
1. Introduction
Numerous studies have quantified the public health impacts of air pollution globally and nationally. Globally, air 
pollution is the leading environmental risk factor for mortality (GBD, 2019 Risk Factor Collaborators, 2020). 
In Canada, it is estimated that approximately 15,000 deaths annually are attributable to air pollution (Health 
Canada, 2021). Increasingly, attention is turning toward the distribution of these impacts from the perspectives 
of environmental racism and environmental injustice. Studies have identified inequality in the distribution of 
air pollution exposure and attributable public health impacts by racialized group membership and socioeco-
nomic status (SES) between and within cities and counties (Buzzelli et al., 2003; Castillo et al., 2021; Clark 
et  al.,  2014; Crouse et  al.,  2009; Doiron et  al.,  2020; Fann et  al.,  2018; Giang & Castellani,  2020; Jerrett 
et al., 2001; Martenies et al., 2017; Pinault, 2016; Pinault et al., 2016; Rosofsky et al., 2018; Sohrabi et al., 2020; 
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Southerland et al., 2021; Spiller et al., 2021). While the distribution of wealth in Canada is more equitable than 
in the US, health disparities are nonetheless evident, and there is evidence that disparities are widening (Shahidi 
et al., 2020). Moreover, it is well established that there are substantial disparities in health status between Indig-
enous and non-Indigenous populations in Canada (Smylie & Firestone, 2015), including reduction of life expec-
tancy of over 10 years (Tjepkema et al., 2019), and up to three-fold higher age-standardized rates of acute care 
hospitalization (Bougie, 2021) in some Indigenous groups compared to the non-Indigenous population. To our 
knowledge, the distribution of air pollution health impacts within Canadian cities has not been examined, and in 
particular, disparities by Indigenous identity have not been evaluated.

In addition to examining the overall public health impacts of air pollution, addressing environmental injustice 
and environmental racism requires evaluation of the distribution of the benefits or damages resulting from poli-
cies and programs that aim to reduce environmental exposures. In both Canada and the US, regulatory impact 
assessments require analysis of the distribution of costs and benefits of proposed regulatory or other initiatives 
(Carey, 2022; Treasury Board of Canada Secretariat, 2022). In practice, this is often done only qualitatively. 
Thus, development of capacity and methods to conduct quantitative analysis of distributional impacts is required. 
This need is highlighted by legislation currently being considered in both countries to specifically address envi-
ronmental injustice and environmental racism (Grijalva, 2021; May, 2021).

In this study, we examine the distribution of baseline mortality rates, air pollution exposure and air pollution 
attributable mortality, and quantify the extent and sources of inequality in air pollution attributable mortality 
within seven of Canada's largest cities. Comparing results across multiple cities allows us to determine whether 
patterns of inequality differ and hypothesize why this might be the case. We assess inequality in air pollution 
attributable mortality for fine particulate matter (PM2.5) and nitrogen dioxide (NO2), which have different patterns 
of spatial variability. Finally, we report alternative metrics of inequality, with a view to evaluating their utility in 
future assessments of environmental injustice and environmental racism.

2. Materials and Methods
2.1. Mortality, Population and Demographic Data

The analysis was conducted by census tract (CT) in seven of Canada's largest cities—Montreal, Ottawa, Toronto, 
Winnipeg, Calgary, Edmonton, and Vancouver (Figure 1). Our choice of seven cities was motivated by a desire 
to expand the analysis beyond the three largest cities (Toronto, Montreal, and Vancouver) that have typically 
been examined in these types of analyses in Canada, including cities from additional provinces/regions and with 
different densities and physical geography. The present analysis serves as a proof of concept for expanding the 
geographic scope to additional locations in future analyses. CTs are small, generally temporally stable geographic 
units with populations usually less than 10,000, that are intended to represent neighborhoods (Government of 
Canada, 2021c). For Montreal and Toronto, we used Census Division (Government of Canada, 2021a) boundaries 
to define the city perimeter. For Winnipeg, Calgary and Edmonton, we used Census Subdivision (CSD) (Govern-
ment of Canada,  2021b) boundaries. For Vancouver we used the combined CSD boundaries of Vancouver, 
Burnaby, West Vancouver, and North Vancouver (City and District), which includes traditional territories of the 
Musqueam Indian Band, Squamish Nation, and Tsleil-Waututh Nation, some of whose members live on-reserve 
on the Burrard Inlet 3, Capilano 5, Kitsilano 6, Mission 1, Musqueam 2, and Seymour Creek 2 reserves, with 
boundaries contiguous with these CSDs. For Ottawa, we used the CSD boundary, excluding 22 primarily rural 
CTs outside the principal population center.

Mortality count data by CT for all ages and for those age 25 years and older were obtained from Statistics Canada 
for 2013–2015 (the most recent years for which data were available) for all cities except Montreal, for which data 
were only available for 2014 and 2015 (in other cities, mortality rates based on 2013–2015 exhibited a correlation 
of 0.99 with rates based on 2014–2015). We employed multiyear averages of mortality data in order to reduce 
the probability of potentially unrepresentative outlying values from a single year. Because population counts at 
the CT level are only available for census years (in this case, the closest year being 2016), we used inter-censal 
estimates at the province level to adjust 2016 CT level population counts to 2013–2015 in order to compute 
denominators for the calculation of mortality rates (mortality count/population). Mortality rates were then aver-
aged over 2013–2015.

