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Significance

One common observation in 
memory research is the 
significant individual differences 
in memory. Such differences have 
traditionally been attributed to 
the spontaneous fluctuation of 
attention during encoding. 
Applying the cross- subject neural 
representational analytical 
approach to simple and static 
stimuli, we found several factors 
that contributed differentially to 
individuals’ memory ability and 
content. Specifically, the 
individual- to- group 
synchronization in brain 
activations, which may reflect the 
fluctuation of attention, predicted 
individuals’ memory ability. In 
contrast, the common activation 
patterns between participants, 
which reflect their shared 
reconstructions of learning 
materials, predicted their shared 
memory content. These results 
have both theoretical and 
methodological implications for 
our understanding of the nature 
of human episodic memory.
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Individuals generally form their unique memories from shared experiences, yet the neu-
ral representational mechanisms underlying this subjectiveness of memory are poorly 
understood. The current study addressed this important question from the cross- subject 
neural representational perspective, leveraging a large functional magnetic resonance 
imaging dataset (n = 415) of a face–name associative memory task. We found that indi-
viduals’ memory abilities were predicted by their synchronization to the group- averaged, 
canonical trial- by- trial activation level and, to a lesser degree, by their similarity to the 
group- averaged representational patterns during encoding. More importantly, the mem-
ory content shared between pairs of participants could be predicted by their shared local 
neural activation pattern, particularly in the angular gyrus and ventromedial prefrontal 
cortex, even after controlling for differences in memory abilities. These results uncover 
neural representational mechanisms for individualized memory and underscore the 
constructive nature of episodic memory.

episodic memory | memory encoding | neural representation | intersubject analysis | fMRI

When presented with the same stimuli and instructions for a memory task, participants 
vary significantly in how many items they can remember (i.e., memory ability) and 
which items/details they remember (i.e., memory content) (1–5). Individual differences 
in memory abilities have been linked to many factors, such as the processing strategies 
(3), cognitive factors (6), representational dimensions (4), and neural anatomies (7) 
and activities (8, 9). Nevertheless, little is known about factors involved in individual 
differences in memory content (e.g., why participants of similar memory ability may 
remember different items).

Using within- subject subsequent memory paradigm (i.e., contrasting remembered vs. 
forgotten items) to examine the brain activity (10) and neural pattern similarity (11) 
during encoding, extant studies have revealed two important factors that determine which 
materials would be remembered. One factor is the fluctuation of the attentional state 
during the experiment (12). It has been argued that a higher level of attention would 
increase both the readiness to learn (13) and the fidelity of stimulus representations 
(14–16), which in turn would lead to better memory. Extending the attention account 
of the subsequent memory effect to individual differences in memory content, we would 
expect that participants with different patterns of attention fluctuation would remember 
different items.

In addition to attention (and its consequences for readiness to learn and the fidelity of 
representations), emerging studies have revealed another important factor influencing 
memory. i.e., the constructive neural transformation of the learning materials (17–19). 
For example, one recent study revealed that greater constructive neural transformation 
from perceptual to semantic representations during encoding was associated with better 
subsequent memory (20). Since this reconstruction involves an effective interaction 
between the learning materials and each participant’s existing long- term knowledge (21), 
we expect each participant to conduct their own unique neural transformation of the 
stimuli and consequently form their unique memory content. Consistently, it has been 
shown that individuals’ unique neural organization of semantic memory predicted their 
false memory better than did the group- averaged memory representations (2).

In sum, existing studies suggest that individualized memory content might be due 
to each individual’s spontaneous and desynchronized fluctuation of attention and/or 
their unique constructive neural transformation. One promising approach to examining 
these two factors’ roles in individualized memory content is to use a cross- participant 
analysis of shared memory content (SMC) and neural responses. This approach involves 
two steps. First, the degree of SMC is quantified for each pair of participants, which 
theoretically ranges from 0% (when two participants remember none of the same items) 
to 100% (when two participants remember exactly the same items). Second, the neural 
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mechanisms are examined by linking the similarity in memory 
content to the similarity in neural responses, including the inter-
subject synchronization of neural activities (22) and shared neu-
ral representations (23–25).

Using cross- participant analyses of neural responses, existing 
studies have revealed novel cross- participant neural indices (neural 
synchronization and shared neural representations) that predict 
subsequent memory and the engagement of attention. Greater 
synchronization in the brain responses (22, 26–28) and more 
shared neural representations (23, 25) have been found for sub-
sequently remembered items than for forgotten items. It has been 
argued that synchronized activity and shared representations indi-
cate a higher level of attention (24, 28, 29). Consistently, research 
has shown that the degree of intersubject synchrony is positively 
correlated to measures of attention such as the self- reported level 
of task engagement (28) and interest in the stimuli (26). The 
synchrony is reduced when participants shift their attention away 
from external stimuli toward an internal task (27).

The current study used the cross- participant approach to exam-
ine individual differences in memory content as well as those in 
memory ability. In addition to examining the group- averaged 
subsequent memory effect, we further used an individual differ-
ence approach to link the intersubject (for each pair of partici-
pants) neural measures to their behavioral performance. 
Importantly, from the constructive perspective of memory, the 
pair- level (but not the group- averaged) measure of intersubject 
neural synchronization and shared neural representations may 
reflect either 1) their engagement of common cognitive processes 
and neural representations or 2) their shared reconstruction of 
learning materials that differs from that of other pairs of partic-
ipants. One way to disambiguate these mechanisms is to sepa-
rately examine individual- to- group and intersubject similarities. 
Specifically, as the group- averaged neural activity and representa-
tions are supposed to reflect the canonical stimulus processing, 
the individual- to- group similarity could reflect overall engage-
ment of attention and the fidelity of stimulus representations, 
thus would predict individuals’ memory abilities (30). In con-
trast, the intersubject similarity, particularly after controlling the 
group- averaged neural activity and representations, would reflect 
each pair of participants’ shared reconstruction of learning mate-
rials and predict their SMC (2).

Using a large fMRI dataset (n = 415) of a face–name associative 
memory task, the current study tested these hypotheses by sys-
tematically examining the roles of individual- to- group similarity 
and intersubject similarity in accounting for individual differences 
in memory content and ability. Our results revealed that memory 
ability was primarily predicted by individual- to- group similarity, 
whereas SMC was primarily predicted by intersubject similarity. 
These results uncover dissociated intersubject neural mechanisms 
for individualized memory ability and memory content and con-
tribute to a deeper mechanistic understanding of individual dif-
ferences in episodic memory.

Results

Individual Differences in Memory Ability and Memory Content. 
In this study, participants (n = 415) were asked to remember 
30 unfamiliar face–name pairs. Each face–name association was 
studied twice within one scanning run with an interrepetition 
interval ranging from 8 to 15 trials. To better measure individual 
differences, the stimuli were presented in the same order, and 
participants were asked to perform the same encoding task 
(i.e., making a subjective judgment on the fitness of face- name 
associations). We used a slow event- related design (12 s for 

each trial) to better estimate the single- trial blood oxygen level- 
dependent (BOLD) responses (Fig. 1A). To prevent participants 
from further processing the face–name pairs after encoding, 
they were asked to perform a self- paced perceptual orientation 
judgment task for 7.5 s before the subsequent trial started.

