

tive integrated weights of each mode. Fits used the ‘‘fitgmdist’’ function in

MATLAB with three Gaussians having initial values of 0, 500, and

�300 nm/s. RSS values denote the residual sum of squares between the

probability density functions each model and the experimental data.
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from the microtubule. In the instantaneous velocity distribu-
tion, incorporating this DDB switching behavior caused a
decrease in the magnitude of the unloaded DDB velocity
peak but had no effect on the unloaded kinesin velocity
peak (Fig. 3 A). The fall in the unloaded DDB peak can
be explained by DDB spending time in the stuck state
instead of processive walking. The lack of change in the un-
loaded kinesin peak is likely due to the fact that DDB is in
the diffusive state only a small fraction of the time (Fig. 3
A). Thus, DDB state switching cannot account for the
discrepancy between the model and experimental results.
Due to this lack of an effect, all subsequent simulations
used only a single processive state for DDB.

The second property we examined was the load-depen-
dent detachment dynamics of DDB. There is abundant evi-
dence in the literature that dynein alone has catch-bond
behavior, meaning that the detachment rate slows down
with increasing load (26,29,54–57). There is no experi-
mental evidence to our knowledge that activated dynein in
a DDB complex shows catch-bond behavior; however,
only one published study directly addresses this question
(33). Thus, we investigated whether the simulated bidirec-
tional behavior is shaped by the load-dependent detachment
kinetics of DDB by using an exponential dependence of the
off-rate on load (materials and methods; Equation 8). In this
formulation, a positive detachment force parameter (Fdetach)
corresponds to a slip bond, a negative value corresponds to a
catch bond, and a value of infinity corresponds to an ideal
bond. We found that slowing the unloaded detachment
rate (k0detach) or increasing the detachment force (Fdetach)



FIGURE 3 Effect of changing DDB parameters

on the instantaneous velocity distribution. (A) Ef-

fect of incorporating switching between processive,

diffusive, and stuck states for DDB. Arrows denote

the small changes in the central velocity peak

and the minus-end side peak. (B) Effect of chang-

ing the DDB unloaded detachment rate, with arrow

highlighting the resulting changes in the plus-end

side peak. (C) Effect of changing the DDB detach-

ment force, where larger Fdetach denotes less load

sensitivity of detachment. (D) Effect of increasing

the DDB stall force, with arrow denoting leftward

shift of the central peak with increasing stall force.
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decreased the peak corresponding to the unloaded kinesin-1
velocity, bringing the distribution more in line with the
experimental (Fig. 3, B and C). When an ideal bond was
simulated by setting Fdetach to infinity, the instantaneous ve-
locity distribution was indistinguishable from that for
Fdetach ¼ 15 pN (Fig. S3 A). Setting Fdetach to �3 pN, corre-
sponding to a catch bond, resulted in no change from the
ideal-bond model (Fig. S3 A).

The third property we examined was the DDB stall force,
Fstall. In the literature, stall forces for isolated dynein were
measured to be 1 pN by a number of labs (29), but activated
dynein in a DDB complex was later shown to have a stall
force of 3.6 pN (33). In our basic model, the kinesin stall
force is twice that of DDB (Table 1), and the central peak
in the instantaneous velocity distribution is shifted toward
the plus end by nearly 150 nm/s relative to the experimental
peak (Table 2; Fig. 2 C); thus, it is reasonable to expect
that bringing the stall forces more into alignment should
shift the central peak. We found this to be the case (Fig. 3
D)—increasing the DDB stall force to 6 pN shifted the cen-
tral peak leftward, and increasing it to 8 pN to match the ki-
nesin stall force brought the central peak nearly into
alignment with the experimental peak. As a final investiga-
tion, we examined the sensitivity of the simulations to
the DDB reattachment rate by increasing kattach from 5 to
50 s�1. This modification had virtually no effect on the
simulated velocity distribution (Fig. S3 B). This lack of an
effect likely stems from the slow DDB unloaded detachment
rate of 0.1 s�1—because DDB detachments are relatively
infrequent, the unbound episodes are rare, and shortening
their duration has little effect.
To summarize the DDB parameter investigations, re-
moving the load dependence of DDB detachment by
modeling DDB as an ideal bond nearly eliminated the kine-
sin peak in the instantaneous velocity distribution, and
increasing the DDB stall force shifted the central velocity
peak leftward, closer to the experimental peak. In contrast,
incorporating a switching model for DDB or increasing
the DDB reattachment rate had only minimal effects on
the velocity distribution. Next, to explore other modifica-
tions of the model that could diminish the DDB velocity
peak, we examined the sensitivity of the model simulations
to changes in the kinesin detachment and reattachment rates.
Testing the influence of kinesin-1 motor
properties on bidirectional transport