Population counts and sociodemographic data by CT on percent of the population with income less than the low 
income cutoff (LICO), with less than a high school education (i.e., did not complete high school), or identifying as 
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an Indigenous (Aboriginal) or Black person, were obtained from the 2016 census (Government of Canada, 2017; 
Statistics Canada, 2018). LICOs are defined as income levels below which families spend a disproportionate 
share of their income on necessities, and are family size and community-size specific (Statistics Canada, 2017a). 
Indigenous (Aboriginal) identity refers to individuals who identify as First Nations, Métis or Inuit, as defined 
under the Constitution Act, 1982 (Statistics Canada,  2017b). We employ the term “Indigenous” rather than 
“Aboriginal” in keeping with current scholarship (Smylie & Firestone, 2015). Percent of the population 65 years 
and older by CT was also obtained to account for the strong dependence of mortality risk on age.

2.2. Exposure Data

As with mortality data, we employed multiyear averages of air pollution concentration data in order to reduce the 
probability of potentially unrepresentative outlying values from a single year. Three-year average PM2.5 concentra-
tions for 2013–2015 were calculated for each CT based on a 0.01° × 0.01° (approximately 1 km × 1 km) resolution 
surface that combines Aerosol Optical Depth retrievals from the National Aeronautics and Space Administration 
Moderate Resolution Imaging Spectroradiometer, Multi-angle Imaging SpectroRadiometer, and Sea-Viewing 
Wide Field-of-View Sensor instruments, with the GEOS-Chem chemical transport model and ground-level obser-
vations [edit ref V4.NA.02] (van Donkelaar et al., 2019). NO2 data for 2013–2015 were derived from a national 
land use regression (LUR) model incorporating ground monitoring data, remote sensing and land use patterns, 
with a resolution of 30 m × 30 m (Hystad et al., 2011). The LUR model was based on a single year (2006), then 
temporally scaled to other years based on ground monitoring data (CANUE—The Canadian Urban Environmen-
tal Health Research Consortium, 2018). PM2.5 and NO2 data were assigned to CTs by averaging values mapped  to 
six character postal codes as points (CANUE—The Canadian Urban Environmental Health Research Consor-
tium, 2023; DMTI Spatial, 2015) falling within each CT. This approach serves as an approximation of population 
weighting since density of postal codes mirrors population density (Giang & Castellani, 2020). These PM2.5 mass 
and NO2 data have been used extensively in air pollution epidemiology studies in Canada (Pappin et al., 2019). 
The temporal and spatial specification of data sources employed in the analysis is summarized in Table 1.

2.3. Statistical Analysis

All statistical analyses were conducted in R (R Core Team,  2019) using the DescTools (Signorell,  2021), 
CARBayes (Lee, 2013), coda (Plummer et al., 2006), and rineq (Devleesschauwer et al., 2017) packages. Results 
from regression models by city were pooled using a random effects model employing the metafor package 

Figure 1. Locations of included cities.
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(Viechtbauer, 2010). Maps were generated using the rgdal (Bivand et al., 2019) and tmap (Tennekes, 2018) pack-
ages. Interactive maps were created using the R shiny package (Chang et al., 2022).

2.3.1. Air Pollution Attributable Mortality

Air pollution attributable mortality per 100,000 population (MAP) was calculated as the attributable fraction 
multiplied by the baseline mortality rate from internal causes per 100,000 population,

𝑀𝑀AP =

(

1 − 𝑒𝑒−𝛽𝛽×(𝑥𝑥𝑖𝑖−𝑥𝑥0)
)

𝑀𝑀0 

where β is the log hazard ratio (HR) or log relative risk (RR), xi is the CT average pollutant concentration, x0 
is the counterfactual pollutant concentration, and M0 is the CT baseline mortality rate. β values for the associa-
tion of long term exposure to PM2.5 and NO2 with mortality were derived from a large nationally representative 
population-based Canadian cohort study employing the same PM2.5 and NO2 exposure surfaces that we employed, 
mapped to residential postal codes (HRs 1.072, 95% confidence interval (CI) 1.060–1.084 per 10 μg/m 3 PM2.5 and 
1.065, 95% CI 1.056–1.074 per 10 ppb NO2) (Crouse et al., 2015). We consider long-term exposure to be duration 
over a period of years, associations with which are examined using cohort studies, in contrast to short-term expo-
sure, which refers to duration over days to weeks, associations with which are examined using time series or case 
crossover studies. Although numerous studies have examined the association between long term exposure to NO2 
and mortality, the evidence is considered weaker than that for PM2.5 (Huangfu & Atkinson, 2020; Stieb et al., 2021). 
As a sensitivity analysis, we therefore considered an alternative β value for NO2 based on an international study 
of short term exposure including 25 Canadian cities (Meng et al., 2021). The value is based on results provided 
to us by the author for the 25 Canadian cities from a model including PM2.5 (RR 1.0042, 95% CI 0.9977–1.0108 
per 10 ppb). Following Castillo et al. (2021), we consider the HR and RR constant in time and space, thus we do 
not propagate the 95% CIs through the analysis. Consistent with the respective sources of concentration response 
functions, baseline mortality rates (M0) for mortality attributable to long-term exposure to PM2.5 and NO2 were 
based on the population 25 years of age or older, while baseline mortality rates for mortality attributable to short-
term exposure to NO2 were based on all ages. As an additional sensitivity analysis, we followed the example of a 
recent paper (Spiller et al., 2021) that employed racialized-group specific β values derived from a recent analysis 
of the US Medicare cohort (Di et al., 2017), that found that the HR for the association between PM2.5 and mortality 
was significantly larger in the Black population compared to the white population, but not in the Native American 
population compared to the white population, nor in those eligible for Medicaid versus not eligible (as a measure of 
SES). We employed population-wide versus SES specific HRs for PM2.5 and NO2 from the same source as the base 
case (Crouse et al., 2015). To our knowledge, HRs specific to Indigenous populations in Canada are not available. 
Details of the derivation and application of SES specific HRs are provided in Supporting Information S1 (Text S1).