Subjects took a memory test approximately 24 min after learn-
ing and were asked to choose the correct given name for each face 
from three candidate names or indicate “new” if they had not 
studied the face before. To quantify memory ability, we calculated 
the associative recognition rate (p_association) by using the fol-
lowing formula: p_association = Z(associative hit rate) − 
Z(associative miss rate), which was the proportion of recognized 
faces associated with correct names (i.e., associative hit: choosing 
the correct name for studied face) subtracted by the proportion 
of recognized faces associated with incorrect names (i.e., associa-
tive miss: choosing the incorrect name for studied face). As shown 
in Fig. 1B, memory ability varied significantly across participants, 
ranging from −1.83 to 3.32, with a mean ± SD of 0.42 ± 0.89, in 
a near- normal distribution (skewness = 0.30, kurtosis = −0.12).

To quantify the degree of SMC across participants, we first 
defined the old faces recognized with correct names as remembered 
(i.e., scored 1) and all other old faces as forgotten (i.e., scored 0) 
and then calculated the Manhattan distance (MD) of the memory 
score across all items (n = 30 items) for each pair of participants. 
The MD is the sum of the absolute difference of each item’s mem-
ory score between two participants, which is calculated using the 
following formula: MD = |x1 – y1| + |x2 – y2| + … + |xn – yn|, in 
which x, y represent two different participants and n represents 
the number of items. MD in memory content indicates the level 
of nonSMC, so we reversed this index by subtracting it from the 
theoretical maximal distance (i.e., 30) and created an intuitive 
index of SMC (higher numbers indicate more overlapping mem-
ory contents between two participants). As shown in Fig. 1C, SMC 
varied significantly across participant pairs (ranging from 2 to 29 
with a mean ± SD of 15.848 ± 3.067), and the data also followed 
a normal distribution (skewness = 0.073, kurtosis = −0.048). 
Finally, we calculated the averaged memory score across partici-
pants for each item (Methods), which reflects the memorability of 
the materials (Fig. 1D). We found that the individuals’ memory 
content did not resemble the pattern of memorability (Fig. 1E), 
again suggesting significant variabilities in individuals’ memory 
content.

Intersubject Pattern Similarity (ISPS) Predicted Subsequent 
Memory. We then examined whether intersubject neural 
representations could predict individual differences in memory 
ability and content. As a first step, we examined whether we could 
replicate the subsequent memory effect from an intersubject 
perspective. Previous studies using naturalistic stimuli have found 
that subsequently remembered events showed a higher intersubject 
neural signal synchronization (29, 31) and ISPS (24) than did 
forgotten events. Since we used faces as stimuli and each item 
was only presented for a few seconds, the current study examined 
the representational patterns instead of event- level time series. 
Specifically, we examined whether subsequently remembered items 
showed greater ISPS than did forgotten items.

For each item, we first averaged brain activity across the two 
repetitions and then calculated the ISPS (Pearson r) between two 
participants across voxels in a given region of interest (ROI). The 
correlations were then Z- transformed and averaged by type of 
items: those remembered by both participants (RR), those for-
gotten by both participants (FF), and those remembered by one 
participant but forgotten by the other (RF) (Fig. 2A). For the 
85,002 participant pairs (out of 85,905) who have at least one 
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RR and FF trial, there were on average 8.06 (±3.96, ranging from 
1 to 25) RR trials and 7.79 (±3.81, ranging from 1 to 24) FF 
trials. Since differences in the number of items between partic-
ipants might impact the reliability of ISPS estimation, we 
excluded the participant pairs with fewer than 6 RR or FF items, 
and then matched the number of trials in each condition by 

random sampling for the remaining 35,072 participant pairs. 
Following previous studies (23, 25, 32–35), we focused our anal-
yses on several predefined ROIs implicated for neural representa-
tions of episodic memory, including bilateral ventral visual cortex 
(VVC), bilateral hippocampus (HIP), bilateral angular gyrus 
(ANG), bilateral inferior frontal gyrus (IFG), the posterior 

Fig. 1. Experimental design and behavioral results of Exp 1. (A) Experimental design of the face–name associative memory task. (B) Distribution of memory 
ability (i.e., p_association, associative recognition rate); the black vertical dotted line represents the mean of all participants. (C) Distribution of the SMC; the black 
vertical dotted line represents the mean of all participant pairs. (D) The averaged memory performance across participants (i.e., memorability) of each face–name 
pair (30 pairs in total). (E) The distribution of correlations between each individual’s memory profile and the group- averaged profile (i.e., memorability); the black 
dotted line represents the mean correlation across participants (i.e., R = 0.26); the orange dotted line represents the correlation coefficient that is statistically 
significant at P < 0.05 (i.e., R = 0.36); the red dotted line represents the correlation coefficient that explains 50% of the variance (i.e., R = 0.71).

Fig. 2. ISPS and subsequent memory. (A) Schematic diagram depicting the calculation of ISPS for each item. (B) The location of the predefined ROIs. These 
regions were mapped onto the cortical surface using BrainNet Viewer (36). (C) The subsequent memory effect [higher ISPS for items remembered by both 
participants (RR) than that for items forgotten by both participants (FF)] was found in bilateral VVC, right ANG, left HIP, and vmPFC, whereas an opposite effect 
was found in the left IFG. Error bars represent SEs of the mean across participant pairs; *PHolm < 0.05, **PHolm < 0.01, ***PHolm < 0.001. lVVC, left ventral visual 
cortex; rVVC, right ventral visual cortex; lANG, left angular gyrus; rANG, right angular gyrus; lIFG, left inferior frontal gyrus; rIFG, right inferior frontal gyrus; lHIP, 
left hippocampus; rHIP, right hippocampus; PMC, posterior medial cortex; vmPFC, ventromedial prefrontal cortex.
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medial cortex (PMC), and the ventromedial prefrontal cortex 
(vmPFC) (Fig. 2B and Methods).

We found greater ISPS for the RR items than for the FF items 
in several brain regions, including the left VVC (ΔRR- FF = 0.0054, 
PHolm < 0.001, the PHolm was determined by permutation test with 
10,000 shuffles and Holm corrected for multiple comparisons, 
hereafter), right VVC (ΔRR- FF = 0.0050, PHolm < 0.001), right ANG 
(ΔRR- FF = 0.0014, PHolm < 0.001), left HIP (ΔRR- FF = 0.0016, PHolm 
< 0.001), and vmPFC (ΔRR- FF = 0.0011, PHolm < 0.001) (Fig. 2C). 
These results are consistent with a previous study (24) and confirm 
that shared representations across participants contribute to sub-
sequent memory. A reversed effect was found in the left IFG 
(ΔRR- FF = −0.0019, PHolm < 0.001; Fig. 2C), suggesting that remem-
bered items have more unique neural representations in the left 
IFG across individuals than forgotten items.

