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Abstract
Summary: Mass spectrometry (MS)-based proteomics has become the most powerful approach to study the proteome of given biological and
clinical samples. Advancements in sample preparation and MS detection have extended the application of proteomics but have also brought
new demands on data analysis. Appropriate proteomics data analysis workflow mainly requires quality control, hypothesis testing, functional
mining, and visualization. Although there are numerous tools for each process, an efficient and universal tandem analysis toolkit to obtain a quick
overall view of various proteomics data is still urgently needed. Here, we present DEP2, an updated version of DEP we previously established,
for proteomics data analysis. We amended the analysis workflow by incorporating alternative approaches to accommodate diverse proteomics
data, introducing peptide-protein summarization and coupling biological function exploration. In summary, DEP2 is a well-rounded toolkit
designed for protein- and peptide-level quantitative proteomics data. It features a more flexible differential analysis workflow and includes a user-
friendly Shiny application to facilitate data analysis.

Availability and implementation: DEP2 is available at https://github.com/mildpiggy/DEP2, released under the MIT license. For further informa-
tion and usage details, please refer to the package website at https://mildpiggy.github.io/DEP2/.

1 Introduction

Protein is the executor of life activity for all living organisms.
It is now widely acknowledged that the protein expression is
not linearly related to transcriptional level (Liu et al. 2016). In
addition, protein-protein interaction and post-translation
modifications (PTMs) such as phosphorylation and ubiquiti-
nation regulate protein stability, activity, and localization
(Santucci et al. 2015, Yue and Lopez 2020). With these varia-
bles, it is insufficient to infer proteome merely from transcrip-
tome analysis, although RNA sequencing has made
significant advancements. Currently, liquid chromatography–
mass spectrometry (MS)-based proteomics is the most power-
ful approach for studying proteome. Data analysis in
MS-based quantitative proteomics study involves two major
steps. First, upstream software, such as MaxQuant, is used to
identify and quantify matched peptides from spectrums and
subsequently aggregate peptide-level abundance into protein
abundance (Sinitcyn et al. 2018). Second, significant candi-
dates are classified through hypothesis testing for downstream
analysis. However, the latter step is restrained by the

requirement of bioinformatics analysis, which is often lacking
in most wet labs.

Previously, we developed Differential Enrichment analysis
of Proteomics data (DEP) (Zhang et al. 2018), a package pro-
vides a complete pipeline for differential expression/enrich-
ment analysis with moderated t-test from limma for
proteomics data (Ritchie et al. 2015). Although DEP has been
widely used by hundreds of labs, it still remains a few draw-
backs: (i) DEP is designed for analyzing MaxQuant results
and has specific requirements for input file format. Result files
from data-independent acquisition (DIA) analysis, such as
Spectronaut, DIA-NN are not compatible with DEP; (ii) DEP
does not support analysis on PTM-related proteomics (e.g.
phosphoproteomics, ubiquitylomics), which relies on both the
abundance and site information of modified peptides; and (iii)
DEP lacks biological interpretation methods, such as func-
tional enrichment and protein–protein interaction network.
While software and packages such as Perseus, ProteoMill,
and ProVision have combined statistical test with functional
analysis (Tyanova et al. 2016, Gallant et al. 2020, Ryden
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et al. 2021), most of them show limitations in terms of cus-
tomization and accessibility. For instance, Perseus only pro-
vides a limited selection of imputation and statistical test
methods, offering left-shifted imputation combined with t-test
or ANOVA. On the other hand, ProteoMill and ProVision
have strict format requirements for input files.

To provide a comprehensive workflow for proteomics data
analysis, we have upgraded DEP to DEP2, with improvements
in data compatibility, customizability, and functionality. DEP2
offers a wider range of options throughout the entire workflow
and constructs a new analysis pipeline that re-aggregates
protein-level abundance from peptide quantification, bypassing

Figure 1. Schematic overviews of DEP2 analyses and built-in application. (A) Functionalities of DEP2 include data processing, statistics test, post-analysis,

and result visualization. (B) The Shiny application is modularized, with separate modules for omics pipelines and downstream analyses. The application

can be extended through the joint use of modules.
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the summarization results from upstream software. This
pipeline reduces the impact of missing values by implementing
an earlier peptide-level imputation (Lazar et al. 2016) and
also enhances quantitative accuracy through the selection of
appropriate aggregation strategy (Sticker et al. 2020).
Furthermore, we have integrated downstream biological
analysis tools to facilitate functional interpretation. Finally,
we have redesigned an all-in-one Shiny (https://shiny.posit.co)
application under modular design for interactive analysis.