In keeping with previous papers that have examined inequality in the distribution of air pollution attributable 
health impacts between counties and neighborhoods, we employed a counterfactual pollutant concentration (x0) of 
0. As a sensitivity analysis, we employed natural background concentrations (1.8 μg/m 3 for PM2.5 and 0.15 ppb for 
NO2, applied nationally) estimated by Environment and Climate Change Canada based on a review of monitoring 
data from rural and remote monitoring sites during time periods classified as being influenced primarily by back-
ground air mass types (Health Canada, 2021). These concentrations are comparable in concept to the US Environ-
mental Protection Agency “policy relevant background,” defined as concentrations that would occur in the absence 

Data Year(s) Geographic resolution

Mortality counts 2013–2015 a Census tract

Population counts 2016 Census tract

2013–2016 Province

Demographic characteristics 2016 Census tract

PM2.5 2013–2015 Census tract (from 1 km × 1 km surface)

NO2 2013–2015 Census tract (from 30 m × 30 m surface)

 a2014–2015 for Montreal.

Table 1 
Temporal and Spatial Specification of Data Sources
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of anthropogenic emissions in continental North America (National Center for Environmental Assessment-RTP 
Division Office of Research and Development, 2009). The value for PM2.5 is similar to background concentrations 
employed in a US analysis, which ranged from 0.74 to 1.72 μg/m 3 by region (Fann et al., 2012).

Estimates of attributable mortality were calculated only for census tracts with a population of at least 1,000. Of 57 
census tracts with population < 1,000, 84% were missing data for baseline mortality and 42%–53% were missing 
data on percent of the population 65 years or older, identifying as a Black or Indigenous person, with income less 
than the LICO and less than a high school education. Mean PM2.5 concentrations were slightly higher (7.9 vs. 
7.5 μg/m 3), NO2 concentrations higher (16.6 vs. 13.9 ppb), and land surface area larger (3.7 vs. 2.0 km 2) in census 
tracts with population < 1,000 versus 1,000 or greater.

2.3.2. Analysis of Inequality

We used multiple methods to quantify the extent and sources of inequality in the distribution of air pollution 
attributable mortality in order to compare our results to earlier studies that have employed differing approaches, 
triangulate our findings and evaluate the utility of alternative methods in future analyses of environmental injus-
tice and environmental racism.

First, similar to earlier analyses of inequality in air pollution exposure (Buzzelli et al., 2003; Jerrett et al., 2001; 
Pinault, 2016; Pinault et al., 2016), we regressed air pollution attributable mortality against the prevalence of 
population characteristics (percent of the population age 65 years and older, with income less than the LICO, with 
less than a high school education, and identifying as an Indigenous and/or Black person) by CT in each city. Each 
characteristic was first included separately in a general linear model, then in a multivariate general linear model, 
and finally those displaying consistent associations with attributable mortality were included together in a multi-
variate conditional autoregressive model accounting for spatial autocorrelation (Lee, 2013; Leroux et al., 2000). 
City-specific results were then pooled using a random effects meta-analysis.

Second, we calculated the concentration index of the distribution of baseline mortality rate, air pollution exposure 
and air pollution attributable mortality by rank order of CTs based on the prevalence of the same population char-
acteristics as considered in regression models, as well as the Atkinson index and Gini coefficient by quantile of 
the prevalence of these CT characteristics. The concentration index, which we refer to henceforth as the “inequal-
ity index” to avoid confusion with pollutant concentrations (Giang & Castellani, 2020), is based on the concen-
tration curve, which as applied here depicts the proportion of the total burden of an adverse health outcome 
experienced by the population ranked in order from highest to lowest prevalence of disadvantage. The index 
varies from −1 to 1, with negative values indicating that disadvantaged populations experience a disproportionate 
share of the burden, positive values indicating the converse, and 0 indicating equality (Giang & Castellani, 2020). 
Atkinson index and Gini coefficient values range from 0 to 1, with higher values indicating greater inequality 
(Fann et al., 2018; Rosofsky et al., 2018). The Atkinson Index permits decomposition of inequalities within and 
between population subgroups, while the Gini coefficient does not (Fann et al., 2018). An epsilon value of 0.75 
was used in calculating the Atkinson index, for comparability with Fann et al. (2018), Rosofsky et al. (2018), 
Martenies et al. (2017), and Clark et al. (2014). The Atkinson Index and Gini coefficient were calculated by tertile 
of CT characteristics, with a sensitivity analysis by quintile. Computation of the inequality index, Atkinson index 
and Gini coefficient are detailed in Supporting Information S1 (Text S2).

Finally, we conducted a counterfactual analysis to determine the extent to which observed disparities in air pollu-
tion attributable mortality, measured using the inequality index, would be reduced if CTs with a prevalence of 
disadvantage related to racialized group membership or SES above the median prevalence among all CTs in 
each city, experienced the same baseline mortality rate or air pollution exposures as other CTs. The statistical 
significance of differences between inequality index values for the base case versus counterfactual scenarios was 
assessed using Cochran's Q (Viechtbauer, 2010).

Research ethics board approval was not required as all data were aggregate in nature.