The second hypothesis we tested was that the discrepancy be-
tween simulations and experiments is due to differences in
the motor properties of kinesin when operating in an antago-
nistic motor pair compared to single-bead optical tweezer ex-
periments with isolated kinesin motors. These differences
could be due to, for instance, the different geometries of be-
ing attached to a trapped bead versus being tightly connected
to dynein through a short DNA (31,58,59), and they could in
principle affect both motor on and off rates. The first inves-
tigation was to determine whether decreasing the detachment
rate of kinesin by reducing k0detach or increasing Fdetach

reduced the magnitude of the DDB velocity peak in the
instantaneous velocity distribution. Decreasing k0detach for
kinesin-1 substantially decreased the magnitude of the un-
loaded DDB velocity peak and increased the magnitude of
Biophysical Journal 122, 3299–3313, August 22, 2023 3305
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the central peak, although it also increased the unloaded ki-
nesin velocity peak (Fig. 4 A). Increasing Fdetach to reduce
the sensitivity of detachment to load had a similar effect
but to a lesser degree (Fig. 4 B), with the effect plateauing
around an Fdetach value of 35 pN. Thus, decreasing the kine-
sin detachment rate diminished the minus-end velocity peak,
bringing the simulations closer to the experimental results,
but neither of these changes had a significant effect on the un-
loaded kinesin peak.

The other way to decrease the fraction of the time that
Kin-DDB complexes are moving solely by DDB is to in-
crease the kinesin-1 reattachment rate. In the basic model,
we set a constant reattachment rate, kreattach, of 5 s�1 for
both motors, based on the literature (28,53). To determine
whether the kinesin-1 reattachment rates were contributing
to the simulation-experiment mismatch, we tested several
larger values of kreattach for each motor. In contrast to
DDB, where altering the reattachment rate had little effect
(Fig. 3 D), increasing kreattach for kinesin-1 both strongly
diminished the fraction of time that the complex moves at
the unloaded DDB speed and increased the fraction of
time that both motors are engaged, resulting in an enhanced
cargo velocity peak near zero (Fig. 4 C).

The final kinesin parameter we investigated was the kine-
sin stall force, Fstall. In our basic model, the kinesin-1 stall
force was set to 8 pN and the DDB stall force was set to
3.8 pN based on published optical tweezer experiments
(33,46,47). Because of this discrepancy, it is perhaps not
surprising that when both motors are engaged, the kinesin
directionality dominates. Thus, we investigated kinesin stall
forces between 4 and 8 pN, which are in the range of pub-
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lished studies (29,46,60–64), and found that weaker kinesin
stall forces cause the central velocity peak to shift closer to
zero, better matching the experiments (Fig. 4 D).

In summary, a major discrepancy between the experi-
mental and simulated velocity distributions is the peak in
the simulations near the unloaded DDB velocity. We found
that this minus-end velocity peak could be diminished by
decreasing the kinesin-1 unloaded detachment rate or the
sensitivity of detachment to load, or by increasing
the kinesin-1 reattachment rate. Additionally, decreasing
the kinesin-1 stall force resulted in a leftward shift of the
dominant peak in the velocity distribution, bringing the sim-
ulations in better alignment with experiments.
Tuning parameters in an improved bidirectional
transport model

The simulation results to this point showed that altering mo-
tor attachment and detachment rates can decrease the weight
of the instantaneous velocity distribution corresponding to
the two unloaded motor velocities and that bringing the ki-
nesin and DDB stall forces into closer alignment can shift
the location of the central peak. Informed by these single
parameter adjustments, we next formulated an updated
model that incorporated multiple parameter adjustments,
with the goal of more closely matching the simulated and
experimental instantaneous velocity distributions. We chose
not to modify the k0detach parameter for either kinesin-1 or
DDB because single-molecule total internal reflection fluo-
rescence measurements from many labs have consistently
measured unloaded detachment rates (equal to velocity
FIGURE 4 Effect of changing kinesin-1 parame-

ters on the instantaneous velocity distribution. (A)

Effect of decreasing the unloaded kinesin-1 detach-

ment rate was to diminish the minus-end velocity

peak and increase the central peak. (B) Effect of

increasing the kinesin-1 detachment force param-

eter was to moderately diminish the minus-end ve-

locity peak. (C) Effect of increasing the kinesin-1

reattachment rate was to diminish the minus-end

velocity peak. (D) Effect of decreasing the kine-

sin-1 stall force was to shift the central velocity

peak leftward to better match the experimental

data.



Modeling bidirectional transport
divided by run length) near 1 s�1 for kinesin-1 and 0.1 s�1

for DDB (29,40,46,47). Our adjustments to kinesin-1 were
guided by recent work by Pyrpassopoulos et al. (58), who
showed that kinesin-1 KIF5B under purely horizontal loads,
achieved through a three-bead optical tweezer geometry, has
a �6-pN stall force, a 1.1-s engaged duration (matching the
unloaded run duration) (58), and a component of its reat-
tachment rate at 100 s�1 (31,58). Thus, we set the
kinesin-1 stall force to 6 pN and applied an ideal-bond
detachment model by setting kdetachðFÞ ¼ k0detach. We also
increased the kinesin-1 reattachment rate to 50 s�1; a 100
rate s�1 was not used because there was little improvement
beyond 50 s�1 and because, in the experiments, there were
components slower than 100 s�1 (58). There is no compara-
ble three-bead study for DDB, but we hypothesize that
removing the vertical force component may have similar ef-
fects on dynein. Thus, we also incorporated a load-indepen-
dent detachment rate (ideal bond) for DDB.