Individual- to- Group Similarities and Memory Ability. Having 
replicated the intersubject subsequent memory effect, we 
examined our core hypotheses that individual- to- group similarities 
in neural representations and activities contributed to memory 
ability and content (this section), and that intersubject similarities 
contributed to memory content (next section).
Individual- to- group similarity in neural representations predicted 
memory ability. To examine individual- to- group similarity in neural 
representations, we first generated a canonical representational 

matrix by averaging the neural response patterns across all 
participants. It should be noted that the first- order similarity 
(representational similarity for each item across participants, i.e., 
Fig. 2A) might be affected by the differences in the anatomy or 
anatomy- function alignments across participants. To mitigate this 
issue, we calculated the second- order pattern similarity (23, 25), 
reflecting the similarity of representational space when participants 
were processing the same set of stimuli. Specifically, we first 
calculated the representational similarity matrix (RSM, i.e., 
representational space) across 60 trials (30 items × 2 repetitions) 
for each ROI and each participant. These RSMs in each ROI were 
then averaged across all participants and used as the canonical 
representational pattern (Fig. 3 A, Left).

To confirm that our averaged similarity matrix is a reliable meas-
ure of canonical representational pattern, we randomly split the 
participants into two equal- sized groups (n = 207 for each group) 
and computed the correlation of the mean RSMs from the two 
groups. We performed this procedure 1,000 times and found that 
the group- averaged RSMs were highly reliable (Rs ranged from 
0.905 to 0.949) in all ROIs (SI Appendix, Fig. S1A). To examine 
the effect of sample size, we systematically increased the size of 
the selected sample from 20 to 200 in each half (step = 10; ran-
domly sampled 1,000 times for each condition). The stability of 
the canonical representational pattern increased significantly with 
the sample size (SI Appendix, Fig. S1B). Taking the left and right 

Fig. 3. Similarity to group- averaged representations and activities predicted individuals’ memory ability. (A) Schematic diagram depicting the calculation of 
individual- to- group neural similarity, including RSM and trial- level time series (TTS). For RSM (Left), we first performed representational similarity analysis (RSA) 
across all trials to generate an RSM for each participant (Step 1). The RSMs were then averaged across all participants to obtain the group- averaged RSM (Step 2). 
Finally, the individual- to- group representational similarity was obtained by correlating the individual’s RSM to group- averaged RSM (Step 3). For TTS (Right), we first 
averaged the activity across all voxels within an ROI to generate the trial- level time series (TTS) for each participant (Step 4). We then averaged the TTS across all 
participants to generate the group- averaged TTS (Step 5). Finally, individual- to- group similarity was obtained by correlating individuals’ TTS to the group- averaged 
TTS (Step 6). Corr, correlation. (B) The individual- to- group similarity of representation in bilateral ANG and vmPFC was significantly correlated with individuals’ 
associative memory performance. (C) Higher individual- to- group similarity of the TTS in bilateral ANG, left IFG, leff HIP, and PMC was associated with better 
associative memory performance. (D) Individual- to- group similarities of the RSM and TTS were significantly correlated in most ROIs, except for bilateral HIP and 
right IFG. *PHolm < 0.05, **PHolm < 0.01, ***PHolm < 0.001. (E) The unique contribution of individual- to- group similarity of the RSM and TTS to associative memory 
performance; *P < 0.05, **P < 0.01, ***P < 0.001. lVVC, left ventral visual cortex; rVVC, right ventral visual cortex; lANG, left angular gyrus; rANG, right angular 
gyrus; lIFG, left inferior frontal gyrus; rIFG, right inferior frontal gyrus; HIP, hippocampus; PMC, posterior medial cortex; vmPFC, ventromedial prefrontal cortex.

http://www.pnas.org/lookup/doi/10.1073/pnas.2308951120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2308951120#supplementary-materials
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ANG as examples, we achieved a reliability higher than 0.8 with 
200 participants in each group (SI Appendix, Fig. S1B).

We calculated the correlation between each individual’s RSMs 
and the group- averaged RSMs. Across ROIs, we found that the 
averaged correlations in the VVC was significantly higher than 
those in the PMC (lVVC: t = 22.997, PHolm < 0.001; rVVC:  
t = 22.088, PHolm < 0.001), HIP (left: t = 14.920, PHolm < 0.001; 
right: t = 17.457, PHolm < 0.001), ANG (left: t = 26.298, PHolm < 
0.001; right: t = 25.013, PHolm < 0.001), IFG (left: t = 21.919, 
PHolm < 0.001; right: t = 21.686, PHolm < 0.001), and vmPFC 
(lVVC: t = 14.718, PHolm < 0.001; rVVC: t = 13.381, PHolm < 
0.001) (SI Appendix, Fig. S2A, Left), suggesting that neural rep-
resentations were more variable across participants in the higher 
order regions than in the visual cortex.

Supporting our hypothesis, the correlational analysis showed 
that the more similar an individual’s RSM was to the group- averaged 
RSM in the left (R = 0.179, PHolm = 0.002) and right ANG (R = 
0.206, PHolm < 0.001) and vmPFC (R = 0.161, PHolm = 0.007), 
the higher the individual’s accuracy on the associative recognition 
task (Fig. 3B). A similar trend was found in the PMC (R = 0.112, 
P = 0.023, uncorrected). Moreover, the individual- to- group rep-
resentational similarity also predicted individuals’ item memory 
(d’_item) in the bilateral ANG (left: R = 0.205, PHolm < 0.001; 
right: R = 0.229, PHolm < 0.001), PMC (R = 0.171, PHolm = 0.003), 
and vmPFC (R = 0.233, PHolm < 0.001) (SI Appendix, Fig. S3, 
Left). Together, the above results show that individual- to- group 
similarity in neural representations predicts individuals’ memory 
ability.
Individual- to- group synchronization of neural activity predicted 
memory ability. In a further analysis, we examined whether 
individual- to- group synchronization of neural activity also 
contributed to individuals’ memory ability (30). We extracted 
the trial- level time series (TTS) in each ROI for each individual 
and then averaged them to form the group- averaged activity profile 
(Fig. 3 A, Right). Similar to the group- averaged representational 
pattern, we found that the group- averaged activity profile was 
highly reliable (Rs ranged from 0.692 to 0.865) in all ROIs 
(SI  Appendix, Fig.  S1C). With 200 participants, we achieved 
a reliability of 0.657 and 0.756 in the right and left ANG, 
respectively (SI Appendix, Fig. S1D).

Also similar to the representational pattern, we found that 
individual- to- group synchronization of neural activity in the VVC 
was significantly higher than that in the PMC (lVVC: t = 6.229, 
PHolm < 0.001; rVVC: t = 7.207, PHolm < 0.001), bilateral HIP (left: 
t = 4.480, PHolm < 0.001; right: t = 4.779, PHolm < 0.001), and 
bilateral IFG (left: t = 3.016, PHolm = 0.008; right: t = 7.953, PHolm 
< 0.001), but was lower than that in the right ANG (t = 4.212, 
PHolm < 0.001), and was comparable to that in the left ANG  
(t = −1.101, PHolm = 0.542) and the vmPFC (lVVC: t = −0.142, 
PHolm = 0.887; rVVC: t = 0.999, PHolm = 0.318) (SI Appendix, 
Fig. S2 A, Right).