3. Results
3.1. Descriptive Findings

The seven cities included in our analysis comprised 2,070 CTs, with a total population of approximately 9.5 
million. Of these, 59 CTs (2.9%) were excluded because the population was less than 1,000 or missing, and an 
additional 21 were excluded due to missing data for mortality rate (n = 18, 0.9%), demographic characteristics 
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(n = 2, 0.1%), or air pollution (n = 1, 0.04%), leaving 1,990 (96.1%) included in our analysis. The principal reason 
for missing mortality or demographic data is suppression of small counts for privacy protection. The mean and 
95th percentile of surface area of CTs included in our analysis were 2.0 and 5.3 km 2 respectively.

The distributions of demographic characteristics, mortality rates, air pollution exposure, and air pollution attribut-
able mortality rates among CTs are summarized in Table 2. The mean percentage of the population aged 65 years 
or older, with income below the LICO and with less than a high school education was relatively consistent among 
the seven cities. The mean percentages identifying as a Black and/or Indigenous person were more variable. Mean 
baseline mortality rates varied considerably and were lowest in Calgary and highest in Winnipeg. Mean PM2.5 
values exhibited little variability between cities, while mean NO2 values were lowest in Ottawa and Winnipeg, 
with similar values in the other cities. Mean PM2.5 attributable mortality rate was lowest in Calgary and highest 
in Montreal, while mean NO2 attributable mortality rate was lowest in Ottawa and highest in Montreal. Table 2 
also summarizes the range of values observed within cities. Baseline mortality rate ranged roughly 20–40 fold, 
with the exception of Montreal where the range was nearly 90 fold, PM2.5 varied less than two fold, NO2 varied 
three to five fold, and both PM2.5 and NO2 attributable mortality rate varied approximately 20–90 fold, with the 
greatest variability in Montreal and least in Vancouver.

Descriptive results from sensitivity analyses are shown in Supporting Information S1 (Table S1). Not surpris-
ingly, average air pollution attributable mortality rates were lower when estimated natural background concen-
trations were employed as counterfactuals rather than zero, to a greater degree for PM2.5 than for NO2, consistent 
with the estimated natural background concentration for NO2 being closer to zero. Average air pollution attribut-
able mortality rates were generally not sensitive to employing SES-specific HRs. NO2 attributable mortality rates 
based on short-term exposure were considerably lower than those based on long term exposure, in keeping with 
the relative magnitudes of the respective HR and RR. The ratio of maximum to minimum air pollution attributa-
ble mortality rates generally increased with the application of SES-specific HRs for NO2 but not for PM2.5. These 
ratios were generally insensitive to other sensitivity analyses.

We found that the 10 CTs with the highest PM2.5 or NO2 attributable mortality all pertained to NO2 exposure and 
comprised eight CTs primarily in north and east Montreal, one in Winnipeg's north end and one in the downtown 

Variable Montreal Ottawa Toronto Winnipeg Calgary Edmonton Vancouver

Mean, all census tracts

Percent age 65+ 15.9 16.9 16.1 15.9 12.2 13.6 16.5

Percent Black population 8.7 6.8 8.7 3.8 3.9 5.7 1.0

Percent Indigenous population 0.7 2.5 0.9 13.6 3.0 6.1 3.4

Percent < LICO a 19.0 12.1 17 13.9 9.0 10.6 16.5

Percent < High school 16.2 12.2 16.9 17.9 13.6 16.2 12.5

Mortality/100,000 (age 25+) 979.0 914.3 814.2 1,125.7 638.3 857.2 809.7

PM2.5 (μg/m 3) 8.3 6.3 8.5 5.6 6.0 8.0 6.1

NO2 (ppb) 14.8 6.3 15.9 9.6 13.3 15.8 15.2

PM2.5 attributable mortality/100,000 55.4 40.0 46.5 43.0 27.3 47.7 33.7

NO2 attributable mortality/100,000 85.0 37.7 77.2 66.5 53.5 81.2 72.8

Ratio of maximum to minimum over all census tracts

Mortality per 100k (age 25+) 89.8 35.2 38.3 26.3 42.3 37.4 17.0

PM2.5 (μg/m 3) 1.3 1.4 1.2 1.2 1.8 1.5 1.3

NO2 (ppb) 4.7 3.1 3.0 3.0 2.6 2.6 4.9

PM2.5 attributable mortality per 100k 93.6 45.8 35.3 27.7 59.4 47.5 18.9

NO2 attributable mortality per 100k 84.5 54.3 42.3 51.2 61.0 48.2 20.3

 aLow Income Cut-Off.

Table 2 
Descriptive Statistics—Population Characteristics, Baseline Mortality Rates, Air Pollution Concentrations, and Air 
Pollution Attributable Mortality Rates by Census Tract
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east side of Vancouver (Table 3). These CTs were in the highest quintile of multiple factors including prevalence 
of age ≥ 65 (8 of 10), income < LICO (5 of 10), education < HS (4 of 10), identification as an Indigenous (2 of 
10) or Black person (2 of 10), baseline mortality (9 of 10) and NO2 concentration (3 of 10).

Interactive maps of demographic characteristics, baseline mortality rates, air pollution exposures and air pollu-
tion attributable mortality rates by city are available at https://apinequality.shinyapps.io/inequality/ (in keeping 
with Statistics Canada data disclosure policy, mortality rates shown on interactive maps are based on mortality 
counts randomly rounded to base 5; rates based on randomly rounded vs. raw counts had a correlation of 1). 
Sample static maps are shown for Calgary in Figure 2. Spatial patterns were most consistently evident in all cities 
for PM2.5 and NO2 concentrations (i.e., higher concentrations in the downtown core and/or along major road-
ways), and in some cities for percent of population with income below the LICO or identifying as an Indigenous 
person (i.e., concentration in certain areas of the city as opposed to more random scatter). Spatial patterns of air 
pollution attributable mortality generally more closely paralleled those of baseline mortality than air pollution 
concentrations. No clear spatial patterns were evident for the other variables.