The parameter adjustments were incorporated into an up-
graded model that we named the ‘‘better-fit’’ model
(Table S2). Simulations showed that in the better-fit model,
the plus-end side peak was eliminated, the minus-end side
peak was diminished, and the central peak was substantially
enhanced but was still right shifted compared to the exper-
imental data (Fig. 5 A). Starting from this improved model,
we tested further parameter adjustments, with the goal of
shifting the central velocity peak to the left and eliminating
the minus-end side peak. We first tested the DDB stall force
and found that increasing it to 6 pN to match that of
kinesin-1 substantially shifted the main peak leftward.
Next, we varied the DDB backward stepping rate and found
that decreasing it to 3 or 1 s�1 also substantially shifted the
main peak leftward (Figs. 5 C and S3 C).

The final property we tested was the motor stiffness, which
affects how rapidly motors ramp up their force as they step in
opposite directions. We found that increasing motor stiffness
eliminated the fastest minus-end velocities in the distribution
and that this weight was shifted to the central peak, bringing
it closer to the height of the experimental peak (Figs. 5 D and
S3 D). Upon closer examination, we surmised that this shift
results from eliminating a ‘‘recoil effect’’ occurring at lower
stiffness values in which the kinesin detaches and the cargo
rapidly moves toward the minus end to become centered
on the engaged DDB motor. A 6-pN force is expected to
stretch the spring that connects each motor to its cargo by
60 nm. A recoil of this magnitude over the 0.1-s window
used for the velocity distributions corresponds to a
�600 nm/s velocity, and this is the component that is elimi-
nated when motor stiffness is increased (Fig. 5 D). In sum-
mary, in the better-fit model, either increasing the DDB
stall force or decreasing the DDB backstepping rate shifted
the central velocity peak leftward to better align with the
experimental distribution, and increasing the motor stiffness
eliminated the remaining minus-end velocity side peak.
Using machine learning for parameter sensitivity
exploration and optimization

Having narrowed the parameter choices by iterative tuning,
we next applied an automated parameter optimization
FIGURE 5 Results from better-fit model. (A)

Comparison between basic and better-fit models.

The better-fit model includes load-independent

detachment kinetic for both motors, a 6-pN stall

force for both motors, and a 50-s�1 reattachment

rate for kinesin. Arrows denote the three velocity

peaks that are altered. (B) Effect of altering the

DDB stall force showed the leftward shift for larger

stall forces. (C) Effect of decreasing the DDB back-

stepping rate is to shift the central velocity peak

leftward. (D) Effect of increasing the motor stiff-

ness was to eliminate the small minus-end velocity

side peak that results from a motor recoil effect at

lower stiffness values.
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method to identify parameter sets that best match the sim-
ulations to the experimental velocity distributions. To do
this, we used the MATLAB Bayesian optimization function
‘‘bayesopt,’’ which identifies an optimal parameter set
based on an objective function. We defined the objective
function as the RSS between the experimental and simula-
tion velocity distributions, and we defined upper and lower
search bounds for each parameter (Table 3). In the first
round, we allowed seven parameters to be optimized: the
detachment forces and reattachment rates for both motors,
along with the motor stiffness, DDB stall force, and DDB
backstepping rate. Because of the interdependency of the
parameters, we found that repeated optimization runs
achieved similar RSS values using different parameter
sets. Hence, in Table 3, we report the range of optimal
parameter values for 10 independent optimization runs,
with large ranges connoting parameters that either covary
with other parameters or that do not strongly affect the final
velocity distribution and narrow ranges connoting parame-
ters that most strongly determine model performance. As a
final step, we fixed the detachment forces and reattachment
rates and performed a second round of optimization on the
remaining DDB stall force, DDB backstepping rate, and
motor stiffness parameters. The results of this final optimi-
zation were similar to the first, but the optimal ranges were
narrowed (Table 3).

The parameter optimization results can be summarized
as follows. First, the optimal detachment forces for both
motors were relatively high, consistent with the ideal-
bond model we implemented in our better-fit model. There-
fore, in our final ‘‘best-fit’’ model, we set detachment to be
independent of load for both motors. Second, consistent
with the better-fit model, the kinesin reattachment rate
converged in a range around 50 s�1 for kinesin and around
5 s�1 or slower for DDB. Thus, we chose those values for
the reattachment rates. Third, the DDB stall force
converged near the 6-pN stall force of kinesin-1, support-
ing the observation in Fig. 5 B that matching the stall
forces helps to align the central velocity peak with the ex-
periments. Fourth, the DDB backstepping rate converged in
a range of 1–5 s�1. This rate is slower than the experi-
TABLE 3 Motor parameters estimated by MATLAB ‘‘bayesopt’’ par

parameter

Parameter Limits Seven

Kinesin-1 detachment force 0.01–50 pN 1

DDB detachment force 0.01–50 pN

Kinesin-1 reattachment rate 0.01–100 s�1 3

DDB reattachment rate 0.01–100 s�1 0

DDB stall force 0.01–6 pN

DDB backstepping rate 1–20 s�1

Motor stiffness 0.01–0.3 pN/nm 0.2

Parameter ranges from 10 independent optimization runs are shown. From the s

three remaining parameters were then optimized. Final values refer to paramete
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mental 15 s�1 (33) and reiterates the finding in Fig. 5 C
that slowing DDB backstepping shifts the central velocity
peak leftward. Based on the optimal fit with the reduced
parameter set, we set the DDB backstepping rate to 1 s�1