By correlating the degree of individual- to- group synchroniza-
tion of neural activity with individuals' memory ability, we found 
that in the left (R = 0.242, PHolm < 0.001) and right ANG (R = 
0.214, PHolm < 0.001), left IFG (R = 0.132, PHolm = 0.043), left 
HIP (R = 0.134, PHolm = 0.043), and PMC (R = 0.167, PHolm = 
0.005), participants whose activity profiles were more synchro-
nized to the group- averaged activity profile showed better associ-
ative memory (Fig. 3C). The individual- to- group neural 
synchronization was associated with better item memory perfor-
mance in all ROIs (SI Appendix, Fig. S3, Right; Rs = 0.122 ~ 
0.317, PsHolm ≤ 0.013).
Using both individual- to- group similarity measures to predict 
memory ability. Interestingly, we found that the degree of 

individual- to- group similarities in representation and the degree 
of the individual- to- group synchronization in neural activity 
were highly correlated in most ROIs (Rs = 0.145 ~ 0.391, 
PsHolm ≤ 0.012), except for the right IFG (R = 0.029, PHolm = 1)  
and the bilateral HIP (left: R = 0.062, PHolm = 0.617; right:  
R = 0.021, PHolm = 1) (Fig. 3D), suggesting that the fluctuations 
of attention could affect the fidelity of stimulus representation 
and contribute to memory strength (15). To dissociate the effects 
of brain activity and stimulus representations on memory ability, 
we constructed regression models that included both measures 
to assess their unique contributions. Overall, individual- to- 
group synchronization in neural activity contributed more to 
memory ability than did the individual- to- group representational 
similarity, except for the vmPFC (Fig. 3E). In the left and right 
ANG, PMC, and vmPFC, both measures uniquely contributed to 
memory ability (Fig. 3E), indicating that activity synchronization 
and representational similarity might capture different aspects of 
stimulus processing, all of which contribute to successful memory 
encoding (15).
Individual- to- group similarities did not predict memory content. 
The above analyses supported our hypothesis that individual- to- 
group similarities in neural representations and activities predicted 
memory ability. Would they also predict one’s memory content, 
such that individuals showing overall higher similarity to the 
group- averaged response also showed higher similarity to the group- 
averaged memory profile (i.e., the memorability of items)? We 
found that individual- to- group similarity of neural representations 
was not related to individuals’ similarity to group- averaged memory 
pattern (Rs = −0.009 ~ 0.047 for different ROIs, Ps > 0.415, 
uncorrected). Similarly, the individual- to- group synchronization 
of neural activities did not predict individuals’ similarity to group- 
averaged memory pattern either (Rs = 0.051 ~ 0.130 for different 
ROIs, PsHolm > 0.080). These results suggest that individual- to- 
group similarity in neural response and representational pattern 
did not predict individuals’ memory content.

Intersubject Similarities in Representations and Activities 
Predicted Memory Content. Thus far, we have shown that the 
individual- to- group similarities in representational patterns and 
neural activities predicted individuals’ memory ability but not 
their memory content. In the following analysis, we tested the 
hypothesis that the intersubject similarity in neural representations 
and brain activities would predict memory content.
Intersubject similarity in neural representations predicted SMC. 
As described earlier, the SMC is quantified as the degree of 
overlapping memory contents between two participants. The 
ISPS was quantified using the global ISPS (gISPS), which is the 
Pearson correlation of the representational pattern between each 
pair of participants (Methods and Fig. 4 A, Left). This measure of 
ISPS is less affected by their differences in anatomical structure 
and anatomy- function correspondences for different participants.

Similar to the SMC reported in the previous section, we found 
that the gISPS varied significantly across participant pairs. Taking 
the left ANG as an example, we found that the gISPS varied 
from −0.260 to 0.396 across participant pairs, with a mean of 
0.045 ± 0.061. Further, we found that, similar to the results of 
individual- to- group similarity, the averaged gISPS in the VVC 
was significantly higher than that in the PMC (lVVC: Δ = 0.043, 
PHolm < 0.001; rVVC: Δ = 0.039, PHolm < 0.001), bilateral HIP 
(left: Δ = 0.029, PHolm < 0.001; right: Δ = 0.032, PHolm < 0.001), 
bilateral ANG (left: Δ = 0.049, PHolm < 0.001; right: Δ = 0.044, 
PHolm < 0.001), bilateral IFG (left: Δ = 0.042, PHolm < 0.001; right: 
Δ = 0.039, PHolm < 0.001), and vmPFC (lVVC: Δ = 0.029, PHolm < 
0.001; rVVC: Δ = 0.025, PHolm < 0.001) (SI Appendix, Fig. S2 B, 
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Left), again indicating that the representations in the higher order 
brain regions are more uniquely transformed than the representa-
tions in the perceptual areas.

Since similarities in both memory content and representational 
pattern were assessed using distance measures, we used the Mantel 
test with permutation to examine their associations and deter-
mined the significance level (Methods). Specifically, we used 
Pearson correlation to measure the relationship between gISPS 
and SMC and used the permutation test to determine the statis-
tical significance. We found a significant correlation between the 
degree of the SMC and shared representational patterns in most 
ROIs, including the left (R = 0.028, PHolm < 0.001) and right 
ANG (R = 0.022, PHolm < 0.001), left (R = 0.023, PHolm = 0.005) 
and right VVC (R = 0.019, PHolm = 0.016), vmPFC (R = 0.020, 
PHolm = 0.004), PMC (R = 0.017, PHolm = 0.003), and left IFG  
(R = 0.012, PHolm = 0.036) (Fig. 4B).

We performed several control analyses to validate the above 
results. First, individual differences in memory ability could con-
tribute to the measure of SMC (R = 0.40, P < 0.001). To control 
for individual differences in memory ability, we performed a par-
tial Mantel test by including the cross- participant differences in 
memory ability (p_association, associative recognition rate) as a 
covariate. The results again showed a significant positive correla-
tion between the SMC and shared neural representations in the 

left (R = 0.027, PHolm < 0.001) and right ANG (R = 0.027, PHolm 
< 0.001), left (R = 0.028, PHolm = 0.002) and right VVC  
(R = 0.024, PHolm = 0.003), vmPFC (R = 0.022, PHolm = 0.003), 
PMC (R = 0.017, PHolm = 0.003), and left IFG (R = 0.016, PHolm 
= 0.003) (SI Appendix, Fig. S4, Left).

Second, to demonstrate that our results were robust to dif-
ferent ways of quantifying memory performance, we reanalyzed 
the data using a fine- grained measure of memory performance. 
The old faces that were recognized with the correct name (i.e., 
association correct) were scored as 2, those recognized as old 
but with an incorrect name (i.e., item correct) were scored as 
1, and those recognized as new (i.e., forgotten) were scored as 
0. Results again showed a significant correlation between the 
SMC and shared neural representations in the left (R = 0.057, 
PHolm < 0.001) and right ANG (R = 0.049, PHolm < 0.001), left 
(R = 0.051, PHolm = 0.005) and right VVC (R = 0.049, PHolm = 
0.005), vmPFC (R = 0.058, PHolm < 0.001), and PMC  
(R = 0.051, PHolm < 0.001) (SI Appendix, Fig. S5, Left).

Third, to ensure that this shared memory was not associated 
with general processing strength due to attention and/or famili-
arity, we examined individual differences in the mean neural acti-
vation level in these ROIs. The differences in activation level across 
participants were not correlated with the degree of SMC (PsHolm 
> 0.9, corrected) in any regions.