3.2. Analysis of Inequality

In multivariate general linear models, only percent of the population 65 years and older, percent with household 
income less than the LICO, and percent identifying as an Indigenous person were consistently significantly 
positively associated with air pollution attributable mortality (Table S2 in Supporting Information S1). Regres-
sion results by city from multivariate conditional autoregressive models accounting for spatial autocorrelation 
are presented in Figure 3. Inclusion of percent age 65 years and older both adjusts for the strong dependency of 
mortality risk on age, and provides a comparator for the magnitude of the associations with other CT character-
istics. Pooled estimates of the association of percent 65 or older, low income and identifying as an Indigenous 
person with attributable mortality were positive, significant and similar in magnitude for PM2.5 and NO2. Signifi-
cant heterogeneity was observed between cities. Findings were not sensitive to excluding individual cities (Table 
S3 in Supporting Information S1).

Inequality index values by city are shown in Figure 4. They were most strongly negative for percent of the popula-
tion greater than 65 years of age, and in relation to this characteristic, values were most strongly negative for base-
line mortality rates and air pollution attributable mortality. Consistent with our results from regression models, 
inequality index values were more strongly negative in relation to percent of the population with income less than 
the LICO and identifying as an Indigenous person, than in relation to percent of the population with less than a 
high school education or identifying as a Black person. Inequality index values in relation to income, education 
and identifying as a Black and/or Indigenous person tended to be greatest for NO2 attributable mortality followed 
by PM2.5 attributable mortality, and were least strongly negative for PM2.5 pollutant concentrations. Values were 

City CTUID b Pollutant
Attributable 

mortality 100k
Percent 

≥65
Percent 
<LICO c

Percent 
<HS d

Percent identifying 
as Black person

Percent identifying as 
Indigenous person

Baseline 
mortality /100k

NO2 
(ppb)

Montreal 4620148.00 NO2 747.3 23.0 19.0 5.8 4.0 0.0 6,987.0 16.2

Montreal 4620251.01 NO2 681.9 28.0 21.0 30.4 10.6 0.3 5,273.7 18.1

Winnipeg 6020035.00 NO2 641.5 25.0 36.0 30.9 3.3 41.5 6,656.2 10.3

Montreal 4620057.00 NO2 621.7 28.0 37.0 15.9 5.4 0.0 4,262.9 17.9

Montreal 4620277.00 NO2 545.7 27.0 22.0 18.5 20.9 0.5 5,236.9 14.6

Vancouver 9330058.00 NO2 511.8 21.3 65.0 27.0 2.5 15.6 2,258.8 22.5

Montreal 4620192.00 NO2 496.2 35.0 11.0 13.1 8.3 2.0 6,245.7 13.5

Montreal 4620016.00 NO2 476.5 16.0 31.0 22.2 6.1 1.6 4,035.1 15.9

Montreal 4620383.01 NO2 442.8 31.0 11.0 13.0 3.8 0.0 5,484.9 13.5

Montreal 4620132.00 NO2 415.6 20.0 41.0 5.1 4.7 0.9 3,046.6 16.2

Note. Bold indicates >80th percentile of all CTs, all cities.
 aBased on income-specific HR.  bCensus Tract Unique Identifier.  cLow Income Cut-Off.  dHigh School.

Table 3 
Characteristics of Census Tracts With 10 Highest Air Pollution Attributable Mortality Rates a

https://apinequality.shinyapps.io/inequality/
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generally closer to zero or positive in Montreal, Toronto and Vancouver compared to the other cities in relation 
to all variables other than age 65 or older. Results were not sensitive to the application of estimated natural back-
ground as the counterfactual pollutant concentration, or substitution of a β value for NO2 based on short term 
exposure (Figure S1 in Supporting Information S1). Substitution of income specific β values had relatively little 
impact on inequality index values for PM2.5 attributable mortality (Figure S1 in Supporting Information S1). 
In contrast, inequality index values became more strongly negative for NO2 attributable mortality in relation to 
percent of the population with income less than the LICO, less than a high school education, and identifying as a 
Black and/or Indigenous person (Figure S1 in Supporting Information S1).

Atkinson index values and Gini coefficients pertaining to within city inequality based on tertiles of population 
characteristics paralleled findings for the inequality index (Figures S2 and S3 in Supporting Information S1). 
There tended to be less variability in Atkinson index values than Gini coefficients. Atkinson index values tended 
to be slightly larger based on quintiles versus tertiles of population characteristics, whereas Gini coefficients 
were not consistently larger based on quintiles versus tertiles (Figures S4 and S5 in Supporting Information S1).

Results of the counterfactual analysis comparing inequality index values in the base case to pollutant and mortal-
ity counterfactuals are shown in Figure 5. Only values significantly different from zero are shown. Inequality 
index values were reduced in magnitude compared to the base case (indicating reduced inequality) in all counter-
factual scenarios in Ottawa, Winnipeg, Calgary and Edmonton. In these cities, the reduction in inequality tended 
to be greater for the mortality counterfactual compared to the air pollution counterfactual. Inequality index values 
differed significantly from the base case for all mortality counterfactual scenarios in Calgary, and for mortality 
counterfactual scenarios related to prevalence of identifying as an Indigenous person in Edmonton (p < 0.05). 
Results were less consistent in Montreal, Toronto and Vancouver. The change in spatial distribution of PM2.5 

Figure 2. Distribution of demographic characteristics, baseline mortality rates, air pollution concentrations and air pollution attributable mortality rates by census tract 
in Calgary; quintiles as cutpoints. LICO = Low Income Cut-Off. Created with R tmap package.
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and NO2 attributable mortality in Calgary according to air pollution and baseline mortality counterfactuals is 
shown in Figure 6. Interactive maps of counterfactual analyses for all cities are available at https://apinequality.
shinyapps.io/inequality/.