(see discussion). Finally, the motor stiffness converged at
0.2 pN/nm, consistent with our finding that a minimum
stiffnesses in this range is needed to avoid the recoil phe-
nomenon that contributes unwanted minus-end velocities.
The final parameter choices that were used for the best-
fit model are shown in Table 3, and the entire best-fit
parameter set is provided in Table 1.

Having identified a final parameter set, we characterized
the resulting traces and quantified the fit to the experi-
mental data. The displacement versus time traces for
the best-fit model were smoother by eye than the basic
model (compare Figs. 6 A and S4 A to Figs. 2 B and
1 D) and similar to the experimental data (Fig. 2 A). Using
a mean-squared displacement analysis, the apparent diffu-
sion coefficient dropped from 11,800 nm2s� 1 in the basic
model to 1272 nm2s�1 in the best-fit model, which was
close to the 996 nm2s� 1 for the experimental data
(Fig. S1 B). More importantly, in the instantaneous veloc-
ity distribution (Fig. 6 B), the unloaded velocity peaks,
which were a significant discrepancy in the basic model,
were nearly eliminated, and the central peak was shifted
to near zero to match the experimental data. One metric
of this agreement is that in the best-fit model, 95%
of instantaneous velocity values fall between �349
and þ299 nm/s, similar to the �394 to þ371 nm/s range
for the experimental data. Fitting the best-fit velocity dis-
tribution to a Gaussian mixture model identified a central
peak centered at �8 nm/s and comprising 93% of weight,
along with two side peaks centered at 452 and �318 nm/s,
comprising 0.5% and 6.5% of the weight, respectively
(Table 2). Finally, the RSS between experimental and
simulation data dropped from 3.93 � 10�5 in the basic
model to 2.76 � 10�6 in best-fit model (Table 2). Other
features were also improved; for instance, the simulated
traces for the best fit model also had longer durations,
more closely matching experiments (Fig. S4). Also,
for the best-fit model, the distribution of velocities
ameter optimization function using the limits shown for each

Optimized parameter Values

Final value-parameter fit Three-parameter fit

7–49 pN ideal bond ideal bond

5–49 pN ideal bond ideal bond

0–96 s�1 50 s�1 50 s�1

.3–86 s�1 5 s�1 5 s�1

5.7–6 pN 5.9–6 pN 6 pN

1–6 s�1 1–4 s�1 1 s�1

–0.3 pN/nm 0.18–0.22 pN/nm 0.2 pN/nm

even-parameter fit, four parameters were fixed at the values shown, and the

r values chosen for the best-fit model.



FIGURE 6 Results from best-fit model. (A)

Example traces from best-fit model. (B) Compari-

son of instantaneous velocity distributions between

experimental data (blue), basic model (red) and

best-fit model (black). (C) Comparison of trace ve-

locity distributions for experimental data (blue),

basic model (red), and best-fit model (black). (D)

Diagram of the best-fit model for Kin-DDB bidi-

rectional transport, highlighting parameter choices

that resulted in optimal alignment with experi-

mental data. The detachment rates of DDB and ki-

nesin are independent of load (ideal bond), and

kinesin-1 reattaches to microtubule with a fast

rate (50 s� 1). These features maximize the fraction

of time both motors are engaged and pulling

against one another. Matching the kinesin and

DDB stall forces (data not shown) shifted the cen-

tral velocity peak close to zero to match the exper-

imental data.
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computed over each trace matched the experimental
values (Fig. 6 C).
DISCUSSION

Transport of vesicles in axons and dendrites involves vary-
ing numbers and types of motors, as well as regulation at
multiple levels. Hence, to understand how kinesin and
dynein motors attached to the same cargo compete and co-
ordinate during transport, the field has turned to reconstitut-
ing the in vitro motility of pairs of kinesin and activated
dynein (1,7,38,53,65). This approach allows an examination
of how differing mechanochemical properties of specific
motor isotypes translate into effective movement against
an antagonistic partner. Consistent behavior of kinesin-
dynein pairs that are observed across different labs
(20,32–34) include the following: 1) Kin-DDB complexes
remain bound to microtubules for �tens of seconds
(33,34), considerably longer than kinesin-1 or DDB alone;
2) trajectories include episodes, lasting from seconds to
tens of seconds, where the velocity of the complex is
�10-fold slower than the unloaded velocities of the respec-
tive motors; and 3) cargo trajectories are quite smooth and
show few if any directional switches. In principle, it should
be possible to recapitulate these motility behaviors using
Kin-DDB simulations that incorporate established parame-
ters for kinesin and dynein behavior in isolation. However,
we find this not to be the case. Instead, simulations of
Kin-DDB transport in our basic model show frequent direc-
tional switches and significant proportions of time when the
complexes move at the unloaded velocity of the motors
(Fig. 2 B). The discrepancies between the simulations and
the experiments were clearly seen by comparing the instan-
taneous velocity distributions (Fig. 2 C). The experimental
data were centered in a wide peak around zero velocity,
whereas the simulated data had additional peaks corre-
sponding to the unloaded kinesin-1 and DDB velocities,
along with a central peak centered around a slow plus-end
speed. Thus, we focused our in silico experiments on iden-
tifying parameter adjustments that reconciled the simula-
tions with the experiments.