Fig. 4. Intersubject similarity in representations and activities predicted SMC. (A) Schematic diagram depicting the calculation of gISPS and intersubject correlation 
(ISC) in TTS and their correlations with the SMC. To examine the relationship between gISPS and SMC (Left), we first performed representational similarity analysis 
(RSA) across all trials to generate an RSM for each participant (Step 1). The resultant individuals’ RSMs were then used to calculate cross- subject correlations to 
obtain gISPS (Step 2). Finally, the relationship between gISPS and SMC was examined by using the Mantel test (Step 3). To examine the relationship between 
ISC and SMC (Right), we first averaged the activity across all voxels within an ROI to generate TTS for each participant (Step 4). We then calculated cross- subject 
correlations of neural fluctuation by using the resultant individuals’ TTSs to obtain ISC (Step 5). Finally, the correlation between ISC and SMC was calculated 
by using the Mantel test (Step 6). Corr, correlation. (B) The gISPS in most ROIs, including the bilateral VVC and ANG, left IFG, PMC, and vmPFC, was significantly 
correlated with SMC. (C) The ISC in the right VVC, bilateral ANG, left IFG, and PMC was significantly correlated with SMC. (D) The gISPS was significantly correlated 
with ISC. *PHolm < 0.05, **PHolm < 0.01, ***PHolm < 0.001. The black dots represent 95% quantiles of permutations; thus, the black dot within a bar means the 
significant effect for the Mantel test. (E) The unique contribution of gISPS and ISC to SMCs in bilateral ANG, right VVC, left IFG, and PMC; *P < 0.05, **P < 0.01, 
***P < 0.001. lVVC, left ventral visual cortex; rVVC, right ventral visual cortex; lANG, left angular gyrus; rANG, right angular gyrus; lIFG, left inferior frontal gyrus; 
rIFG, right inferior frontal gyrus; lHIP, left hippocampus; rHIP, right hippocampus; PMC, posterior medial cortex; vmPFC, ventromedial prefrontal cortex.
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Fourth, in the above analyses, the two repetitions of a given 
item were separately coded in the RSM to better model the context 
and learning effects. In an additional analysis, we first averaged 
the activation patterns of the two repetitions for each item and 
then constructed an RSM based on the activation patterns of 30 
items. Using this RSM to calculate the gISPS, we found that the 
gISPS in the vmPFC (R = 0.017, PHolm = 0.018) was significantly 
correlated with SMC. In addition, the gISPS in the left (R = 0.012, 
P = 0.018, uncorrected) and right ANG (R = 0.01, P = 0.030, 
uncorrected), left IFG (R = 0.009, P = 0.035, uncorrected), and 
right VVC (R = 0.013, P = 0.025, uncorrected) were marginally 
related to SMC (SI Appendix, Fig. S6). The weaker effect suggests 
that the context and repetition effects also contribute to individual 
differences in memory content.

Finally, to ensure that the shared representations between partic-
ipants were not due to their similarity to the canonical representa-
tional pattern, we included the group- averaged RSM as a covariate 
when calculating the gISPS. Using this partial gISPS, which should 
reflect the unique neural transformations shared by each pair of 
participants, we still found that the gISPS was significantly related 
to SMC in most ROIs (Rs = 0.013 ~ 0.024, PsHolm ≤ 0.001; 
SI Appendix, Fig. S7, Left), except the right IFG (R = 0.005,  
P = 0.055, uncorrected) and bilateral HIP (left: R = 0.003, P = 0.165, 
uncorrected; right: R = 0.0005, P = 0.437, uncorrected). These results 
provide strong support for our hypothesis that the shared transfor-
mations of neural representations contribute to SMC.
Intersubject neural synchronization had a limited predictive power 
of SMC. To test whether two participants who showed synchronized 
fluctuation of attention would remember similar content, we also 
examined the intersubject correlation (ISC) of TTS (Methods and 
Fig. 4 A, Right). Comparisons of ISC across different ROIs showed 
that the ISC in the VVC was significantly higher than that in the 
PMC (lVVC: Δ = 0.017, PHolm < 0.001; rVVC: Δ = 0.020, PHolm 
< 0.001), bilateral HIP (left: Δ = 0.012, PHolm < 0.001; right: Δ = 
0.014, PHolm < 0.001), and bilateral IFG (left: Δ = 0.009, PHolm < 
0.001; right: Δ = 0.022, PHolm < 0.001) (SI Appendix, Fig. S2 B, 
Right). The right VVC showed higher ISC than the right ANG (Δ 
= 0.013, PHolm < 0.001) and vmPFC (Δ = 0.004, PHolm < 0.001), but 
the left VVC did not (lANG: Δ = −0.003, PHolm < 0.001; vmPFC: 
Δ = 0.00001, PHolm = 0.995). Again, these findings indicated that 
the brain activities in the higher order brain regions were more 
individualized than those related to the perceptual processing.

Using the Mantel test, we examined the correlations between 
synchronization of brain activity and SMC. This analysis revealed 
that the synchronization of brain activity in the left (R = 0.0245, 
PHolm < 0.001) and right ANG (R = 0.0163, PHolm = 0.005), PMC 
(R = 0.0155, PHolm < 0.001), right VVC (R = 0.0157, PHolm = 
0.008), and left IFG (R = 0.016, PHolm = 0.003) was significantly 
correlated with SMC (Fig. 4C). Validation analyses revealed that 
the associations remained significant in several ROIs after con-
trolling for memory ability, including the left (R = 0.0224, PHolm 
= 0.002) and right ANG (R = 0.0152, PHolm = 0.017), left IFG (R 
= 0.0155, PHolm = 0.021), and right VVC (R = 0.0177, PHolm = 
0.017) (SI Appendix, Fig. S3, Right), and remained significant in 
most ROIs when using fine- grained memory performance score, 
including the left (R = 0.057, PHolm = 0.002) and right ANG (R 
= 0.032, PHolm = 0.003), left (R = 0.027, PHolm = 0.015) and right 
IFG (R = 0.016, PHolm = 0.034), left (R = 0.030, PHolm = 0.006) 
and right VVC (R = 0.044, PHolm = 0.002), PMC (R = 0.030, PHolm 
= 0.002), and vmPFC (R = 0.028, PHolm = 0.014) (SI Appendix, 
Fig. S5, Right). However, when using partial correlation to control 
individuals’ similarity to group- averaged activity profile, the result-
ant partial ISC barely predicted SMC, except a marginal effect in 

the PMC (R = 0.009, PHolm = 0.060) and another marginal effect 
in the left IFG (R = 0.008, PHolm = 0.078) (SI Appendix, Fig. S7, 
Right). This result suggests that the effect of intersubject synchro-
nization in neural activation on SMC was mainly due to their 
synchronization to the group- averaged neural activities.
Using both intersubject measures to predict SMC. We further 
found that the two intersubject neural measures (intersubject 
synchronization of brain activity and shared neural representations) 
were significantly correlated with each other in all ROIs (Rs = 
0.009 ~ 0.372, PHolm ≤ 0.025; Fig. 4D). The highest correlation 
was found in the VVC, suggesting that synchronization in neural 
activity has the strongest effect in shaping neural representation 
in the visual cortex as compared to other regions. We further 
constructed regression models to examine whether intersubject 
shared representations and synchronized activities made unique 
contributions to SMC. The results showed that the shared 
representations in most ROIs (except the bilateral HIP) still 
contributed to SMC, and that their contributions were higher 
than those of synchronized activities, particularly in the bilateral 
ANG and VVC, right IFG, PMC, and vmPFC (Fig. 4E). These 
results together suggest that the shared representations in these 
regions mainly reflect the common transformation of the stimulus 
representations rather than synchronized attention, and the former 
contributes to SMC.