4. Discussion
In our analysis of the distribution of air pollution attributable mortality rates within Canadian cities, we found that 
CTs with a higher prevalence of low income and Indigenous identity had significantly higher air pollution attrib-
utable mortality. Inequality index, Atkinson index, and Gini coefficient values were consistent in revealing differ-
ent degrees of inequality among the cities. Counterfactual analysis indicated that reducing inequality in baseline 

Figure 3. Percent increase in PM2.5 and NO2 attributable mortality per interquartile range increase in census tract prevalence of age ≥ 65, income < Low Income 
Cut-Off and identifying as an Indigenous person, by city and pooled across cities. Based on conditional autoregressive multivariate models including the three variables 
and accounting for spatial autocorrelation. Figure created with R metafor package using results generated by the CARBayes package.

https://apinequality.shinyapps.io/inequality/
https://apinequality.shinyapps.io/inequality/
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mortality rates tended to have a greater impact on reducing inequality in air pollution attributable mortality than 
reducing inequality in air pollution concentrations. To our knowledge, our study is the first to report inequality 
in the distribution of air pollution attributable mortality by prevalence of both low income and identification as 
an Indigenous person. Our results were generally consistent among multiple methods of assessing the extent and 
sources of inequality in air pollution attributable mortality. In particular, inequality tended to be least for PM2.5 
concentrations, somewhat greater for NO2 concentrations (NO2 is well known to be more spatially heterogeneous 
than PM2.5 (Wang et al., 2020)), greater for baseline mortality rates, and greatest for PM2.5 and NO2 attributable 
mortality. Not surprisingly, the magnitude of inequality in air pollution attributable mortality reflects compound-
ing of the magnitudes of inequality in baseline mortality rates and air pollution concentrations.

We found that the degree of inequality varied between cities. Inequality tended to be least in Montreal, Toronto 
and Vancouver compared to the other cities. Each city has a unique physical and human geography which could 
explain the observed differences. Montreal is an island bounded on all sides by the St. Lawrence River, Toronto 

Figure 4. Heatmap of inequality index values for baseline mortality rate/100,000 population, PM2.5 concentration, NO2 concentration, PM2.5 attributable 
mortality/100,000 population and NO2 attributable mortality/100,000 population by city and population characteristic. GTE = greater than or equal to, LTLICO = less 
than Low Income Cut-Off, LTHS = less than High School. Only values significantly different from zero are shown. Figure created with R pheatmap package using 
inequality index values generated by the rineq package.
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is bounded on one side by Lake Ontario, and Vancouver is bounded by the Pacific Ocean, Fraser River and North 
Shore mountains. Montreal, Toronto and Vancouver are also the most populous and are characterized by greater 
average population density (respectively 3,902, 4,332, and 2,235 persons per km 2) than the other cities included 
in our analysis (1,146–1,703 per km 2). We hypothesize that greater density may be associated with greater mixing 
of population subgroups relative to the distribution of baseline mortality rates and air pollution exposure, reduc-
ing the degree of inequality in air pollution attributable health impacts. Alternatively, these findings could be 
influenced by the sensitivity of results to the level of spatial aggregation, that is, the modifiable areal unit problem 
(Tuson et al., 2019). Particularly in denser cities and denser areas within cities, the variables of interest may vary 
at a smaller scale or according to different boundaries than CTs. Nonetheless, we found that the 10 highest air 
pollution attributable mortality rates were observed in relation to NO2 in eight CTs in Montreal, one in Winnipeg 
and one in Vancouver. Several of the Montreal CTs and the Winnipeg and Vancouver CTs in particular corre-
sponded with neighborhoods (Point Douglas and the Downtown East Side respectively) that experience a high 
prevalence of severe poverty and homelessness (Manitoba Collaborative Data Portal, 2019; Mauboules, 2020), 
potentially further increasing residents' vulnerability and exposure to air pollution.

Counterfactual analysis revealed that reducing inequality in baseline mortality rates tended to result in greater 
reductions in disparities in air pollution attributable mortality than reducing inequality in air pollution exposure. 
These findings are consistent with our observation that inequality indices generally indicated greater inequality in 
baseline mortality rates than air pollution concentrations. To the extent that variability in baseline mortality rates 
is partially determined by variability in air pollution exposure, baseline mortality counterfactuals do not entirely 
exclude the contribution of inequality in air pollution exposure. Nonetheless, since the air pollution attributable 
fraction is small, the findings highlight the importance of accounting for neighborhood level variability in both 
baseline mortality and air pollution exposure in analyses of the distribution of air pollution attributable health 
impacts. These findings also suggest that reducing inequality in baseline mortality rates by improving overall 
health status in disadvantaged communities merits greater consideration as an important strategy for reducing 
inequality in the distribution of air pollution attributable mortality.