The first modification that helped to align the simulation
results with the experiments was to make the kinesin
detachment rate independent of load in the range of
the stall forces used. Although single-bead optical tweezer
experiments have found that kinesin detachment rates in-
crease exponentially with force (58,59,66), recent theoret-
ical and experimental work has suggested that forces
perpendicular to the microtubule inherent to the geometry
of these experiments may be contributing to the detach-
ment rate. In support of this, experiments using a three-
bead assay that almost fully eliminate these vertical forces
found that the kinesin-1 detachment rate was approxi-
mately independent of load (58). Incorporating this ideal
bond for kinesin into our model strongly diminished the
minus-end side peak in the velocity distribution; thus, our
simulations support the hypothesis that, against forces
oriented purely parallel to the microtubule, the kinesin
detachment is independent of load. We also examined a
catch-bond model for kinesin and found a further increase
in the amplitude of the central velocity peak with
increasing catch-bond properties (Fig. S5). Thus, our re-
sults are consistent with possibility that kinesin has
catch-bond behavior under some circumstances, but an
Biophysical Journal 122, 3299–3313, August 22, 2023 3309
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ideal bond for kinesin was sufficient in our simulations to
match the experimental data.

We also found that incorporating a load-independent
detachment rate for DDB diminished the fast plus-end ve-
locities seen in the simulations, better matching the experi-
mental data. This result can be understood simply as DDB
remaining bound to the microtubule against the pulling
forces of kinesin, thus preventing durations in which DDB
is detached and kinesin is moving at its unloaded speed. A
DDB ideal-bond model is supported by experiments with
activator-free dynein and with isolated vesicles, which
found evidence that dynein has catch-bond behavior under
some conditions (29,57), though we note that a DDB optical
trapping study by Elshenawy et al. found an exponential
dependence of DDB detachment on load (33). However, it
remains a possibility that, as has been shown for kinesin-1
(30,33,59), vertical forces inherent to the single-bead optical
trapping assay may contribute to detachment of DDB. Thus,
our simulations put forth the testable hypothesis that, when
pulling exclusively against hindering loads oriented parallel
to the microtubule, DDB detachment is independent of load
over the forces generated by a single kinesin motor. As with
kinesin, our results were also consistent with DDB catch-
bond behavior (Fig. S3 A), but an ideal bond was sufficient
to match the simulations to the experiments.

Incorporating a fast kinesin-1 reattachment rate was
another important modification that helped to bring the sim-
ulations into alignment with the experimental data. In
particular, the fast kinesin-1 reattachment rate diminished
the minus-end velocity side peak, which can be understood
as minimizing the time that DDB moves at its unloaded ve-
locity. Our basic model used a kreattach value of 5 s

�1, which
was initially determined in a study that measured motor-
driven deformations of giant unilamellar vesicles (53),
was later supported by experiments that used DNA to con-
nect two kinesins (51) and which has been employed in a
number of modeling studies (e.g., (28)). However, three
recent optical tweezer studies found that against hindering
loads, kinesin-1 can slip backward in multiple 8-nm inter-
vals and rapidly reengage with the microtubule at rates
consistent with our 50-s�1 reattachment rate (58,67,68).
These experiments suggest that against a hindering load ori-
ented parallel to the microtubule, kinesin-1 enters a weak-
binding state in which it slips backward and then rapidly
reestablishes a strong-binding state. We also note that this
50-s�1 reattachment rate is still below the 125-s�1 reattach-
ment rate predicted from multiplying the bimolecular on
rate of kinesin in solution by the effective tubulin concentra-
tion when two motors are connected through a DNA linker
(51). Thus, our simulations put forth the testable hypothesis
that when pulling against hindering loads oriented parallel
to the microtubule, the kinesin-1 reattachment rate is
50 s�1 or faster. A possible mechanism to explain this phe-
nomenon is that if a kinesin slips or detaches against a load
oriented parallel to the microtubule, the motor is presented
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with multiple sites of reattachment as it slides backward.
Further, it is possible that if the motor reattaches against a
hindering load, the force enhances the rate of ADP release,
which maximizes the probability that the motor enters a
strongly bound state and restarts its walking cycle.