Discussion

The current study aimed to uncover the neural mechanisms of 
individualized memory using a cross- participant approach. At 
the group level, we found that the ISPS for remembered items 
was greater than that for forgotten items in the right ANG, left 
HIP, and vmPFC, which is consistent with a recent study (24). 
Interestingly, unlike the previous study, we also found a subse-
quent memory effect of ISPS in the visual cortex (i.e., VVC), 
suggesting that perceptual representations of human faces are 
also important for subsequent memory. These findings extend 
previous studies that found greater intersubject synchronization 
of BOLD response for remembered items than for forgotten 
items (29, 31). We also found a reversed effect, i.e., greater ISPS 
for forgotten than remembered items, in the left IFG. Similarly, 
Koch and colleagues found a trend of reversed effect in the para-
hippocampal areas (24). This reversed effect could either suggest 
that these shared representations might be disruptive to memory 
formation (24) and/or that more unique representations are ben-
eficial to memory. Future studies should further replicate these 
findings and investigate the underlying mechanisms.

Given the shared experiences (i.e., stimuli and context) for all 
participants during learning, several studies have suggested that 
the synchronized activities and the shared representations might 
reflect higher degree of attention and greater fidelity of stimulus 
representations (24, 28, 29). Alternatively, according to the trans-
formative perspective of memory (17–19), intersubject representa-
tional similarity could also reflect transformations shared only 
within each pair of participants, which differ from those of other 
participants. To test these alternative perspectives, the current 
study first generated canonical representational patterns (i.e., 
RSMs) and TTS based on a large sample of 415 participants and 
clearly demonstrated these indices’ reliability using random splits. 
Interestingly, we found that the group- averaged pattern was highly 
variable with a sample size like those used in typical memory 
imaging studies (e.g., around 30), suggesting that the 
group- averaged response patterns from small samples are either 
noisy or unique to this particular group of participants.
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Using the indices of RSMs and TTS, we revealed distinct neural 
mechanisms for memory ability and content. First, we found that 
the individual- to- group synchronization of brain activity predicted 
individuals’ memory ability. Previous studies found that the 
group- averaged time course might reflect the fluctuation of atten-
tion and the strength of stimulus processing (28, 30, 37–40). For 
example, greater and more widespread brain synchronizations 
across subjects were found when watching attention- grabbing 
Hollywood- style commercial movies as compared to less exciting 
real- life, unedited videos (38). Similarly, video clips with higher 
emotional arousal also elicit stronger inter- subject synchronization 
than the less emotional clips (40). Such fluctuations in attention 
can affect not only our ongoing perceptual experience but also 
our later memory performance (12, 28). A recent study recorded 
spontaneous fluctuations in participants’ attention during memory 
encoding and retrieval tasks and found that loss of attention was 
significantly associated with reductions in target encoding and 
memory signal (13). Our finding is consistent with these obser-
vations and further suggests that individual- to- group synchroni-
zation might also index subjects’ overall task engagement and 
predict memory performance. Supporting this interpretation, we 
also found higher individual- to- group synchronization was asso-
ciated with greater fidelity of stimulus processing as reflected by 
individual- to- group similarity of neural representation. Future 
studies could further examine the relationship between 
individual- to- group synchronization and attention by either 
manipulating or measuring task engagement (26–28) or include 
concurrent measurements of heart rate and pupil diameter (41).

Second, we found that the individual- to- group similarity of rep-
resentational patterns also contributed to memory ability, although 
the effect was not as strong as that of synchronized neural activities. 
Two specific findings are worth emphasizing. The first one is that 
the similarity to canonical response was correlated with the similarity 
to canonical representations, particularly in the VVC and vmPFC, 
suggesting that attention could contribute to the fidelity of rep-
resentations (14–16). The second finding is that both the similarity 
to canonical activities and the similarity to canonical representations 
made unique contributions to memory ability, extending the previ-
ous findings from within- subject studies (15). Together these two 
findings based on the intersubject analyses emphasize the interde-
pendent and complementary roles of activation level and fidelity of 
representation in successful memory encoding.

Third, we found that the intersubject similarity of neural rep-
resentations might be a better indicator of individualized memory 
content than is the individual- to- group similarity. In other words, 
each pair of participants’ SMC is not due to the two individuals’ 
similarity to the canonical representations, but rather due to the pair’s 
unique transformation of representations. Although there was also 
some evidence that the intersubject synchronization of neural activity 
contributed to the SMC, the effect was smaller and mainly due to 
their similarity to group- averaged activity profile (probably reflecting 
shared attention to the stimuli) rather than due to each pair’s unique 
attention fluctuation. Despite a significant correlation between the 
synchronization of neural activities and the shared representations, 
we still found that shared neural representations made unique con-
tributions to SMC. It is also notable that the similarity of representa-
tions in ANG, IFG, HIP, PMC, and vmPFC was less affected by 
the synchronized brain activity than that in VVC, suggesting that 
the representations in these higher order regions are less affected by 
the brain activities and processing strength.

More broadly, the findings of this study contribute to the literature 
on the interactive and constructive nature of human episodic mem-
ory, namely, memory encoding involves the constructive neural 
transformation of the learning materials via the interaction with 

existing long- term knowledge (6, 19–21, 42–44). For example, one 
study found that participants with the same interpretation of ambig-
uous stories showed similar brain activity in the posterior cingulate 
cortex and the other regions of the default mode network (DMN) 
(45). Furthermore, participants with more similar interpretations of 
the storyline and narrative also showed more similar representational 
similarities in the PMC (43, 44). Even using simple words (2) and 
pictures (25) as learning materials, significant individual differences 
in representational patterns have been found, and these differences 
are associated with individuals’ unique memory (2).

Consistently, our findings suggest that the shared representations 
reflect the individualized transformation of memory representations 
that contribute to personalized memory content. The regions where 
the representations showed strong and reliable effects of SMC 
included the ANG and vmPFC, whose representations showed more 
robust individual differences and were less affected by neural activities 
as compared to those in the VVC. Existing studies have shown that 
the representation in the ANG is identity- specific and invariant to 
viewpoints (46), as well as sensitive to semantic similarity (47). In 
addition, its representation is significantly transformed from encod-
ing to retrieval (25, 48) and is strongly modulated by the task goals 
(49). Similarly, the vmPFC is consistently involved in the representa-
tion of structured knowledge, such as cognitive maps (50) and sche-
mas (51) [also see Xue (19) for a recent review]. Together, our results 
suggest that personalized memory content arises from the individu-
alized transformation of memory representations from the shared 
sensory inputs.