While previous studies have documented inequality in the distribution of air pollution exposure within Canadian 
cities, most have focused on single cities, or only the three largest cities. In an analysis of Canada's three largest 
cities (Montreal, Toronto, Vancouver), Pinault et al. (2016) found that dissemination areas (DAs) with a larger 
proportion of the population that did not speak English or French had significantly greater exposure to NO2. 
Measures of social deprivation were also significantly associated with NO2 exposure, but associations differed by 
city (Pinault et al., 2016). In a similar analysis focused on children, those in lower income DAs had significantly 
greater NO2 exposure, and in some cities, children living in DAs with larger proportions of lone parent families 
and people of color (“visible minority”) also had greater exposures (Pinault, 2016). Earlier analyses employing 

Figure 5. Heatmap of inequality index values for PM2.5 and NO2 attributable mortality/100,000, comparing base case, 
pollutant counterfactual and mortality counterfactual. All analyses including the base case employed income quintile specific 
hazard ratios for the association between air pollution and mortality. LTLICO = less than Low Income Cut-Off. Only values 
significantly different from zero are shown. Figure created with R pheatmap package using inequality index values generated 
by the rineq package.
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similar methods in the industrial city of Hamilton, Canada found that total suspended particulate matter concen-
trations were significantly negatively associated with dwelling values, and significantly positively associated 
with prevalence of low income and unemployment (Jerrett et al., 2001), but that inequalities narrowed over time 
(Buzzelli et al., 2003). Doiron et al. (2020) conducted an analysis of multiple built environment features by postal 

Figure 6. Observed and counterfactual spatial distribution of air pollution attributable mortality per 100,000 population in 
Calgary. Only census tracts above the median prevalence of income less than the low income cut-off (LICO) and identifying 
as an Indigenous person are shaded. Counterfactual scenarios set air pollution concentrations or baseline mortality rates to 
the mean observed in census tracts below the median prevalence of income less than the low income cut-off (LICO) and 
Indigenous identity. Created with R tmap package.
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code in Montreal, Toronto and Vancouver, and reported that postal codes characterized by greater deprivation 
were less walkable, and had higher NO2 concentrations and lower vegetation indices reflecting green space. 
Crouse et al. (2009) reported that while some Montreal neighborhoods were characterized by a high prevalence 
of deprivation together with high NO2 concentrations, this was not true of all deprived neighborhoods, and some 
wealthy neighborhoods also had high NO2 concentrations. This finding is consistent with our hypothesis that in 
some cities, there may be greater mixing of population subgroups, influencing the distribution of baseline mortal-
ity and air pollution exposure. Giang and Castellani computed concentration index values for PM2.5, NO2, carbon 
monoxide, ozone and sulfur dioxide individually and as a joint hazard index in Montreal, Toronto and Vancouver 
and reported values that were generally of comparable direction and magnitude relative to our findings (Giang & 
Castellani, 2020). They also found greater inequality in NO2 compared to PM2.5 concentrations.

In a study similar to ours in the Bay area of California, using census block group (CBG) level mortality rates and 
high resolution exposure estimates, Southerland et al. (2021) found that air pollution attributable mortality rates 
varied by 38 and 5 fold respectively for NO2 and PM2.5 among CBGs. We observed somewhat greater variability 
in both PM2.5 and NO2 attributable mortality (up to 80–90 fold in Montreal). Attributable mortality rates varied 
substantially depending on the source of the exposure data in Southerland et al. (2021) analysis, and aggregated 
to the county level were approximately 15% higher based on CBG level versus county level mortality rates. In 
addition, applying CBG versus county level baseline mortality rates resulted in 3–5 times more variability in air 
pollution attributable mortality (Southerland et al., 2021). Finally, CBGs where greater than 50% of the popula-
tion was minority accounted for 75% of the air pollution attributable mortality burden (Southerland et al., 2021).

Another similar study examined the distribution of PM2.5 attributable mortality and morbidity among neighbor-
hoods, zip codes and wards in Washington DC, employing neighborhood and zip code level baseline mortality 
and morbidity rates (Castillo et  al.,  2021). Castillo et  al.  (2021) found that PM2.5 attributable mortality and 
morbidity were negatively associated with income and educational attainment, and positively associated with 
prevalence of Black residents, poverty and unemployment. Similar to our findings, Castillo et al. (2021) noted 
that spatial patterns of air pollution attributable mortality paralleled those of baseline mortality rates. An earlier 
study in Houston, employing county level baseline mortality rates also found that census tracts with lower average 
incomes experienced greater PM2.5 and NO2 exposure and higher air pollution attributable mortality (Sohrabi 
et al., 2020). A study in Detroit, employing air pollution concentrations mapped to CBG level and zip code level 
baseline mortality and morbidity rates, evaluated inequalities in air pollution attributable mortality and morbidity 
using the Atkinson index and inequality index (Martenies et al., 2017). They reported Atkinson index values of 
0.003 and 0.009 for PM2.5 and NO2 exposure respectively, and 0.045 and 0.137 for PM2.5 and NO2 attributable 
health burden respectively. These values are somewhat larger than what we observed, but are consistent in that 
we also observed larger values for NO2 than for PM2.5, and for attributable burden than for exposure. Inequality 
index values were of comparable magnitude to what we observed, and were particularly strongly negative in 
relation to point source PM2.5 and percent Latino (−0.117), and mobile source NO2 and percent of households in 
poverty (−0.084).

Rosofsky et al.  (2018) examined trends in inequality in PM2.5 and NO2 exposure within Massachusetts at the 
CBG level by racialized group membership, income and educational attainment. They reported Atkinson index 
values for PM2.5 and NO2 respectively of approximately 0.0001 and 0.003 based on racialized group membership 
and <0.0001 and 0.001 based on income and education (Rosofsky et al., 2018). An upward trend in inequality 
was observed for NO2, while there was more year to year variability for PM2.5, despite decreasing trends in 
concentrations of both pollutants (Rosofsky et al., 2018). Within city Atkinson index values by Indigenous  iden-
tity in our analysis were comparable to their results for racialized group membership, while for low income, 
we observed larger values in some cities, particularly for NO2. Clark et al. (2014) examined inequality in NO2 
concentrations by income at the CBG level nationally in the U.S. and reported Atkinson index values of 0.009 in 
small urban areas, 0.015 in medium urban areas and 0.018 in large urban areas, somewhat larger than the values 
we observed by income in most cities except Ottawa.