The model adjustment that most influenced the position
of the central peak in the instantaneous velocity distribution
was altering the relative stall forces of DDB and kinesin-1,
highlighting that the antagonistic motors rapidly establish a
‘‘draw’’ where each is pulling at near its maximum force.
The paired modification of reducing the kinesin-1 stall force
from 8 down to 6 pN and increasing the DDB stall force
from 3.6 up to 6 pN shifted the central peak leftward
by roughly �140 nm/s to match the experimental peak
(Fig. 6 B). A large body of experiments support a
kinesin-1 stall force in the range of 6 pN (29,46,60–64),
justifying this modification. For DDB, one justification for
increasing the stall force is that the lower value we started
with was taken from a study using single-bead tweezer ge-
ometry (33), and it is possible that in the geometry of these
DDB-kinesin pairs, where forces are oriented solely parallel
to the microtubule, the DDB stall forces are closer to the
�6 pN of kinesin-1 (Fig. 3 D). Related to the stall force,
we also found that slowing the DDB backstepping rate
shifted the central velocity peak leftward. This shift makes
sense in cases where the kinesin stall force is greater than
the DDB stall force, meaning that DDB is under superstall
forces and stepping backward at 15 s�1 (Fig. 5 C and
S3 C). However, we note that when stall forces were
matched, the DDB backstepping rate did not have a strong
effect on the velocity distribution (Fig. S6). Hence, although
single-bead optical tweezer experiments measured a DDB
backstepping rate of 15 s�1 (33), our simulations put for-
ward the testable hypothesis that the DDB backstepping
rate may be smaller in the absence of any vertical forces.

Another model adjustment that had a surprising effect
was increasing the stiffness of the linkages connecting the
two motors to the cargo. When model and experiments
were compared by analyzing instantaneous velocities, a
recoil effect becomes apparent following detachment of
one of the motors (usually kinesin in our simulations).
Thus, the simulations provide a lower limit of 0.2 pN/nm
for the motor stiffness and make the testable prediction
that if a more compliant DNA linkage was used to connect
the motors, the instantaneous velocity distribution would
reveal apparent fast velocities due to large displacement
recoil events. Additionally, a more compliant linkage be-
tween the motors would be relevant to the transport of large
(0.1–1 mm) vesicles in cells, where motor forces are suffi-
cient to deform the membrane.

Despite the large body of single-molecule data
describing their motor properties, it remains challenging
to predict the bidirectional dynamics that will result from
antagonistic kinesin and dynein motor pairs. In the present
work, we find that by using experimental data to constrain



Modeling bidirectional transport
model simulations, mechanistic insights can be generated
into how kinesin and DDB operate in antagonistic pairs.
Our simulations support a model (Fig. 6 D) in which 1)
over the range of forces generated by the motors, the
detachment rate of both kinesin-1 and DDB is insensitive
to load; 2) in the two-motor geometry examined, the
kinesin-1 and DDB stall forces are similar; 3) kinesin-1 re-
attaches to the microtubule at 50 s�1 in the geometry of
these motor pairs; and 4) when modeled as linear springs,
motor stiffness is at least 0.2 pN/nm. These model-gener-
ated hypotheses generate testable predictions for future sin-
gle-molecule experiments. Furthermore, by identifying
motor parameters that are the strongest determinants of
bidirectional transport, this work provides a framework to
interpret how diverse kinesins, different activating dynein
adapters, and motor-cargo stiffness will affect the resulting
bidirectional transport of intracellular cargo.
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molecules in the cytoplasm of mammalian cells. Biophys. J. 92:4137–
4144. https://doi.org/10.1529/biophysj.106.100206.

13. Courty, S., C. Luccardini,., M. Dahan. 2006. Tracking individual ki-
nesin motors in living cells using single quantum-dot imaging. Nano
Lett. 6:1491–1495. https://doi.org/10.1021/nl060921t.

14. Fridman, V., A. Gerson-Gurwitz, ., L. Gheber. 2013. Kinesin-5 Kip1
is a bi-directional motor that stabilizes microtubules and tracks their
plus-ends in vivo. J. Cell Sci. 126:4147–4159. https://doi.org/10.
1242/jcs.125153.

15. Ma, S., and R. L. Chisholm. 2002. Cytoplasmic dynein-associated
structures move bidirectionally in vivo. J. Cell Sci. 115:1453–1460.

16. Reck-Peterson, S. L., A. Yildiz, ., R. D. Vale. 2006. Single-Molecule
Analysis of Dynein Processivity and Stepping Behavior. Cell.
126:335–348. https://doi.org/10.1016/j.cell.2006.05.046.

17. Schnitzer, M. J., K. Visscher, and S. M. Block. 2000. Force production
by single kinesin motors. Nat. Cell Biol. 2:718–723. https://doi.org/10.
1038/35036345.

18. Visscher, K., M. J. Schnitzer, and S. M. Block. 1999. Single kinesin
molecules studied with a molecular force clamp. Nature. 400:184–
189. https://doi.org/10.1038/22146.

19. D’Souza, A. I., R. Grover,., S. Diez. 2022. Vesicles driven by dynein
and kinesin exhibit directional reversals without external regulators.
Cold Spring Harbor Laboratory.