The current study also has two methodological implications. First, 
previous studies examining intersubject neural similarity mainly used 
naturalistic stimuli, such as stories and movies. Although the natu-
ralistic stimuli have high ecological validity and are able to capture 
highly similar behavioral and neural responses, they may not be good 
choices when examining the subsequent memory effect and its indi-
vidual differences. For example, many stimulus features (i.e., the 
presence of cuts and changes in scenes and characters; the length of 
each event; film features, including shot scale, music, and dialog; 
and low- level visual features, such as luminance and contrast) could 
potentially influence neural activity and memory. The complexity 
of these effects also makes it challenging to examine the neural mech-
anisms of subsequent memory. In addition, these strong stimulus 
effects would have reduced individual differences in both memory 
performance and neural representations. To mitigate these effects, 
the current study used simple stimuli, such as human faces or words, 
revealing significant individual differences in memory ability and 
content, as well as in neural activation patterns.

Second, intersubject analysis has been increasingly used to 
examine the pattern of stimulus processing (39, 52). In particu-
lar, we can use one participant’s brain activity or neural rep-
resentation as a model for a second participant’s brain activity 
or neural representation, representing a powerful data- driven 
technique for detecting neural responses (52). The idea is that as 
long as two participants receive the same input at the same order, 
any shared variance must be due to their stimulus processing 
(52). This approach has been shown to be more sensitive than 
deconvolution/GLM- based analyses in some circumstances (53). 
Unlike GLM- based approaches, this approach abolishes the need 
to explicitly model the task parameters and modulation func-
tions, which is challenging for complex designs (54). When 
examining the fidelity of representation, the intersubject analysis 
no longer requires within- subject repetition of stimuli (55), 
which is ideal for experimental designs when stimuli cannot be 
repeated, or when repetition could affect the underlying cognitive 
and neural mechanisms. Despite these advantages, our results 
suggest that the intersubject similarity could reflect both 
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canonical representations shared by the population and the 
unique representations that are only shared by specific participant 
pairs. This issue could be mitigated by calculating the 
group- averaged response patterns with a large sample.

Taken together, the current study uncovered intersubject neu-
ral representational mechanisms for individualized memory 
content. These findings emphasize the constructive and interac-
tive nature of human episodic memory (19, 21). Future studies 
should further investigate the interaction between preexisting 
knowledge and state- dependent factors in shaping the neural 
representational patterns during learning, which should lead to 
a better understanding and more accurate prediction of individ-
ualized memory.

Methods

Participants. Five hundred healthy Han Chinese college students were 
recruited for this study as a part of a large cohort study in China, i.e., the 
Cognitive Neurogenetic Study of Chinese Young Adults. All participants pro-
vided informed consent, and the study was approved by the Institutional 
Review Board of the State Key Laboratory of Cognitive Neuroscience and 
Learning at Beijing Normal University. All participants self- reported as hav-
ing normal or corrected- to- normal vision and no history of neurological or 
psychiatric problems. Four hundred seventy- eight volunteers participated in 
the face–name associative memory task.

Seventy- three participants were excluded due to incomplete imaging data (n 
= 1), large head motion (mean framewise displacement > 0.3, n = 9), or incon-
sistent learning sequences (n = 53). As a result, 415 participants (214 females, 
mean age = 21.33 ± 2.14 y) were included in the analyses.

Experimental Design: Face- Name Associative Memory Task.
Materials. The experimental stimuli consisted of 30 unfamiliar face photographs 
(15 men and 15 women, chosen from the internet). Fictional first names (e.g., 
“Aiguo”) and common surnames (e.g., “Li”) were assigned to the faces and were 
used for encoding. An additional 20 unfamiliar faces (10 men and 10 women) 
were used for the memory test. All face pictures were converted into grayscale 
images of the same size (256 × 256 pixels) on a gray background. All of the faces 
had neutral facial expressions in the pictures. Four additional face–name pairs 
were used in the practice session.
Procedures. During fMRI data acquisition, participants were asked to remem-
ber 30 unfamiliar face–name pairs. For each face–name pair, participants were 
instructed to remember the name associated with the face for a later memory 
test by pressing a button to indicate whether each name “fits” the face (right 
index finger = the name fits the face; right middle finger = the name does 
not fit the face). Participants were informed that it was a purely subjective 
judgment designed to help them memorize the association between faces 
and names. Each face–name pair was presented twice with an inter- repetition 
interval ranging from 8 to 15 trials. The stimuli were presented in the same 
order to all participants. A slow event–related design (12 s for each trial) was 
used in this study to obtain better estimates of the single- trial BOLD response 
associated with each trial (Fig. 1A). Each trial started with a 0.5- s fixation; the 
picture was presented for 2.5 s. Then, the frame of the picture turned red, indi-
cating that the participants should press the button to indicate their response 
within 1.5 s. To prevent further encoding of the pictures, participants were 
asked to perform a perceptual orientation judgment task for 7.5 s. In this task, 
a Gabor image tilting 45° to the left or the right was presented on the screen, 
and participants were asked to identify the orientation of the Gabor image as 
quickly as possible by pressing a corresponding button. The next Gabor image 
appeared 0.2 s after the response. A self- paced procedure was used for this 
task to be engaging to the subjects. Participants completed only one run of the 
encoding task, which lasted 12 min. Before the scan, participants completed 
a practice session to familiarize themselves with the task and key responses. 
Participants were informed that a subsequent memory test would occur later, 
but they were not informed of the specific procedure of the memory test.

Approximately 24 min later, during which the participants performed 
some other fMRI experiments (an n- back task and a decision- making task), 

participants were asked to complete the retrieval test in the fMRI scanner. 
The stimuli for the retrieval test consisted of the same 30 face pictures from 
the encoding stage and 20 new face pictures. All the pictures were randomly 
mixed. For each face picture, three old names from the encoding stage without 
a surname (the correct name that was paired with the face during encoding 
and two other names that were paired with different faces during encoding) 
and the option of “new [face]” were presented underneath the face (Fig. 1A). 
The location of the correct name was counterbalanced for equal numbers on 
the three locations of the names and the new option always appeared at the 
rightmost position. Participants were asked to judge whether they had seen 
the face and to indicate the corresponding correct name if the face was old; 
otherwise, they pressed the “new [face]” button if the face was new. Each trial 
started with a 0.5- s fixation period followed by a picture presentation for 4 s. 
Participants were asked to press the button to indicate their response within 
4 s. The responses were made using a button box (the left index finger corre-
sponded to the first name, the left middle finger corresponded to the second 
name, the right index finger corresponded to the third name, and the right 
middle finger corresponded to “new [face]”). After the presentation of each 
face, a fixation cross of jittered duration (0 to 8 s) was placed on the center of 
the screen. This testing run lasted approximately 5 min.

Quantification of Memory Ability. We used the associative recognition rate 
(p_association) as an indicator of memory ability. It was quantified as the propor-
tion of recognized faces associated with the correct names (i.e., choosing the cor-
rect names for studied faces) minus the proportion of recognized faces associated 
with incorrect names (i.e., choosing one of the incorrect names for studied faces). 
In addition, we calculated the d’ of item memory (d’_item) for each individual, 
which is the difference between item hit rate (correct recognition of old faces 
regardless of the correctness of names) and false- alarm rate (assigning a name 
to a new face): d’_item = Z (hit rate) − Z (false- alarm rate). The memorability of 
each face–name pair was computed by averaging the performance of associative 
recognition for each item across all participants (n = 415).