To our knowledge, only one previous study applied population subgroup specific HRs and baseline mortality 
rates in examining the distribution of air pollution attributable mortality. Spiller et al. (2021) estimated PM2.5 
attributable mortality by US county using mortality rates and HRs specific to Black populations. They reported 
that employing population-wide rather than subgroup specific parameters dramatically underestimated impacts 
in Black populations as well as disparities between Black and white populations, although it did not affect the 
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total number of attributable deaths (Spiller et al., 2021). We found that employing income specific HRs had less 
impact on inequality in PM2.5 attributable mortality than NO2 attributable mortality.

Finally, Fann et al. (2018) conducted a county level analysis in the US and found that inequality in the distribution 
of PM2.5 attributable mortality, quantified using the Atkinson index and Gini coefficient declined between 2005 
and 2014. 2014 values of the Atkinson index and Gini coefficient by educational attainment were approximately 
0.02 and 0.1 respectively for PM2.5 exposure and attributable fraction. In contrast, based on groupings by income 
and Indigenous identity, we observed Atkinson index values of 0.0–0.001 for PM2.5 exposure, 0.001–0.033 for 
PM2.5 attributable mortality, 0.0–0.018 for NO2 exposure and 0.00–0.045 for NO2 attributable mortality. We 
observed Gini coefficient values of 0.00–0.05 for PM2.5 exposure, 0.04–0.22 for PM2.5 attributable mortality, 
0.01–0.18 for NO2 exposure and 0.03–0.27 for NO2 attributable mortality. These results indicate that inequality in 
PM2.5 and NO2 attributable mortality within some Canadian cities exceeds inequality in exposure and attributable 
fraction between US counties.

Strengths of our analysis compared to previous literature include analysis of multiple cities, which allowed us to 
discern differences in the magnitude and drivers of inequality between cities, and application of multiple methods 
for examining the magnitude and sources of disparities among population groups. Applying multiple methods 
permitted us to compare our findings to previous literature employing differing methods, triangulate our results 
and evaluate their utility in future analyses of environmental injustice and environmental racism. Multivariate 
regression models accounting for spatial autocorrelation allowed us to attempt to isolate the independent effects 
of individual variables reflecting potential sources of inequality. Of the inequality metrics, the inequality index 
demonstrated greater variability than the Atkinson index or Gini coefficient, potentially reflecting greater sensi-
tivity. In the context of regulatory impact assessments, the estimated change in the inequality index value in rela-
tion to a proposed policy could be used to quantify distributional impacts. Analysis of counterfactual scenarios 
permitted us to evaluate the relative contributions of inequality in exposure and baseline mortality rates reflecting 
underlying health status to disparities in air pollution attributable mortality, highlighting the possibly underappre-
ciated role of inequality in underlying health status.

Limitations of our study include the incomplete nature of the low income variable, which does not capture all 
aspects of economic security, such as wealth, the potential for air pollution gradients to exist that might not be 
fully resolved by the exposure data, and possible numerator-denominator bias with respect to under-counting 
of urban Indigenous populations, but not deaths (Smylie & Firestone, 2015). Our finding that inequality in air 
pollution attributable mortality was driven to a greater extent by inequality in baseline mortality rates than in air 
pollution exposure could be sensitive to the relative spatial resolution of baseline mortality rate and air pollu-
tion exposure data. If exposure data were more highly spatially resolved, our findings in this regard may have 
differed. However, NO2 data were already highly resolved (30 m × 30 m), and there was little spatial variability in 
PM2.5. Since the spatial distribution of NO2 concentrations was based on a LUR for a single year, estimated NO2 
concentrations may not reflect changes in the spatial distribution of sources of NO2 over time. However, there is 
evidence that spatial gradients in traffic-related air pollutants such as NO2 tend to be stable over time (Cesaroni 
et al., 2012; de Hoogh et al., 2018; Eeftens et al., 2011). Estimates of air pollution attributable mortality were 
missing for 3.8% of CTs (0.9% due to missing baseline mortality rate and 2.9% which we excluded due to small 
(<1,000) or missing population), varying from 0% in Calgary to 6.0% in Edmonton. If the probability of being 
missing is not random, our results could be biased. However, our results were not sensitive to exclusion of indi-
vidual cities from the analysis. A sensitivity analysis revealed that, not surprisingly, employing a concentration 
response function specific to low income populations increased the degree of disparity in air pollution attributa-
ble mortality, particularly for NO2. Additional research is needed to quantify differences in air pollution related 
mortality risks in Canada, particularly by racialized group membership, and accounting for the intersection of 
lower SES and racialized group membership.

5. Conclusions
We observed significant disparities in air pollution attributable mortality within Canadian cities, in relation to 
the prevalence of low income and Indigenous identity. The magnitude of disparities differed between cities, 
suggesting that factors unique to individual cities may play an important role in driving observed inequality. 
The inequality (concentration) index provided a sensitive measure of inequality that could be readily applied 
in regulatory impact assessments to examine distributional impacts. In counterfactual analyses, disparities in 
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air pollution attributable mortality tended to be reduced to a greater degree by reducing disparities in baseline 
mortality rates than reducing disparities air pollution exposure. This highlights the importance of accounting for 
neighborhood level variability in both baseline mortality and air pollution exposure in analyses of the distribution 
of air pollution attributable health impacts, and suggests that reducing inequality requires reducing disparities in 
both baseline mortality risk and air pollution exposure.
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