20. Monzon, G. A., L. Scharrel, ., S. Diez. 2020. Stable tug-of-war be-
tween kinesin-1 and cytoplasmic dynein upon different ATP and road-
block concentrations. J. Cell Sci. 133:jcs249938. https://doi.org/10.
1242/jcs.249938.

21. Hu, J., and N. D. Derr. 2019. Production of Dynein and Kinesin Motor
Ensembles on DNA Origami Nanostructures for Single Molecule
Observation. J. Vis. Exp. https://doi.org/10.3791/60369.

22. Arpa�g, G., S. R. Norris,., E. T€uzel. 2019. Motor Dynamics Underly-
ing Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors.
Biophys. J. 116:1115–1126. https://doi.org/10.1016/j.bpj.2019.01.036.

23. Gicking, A. M., T. C. Ma, ., W. O. Hancock. 2022. Kinesin-1,-2,
and-3 motors use family-specific mechanochemical strategies to effec-
tively compete with dynein during bidirectional transport. Elife. 11,
e82228. https://doi.org/10.7554/eLife.82228.

24. Dallon, J. C., C. Leduc, ., S. Portet. 2019. Stochastic modeling re-
veals how motor protein and filament properties affect intermediate
Biophysical Journal 122, 3299–3313, August 22, 2023 3311

https://doi.org/10.1016/j.bpj.2023.07.007
https://doi.org/10.1016/j.bpj.2023.07.007
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1016/j.cell.2011.01.021
https://doi.org/10.1016/j.bpj.2012.06.038
https://doi.org/10.1016/j.bpj.2012.06.038
https://doi.org/10.1074/jbc.m313472200
https://doi.org/10.1074/jbc.m313472200
https://doi.org/10.1038/sj.emboj.7600240
https://doi.org/10.1083/jcb.148.5.945
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1016/j.cub.2010.02.058
https://doi.org/10.1016/j.ceb.2009.12.014
https://doi.org/10.1146/annurev-biophys-051013-022746
https://doi.org/10.1146/annurev-biophys-051013-022746
https://doi.org/10.1038/nrm3853
https://doi.org/10.1038/nrm3853
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref10
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref10
https://doi.org/10.1016/j.pharmthera.2011.03.004
https://doi.org/10.1016/j.pharmthera.2011.03.004
https://doi.org/10.1529/biophysj.106.100206
https://doi.org/10.1021/nl060921t
https://doi.org/10.1242/jcs.125153
https://doi.org/10.1242/jcs.125153
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref15
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref15
https://doi.org/10.1016/j.cell.2006.05.046
https://doi.org/10.1038/35036345
https://doi.org/10.1038/35036345
https://doi.org/10.1038/22146
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref19
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref19
http://refhub.elsevier.com/S0006-3495(23)00434-4/sref19
https://doi.org/10.1242/jcs.249938
https://doi.org/10.1242/jcs.249938
https://doi.org/10.3791/60369
https://doi.org/10.1016/j.bpj.2019.01.036
https://doi.org/10.7554/eLife.82228


Ma et al.
filament transport. J. Theor. Biol. 464:132–148. https://doi.org/10.
1016/j.jtbi.2018.12.022.

25. Altaner, B., A. Wachtel, and J. Vollmer. 2015. Fluctuating currents in
stochastic thermodynamics. II. Energy conversion and nonequilibrium
response in kinesin models. Phys. Rev. E. 92:042133. https://doi.org/
10.1103/PhysRevE.92.042133.

26. Puri, P., N. Gupta, ., S. Muhuri. 2019. Dynein catch bond as a medi-
ator of codependent bidirectional cellular transport. Phys. Rev. Res. 1,
023019. https://doi.org/10.1103/physrevresearch.1.023019.

27. Ohashi, K. G., L. Han, ., W. O. Hancock. 2019. Load-dependent
detachment kinetics plays a key role in bidirectional cargo transport
by kinesin and dynein. Traffic. 20:284–294. https://doi.org/10.1111/
tra.12639.

28. M€uller, M. J. I., S. Klumpp, and R. Lipowsky. 2008. Tug-of-war as a
cooperative mechanism for bidirectional cargo transport by molecular
motors. Proc. Natl. Acad. Sci. USA. 105:4609–4614. https://doi.org/10.
1073/pnas.0706825105.

29. Kunwar, A., S. K. Tripathy,., S. P. Gross. 2011. Mechanical stochas-
tic tug-of-war models cannot explain bidirectional lipid-droplet trans-
port. Proc. Natl. Acad. Sci. USA. 108:18960–18965. https://doi.org/
10.1073/pnas.1107841108.

30. Howard, J., and W. O. Hancock. 2020. Three Beads Are Better Than
One. Biophys. J. 118:1–3. https://doi.org/10.1016/j.bpj.2019.12.001.

31. Pyrpassopoulos, S., H. Shuman, and E. M. Ostap. 2020. Modulation of
Kinesin’s Load-Bearing Capacity by Force Geometry and the Microtu-
bule Track. Biophys. J. 118:243–253. https://doi.org/10.1016/j.bpj.
2019.10.045.