2 Results

The overall goal of DEP2 is to improve efficiency and remove
barriers in proteomics data analysis. DEP2 provides a repro-
ducible tandem analysis workflow for proteomics datasets, in-
cluding data processing, imputation, hypothesis testing, result
visualization, and downstream biological function explora-
tion (Fig. 1a). In DEP2, we have expanded the workflow in
steps to ensure its flexibility for various quantitative results
with distinct characteristics.

DEP2 accepts input in either peptide- or protein-level
quantitation and supplies a reshape function to handle re-
sult files in both wide and long format tables. Following
data reshaping, DEP offers three differential analysis pipe-
lines for various proteomics results (Fig. 1a). The first pipe-
line, the classical approach modified from DEP, is designed
for protein group quantitative results. The abundance ma-
trix is extracted and filtered according to identification in-
formation and missing occupancy. Then, data are
normalized by variance stabilizing normalization, a proven
normalization method for proteomics (Valikangas et al.
2018), followed by data imputation and a moderated t-test
from limma. The second pipeline focuses on PTM-specific
proteomics based on modified peptide abundance, utilizing
the modification sites as identifiers. The third pipeline
aggregates protein-level abundance from peptide quantita-
tive results. DEP2 integrates three protein aggregation
strategies from package QFeatures (https://github.com/
RforMassSpectrometry/QFeatures): Tuckey’s median pol-
ish, which calculates an overall median and sample effect
(Tukey 1977); robustSummary (the summarization method
in MSqRobSum), which aggregates protein intensities using
robust regression (Sticker et al. 2020); and total sum, which
simply sums up peptide quantitative data. In addition, we
have constructed a workflow for RNA counts data based
on DESeq2 for multi-omics data analysis (Love et al. 2014).

To highlight the biological information from omics analysis
results, DEP2 integrates three downstream biological explora-
tion analyses (Fig. 1a): functional enrichment, protein–protein
interaction (PPI) network prediction, and expression pattern
clustering. Functional enrichment involves over-representation
and gene set enrichment analyses utilizing clusterProfiler (Wu
et al. 2021) in conjunction with genome annotation databases
such as gene ontology, Reactome, and MSigDB (Liberzon
et al. 2015, Fabregat et al. 2018, Gene Ontology 2019). The
PPI functionality constructs the network among a given pro-
tein/gene list based on STRING database (Szklarczyk et al.
2019). Expression pattern clustering utilizes c-means fuzzy
clustering to classify regulated features in time-course or
multiple-groups omics experiments.

Furthermore, we have updated the built-in Shiny applica-
tion in parallel with the functionality upgrades, making it
easy-to-use for researchers without programming experience.

To implement the extended analysis workflow, we have
restructured the app into modules and packaged different
parts of the workflow as individual analysis modules
(Fig. 1b). The analysis application is extendable by increasing
modules to tab panels, and each component can crosstalk
through global reactive values. Additionally, a log file that
comprises inputs, parameters, and results can be exported
after the completion of the pipeline in an omics module.
In short, the application is able to execute most analysis and
visualization functions in DEP2, including multi-omics com-
parisons, in an interactive and codeless way.

Finally, we have developed instructional materials, in the
form of embedded vignettes within DEP2, to offer essential
guidance for users. These vignettes demonstrate the omics
analysis pipelines and post-analysis functions of DEP2 using a
published research dataset of silicosis mouse model (Wang
et al. 2022). Furthermore, we utilized a benchmark dataset
created by spiking Escherichia coli and yeast proteomes into a
human background. This benchmark dataset is employed to
illustrate data import procedures for various quantitative
results and facilitate a comparative analysis between DEP2
and Perseus. The vignettes, along with help documents, are
also accessible on the package website.

3 Conclusion and discussion

Here, we launch DEP2, a package provides a comprehensive
proteomics analysis toolkit, upgraded from its predecessor,
DEP. DEP2 can handle a broader range of proteomics results,
and seamlessly integrates biological functional analysis with
differential analysis. Additionally, DEP2 incorporates a more
versatile Shiny application covering functionalities in the
package.

At the expense of versatility and compatibility, however,
DEP2 contains a maze of options in each step. In fact, the se-
lection of each step should consider many factors, such as ex-
periment design, data characteristic and equipment state.
Tools like StatsPro (Yang et al. 2022) provide an evaluation
platform for statistical approaches, which may help research-
ers to tune analysis.
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