32. Belyy, V., M. A. Schlager, ., A. Yildiz. 2016. The mammalian
dynein–dynactin complex is a strong opponent to kinesin in a tug-of-
war competition. Nat. Cell Biol. 18:1018–1024. https://doi.org/10.
1038/ncb3393.

33. Elshenawy, M. M., J. T. Canty, ., A. Yildiz. 2019. Cargo adaptors
regulate stepping and force generation of mammalian dynein–dynactin.
Nat. Chem. Biol. 15:1093–1101. https://doi.org/10.1038/s41589-019-
0352-0.

34. Feng, Q., A. M. Gicking, and W. O. Hancock. 2020. Dynactin p150
promotes processive motility of DDB complexes by minimizing diffu-
sional behavior of dynein.Mol. Biol. Cell. 31:782–792. https://doi.org/
10.1091/mbc.e19-09-0495.

35. Gutierrez, P. A., B. E. Ackermann, ., R. J. McKenney. 2017. Differ-
ential effects of the dynein-regulatory factor Lissencephaly-1 on proc-
essive dynein-dynactin motility. J. Biol. Chem. 292:12245–12255.
https://doi.org/10.1074/jbc.m117.790048.

36. King, S. J., and T. A. Schroer. 2000. Dynactin increases the processivity
of the cytoplasmic dynein motor. Nat. Cell Biol. 2:20–24. https://doi.
org/10.1038/71338.

37. McKenney, R. J., W. Huynh, ., R. D. Vale. 2014. Activation of cyto-
plasmic dynein motility by dynactin-cargo adapter complexes. Science.
345:337–341. https://doi.org/10.1126/science.1254198.

38. Ross, J. L., K. Wallace,., E. L. F. Holzbaur. 2006. Processive bidirec-
tional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol.
8:562–570. https://doi.org/10.1038/ncb1421.

39. Sanghavi, P., P. Kumar,., R. Mallik. 2021. On and off controls within
dynein-dynactin on native cargoes. Proc. Natl. Acad. Sci. USA. 118,
e2103383118. https://doi.org/10.1073/pnas.2103383118.

40. Schlager, M. A., H. T. Hoang, ., A. P. Carter. 2014. In vitro reconsti-
tution of a highly processive recombinant human dynein complex.
EMBO J. 33:1855–1868. https://doi.org/10.15252/embj.201488792.

41. Gillespie, D. T. 1977. Exact Stochastic Simulation of Coupled Chem-
ical-Reactions. J. Phys. Chem. 81:2340–2361. https://doi.org/10.1021/
j100540a008.

42. Coppin, C. M., D. W. Pierce, ., R. D. Vale. 1997. The load depen-
dence of kinesin’s mechanical cycle. Proc. Natl. Acad. Sci. USA.
94:8539–8544. https://doi.org/10.1073/pnas.94.16.8539.

43. Bruno, L., M. Salierno, ., V. Levi. 2011. Mechanical Properties of
Organelles Driven by Microtubule-Dependent Molecular Motors in
3312 Biophysical Journal 122, 3299–3313, August 22, 2023
Living Cells. PLoS One. 6, e18332. https://doi.org/10.1371/journal.
pone.0018332.

44. Oiwa, K., and H. Sakakibara. 2005. Recent progress in dynein structure
and mechanism. Curr. Opin. Cell Biol. 17:98–103. https://doi.org/10.
1016/j.ceb.2004.12.006.

45. Howard, J. 2001. Mechanics of Motor Proteins and the Cytoskeleton.
Sinauer Associates, Publishers.

46. Andreasson, J. O. L., S. Shastry,., S. M. Block. 2015. The Mechano-
chemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load. Curr.
Biol. 25:1166–1175. https://doi.org/10.1016/j.cub.2015.03.013.

47. Andreasson, J. O. L., B. Milic, ., S. M. Block. 2015. Examining ki-
nesin processivity within a general gating framework. Elife. 4,
e07403. https://doi.org/10.7554/elife.07403.

48. Urnavicius, L., K. Zhang,., A. P. Carter. 2015. The structure of the dy-
nactin complex and its interaction with dynein. Science. 347:1441–1446.
https://doi.org/10.1126/science.aaa4080.

49. Kaan, H. Y. K., D. D. Hackney, and F. Kozielski. 2011. The Structure of
the Kinesin-1 Motor-Tail Complex Reveals the Mechanism of Autoinhi-
bition. Science. 333:883–885. https://doi.org/10.1126/science.1204824.

50. Carter, A. P., C. Cho, ., R. D. Vale. 2011. Crystal Structure of the
Dynein Motor Domain. Science. 331:1159–1165. https://doi.org/10.
1126/science.1202393.

51. Feng, Q., K. J. Mickolajczyk, ., W. O. Hancock. 2018. Motor Reat-
tachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo
Transport. Biophys. J. 114:400–409. https://doi.org/10.1016/j.bpj.
2017.11.016.

52. Beeg, J., S. Klumpp, ., R. Lipowsky. 2008. Transport of beads by
several kinesin motors. Biophys. J. 94:532–541. https://doi.org/10.
1529/biophysj.106.097881.
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