Quantification of SMC. We used the MD to characterize the distance of the 
memory content between two participants. The MD is the sum of the absolute 
difference of each item’s memory score between two participants, calculated using 
the following formula: MD = |x1 – y1| + |x2 – y2| + … + |xn – yn|, in which x, y 
represent two different participants and n represents the number of items. The 
vegdist function of the vegan toolkit (56) in R was used to calculate the MD of 
the items’ memory scores for all participant pairs. Since greater MD across two 
participants indicates less overlapped memory content, we then quantified SMC 
by subtracting MD from the maximum possible distance, which is the number of 
items multiplied by the maximum possible distance of each item. A larger value 
of SMC suggests that the given two participants tended to remember a larger 
number of the same items.

We used two indices (i.e., associative memory and fine- grained memory 
precision) to measure SMC across participants. For associative memory, studied 
faces recognized with the correct name were defined as remembered items and 
scored as 1, whereas those recognized with an incorrect name or judged as new 
were defined as forgotten items and scored as 0. Then, the MD matrix across all 
participants was obtained to index the cross- participant memory content dissim-
ilarity. The degree of associative SMC was quantified as the maximum possible 
distance (i.e., 30) minus MD.

For fine- grained memory performance, we defined different memory strengths 
for each studied face. Specifically, studied faces recognized with the correct name 
were defined as associative memory with a memory strength of 2. In contrast, 
those recognized with an incorrect name were defined as item memory with 
a memory strength of 1, and those judged as new were defined as forgotten 
with a memory strength of 0. Subsequently, the MD for each participant pair 
was calculated as the measurement of fine- grained memory content distance. 
Similarly, the degree of SMC was quantified as the maximum possible distance 
(i.e., 60) minus MD.

Neuroimage Data Collection and Processing.
MRI data acquisition. Image data were acquired using a 3.0 T Siemens MRI 
scanner in the Brain Imaging Center at Beijing Normal University. A single- 
shot T2*- weighted gradient- echo, EPI sequence was used for the functional 
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scan with the following parameters: TR/TE = 2,000 ms/25 ms, FA = 90°, FOV 
= 192 × 192 mm2, and 64 × 64 matrix size with a resolution of 3 × 3 mm2. 
Forty- one 3- mm transversal slices parallel to the AC- PC line were obtained to 
cover the cerebrum and partial cerebellum. The anatomical scan was acquired 
using the T1- weighted magnetization prepared rapid acquisition gradient- 
echo sequence with the following parameters: inversion time (TI) = 1,100 
ms; TR/TE/FA = 2,530 ms/3.39 ms/7°, FOV = 256 × 256 mm2, matrix = 192 
× 256, slice thickness = 1.33 mm, 144 sagittal slices, and voxel size = 1.3 
× 1.0 × 1.3 mm3.
fMRI data preprocessing. The task- based fMRI data were preprocessed by using 
fMRIPrep 1.4.1, including slice- timing correction, head motion correction, and 
spatial normalization. The first 3 volumes for the task were discarded before pre-
processing to allow for T1 equilibrium. For more details, please see Sheng et al. (4).
Single- item response estimation. Before estimating the single trial activation 
pattern, fMRI data were filtered in the temporal domain using a nonlinear high- 
pass filter with a 100- s cutoff. A generalized linear model (GLM) was performed 
to estimate the activation pattern for each repetition of the face–name pairs 
during encoding. A least square separate method was used in this single- trial 
model. Here, the target trial served as the model of one explanatory variable (EV), 
and all other trials were modeled as another EV (57). Each trial was modeled at 
its presentation time and convolved with a canonical hemodynamic response 
function (double gamma). This voxelwise GLM was used to compute the activa-
tion associated with each of the 60 trials in the task. The single- item response 
estimation was conducted in the native space, which was then transformed 
to the MNI152 space using the antsApplyTransforms tool from the Advanced 
Normalization Tools (58). The t- map in standard space was used for subsequent 
representational similarity analysis (59).

Definition of the ROI. We focused our analyses on the VVC, PMC, HIP, ANG, 
IFG, and vmPFC (Fig.  2B). These regions have been consistently shown to 
be involved in human episodic memory (11, 25, 34, 35, 48). For example, 
several studies based on univariate and multivariate analyses have found 
significant subsequent memory effects in the VVC, HIP, ANG, IFG, and vmPFC 
(16, 32, 33, 35). Based on the intersubject analysis, PMC was consistently 
shown to be associated with episodic memory (23, 25, 29). The VVC, HIP, and 
IFG were defined using the Harvard- Oxford probabilistic atlas with a threshold 
of 25% probability (25). The VVC consists of the ventral lateral occipital cortex, 
occipital fusiform, occipital temporal fusiform, and paraHIP (25). Following 
previous studies of ISC (23, 24, 43), we defined the PMC based on functional 
parcellations using resting- state functional connectivity (60). Specifically, 
it contains the posterior medial cluster of the dorsal DMN (http://findlab.
stanford.edu/functional_ROIs.html). The vmPFC was defined by NeuroSynth 
(https://identifiers.org/neurovault.image:460116), a large- scale database for 
meta- analysis (61). The meta- analysis of nearly 10,000 fMRI studies identified 
several functionally separatable subregions in the medial frontal cortex and 
showed that vmPFC is involved in episodic memory and coactivated with the 
amygdala and HIP (61). The ANG was defined using the Schaefer2018 atlas 
(400 parcels) (62) and contained all parietal nodes within the DMN (Network 

15 to 17) (8, 35, 49). Except the PMC and vmPFC, all the other ROIs were 
separately defined for the left and right hemispheres.

Construction of the gISPS Matrix. First, we constructed an RSM for each 
participant by calculating cross- trial pattern similarity using Pearson correlation 
coefficients. Second, we computed the between- subject correlation of Fisher’s 
Z- transformed RSM in each ROI (i.e., second- order similarity) to obtain the gISPS 
matrix (25) (Fig. 4A).

Construction of ISC Matrix. We first averaged activation values for each trial 
and each ROI to obtain TTS and then constructed an ISC matrix by computing the 
between- subject correlation of the TTS in each ROI (Fig. 4B). We used TTS to cal-
culate ISC because the participants needed to perform an orientation judgment 
task in a self- paced way after encoding a face–name pair in our experimental 
paradigm. Therefore, the original time points were not strictly time- locked for 
different participants. Given that all the participants learned face–name pairs 
with the same learning sequence, we computed ISC based on TTS.

Mantel Test. We used the Mantel test (63) implemented in the vegan package 
(56) (https://CRAN.R- project.org/package=vegan) to examine the relationship 
between cross- participant neural similarity and their SMC. The Mantel statistic is 
simply a Pearson correlation between entries of two correlation or dissimilarity 
matrices. However, the significance cannot be directly assessed because there 
are N(N−1)/2 entries for just N observations. Therefore, the P- value is based on 
the permutation test. Specifically, the first distance or similarity matrix (xmat) 
was permuted, and the second (ymat) was kept constant. Then, the permutation 
P- value of the Mantel test was computed as (N+1)/(n+1), where N is the number 
of randomized correlation coefficients greater than the actual observation, and 
n is the number of permutations, which was set to 9,999 in the current study. 
Similarly, to exclude the effects of potentially confounding variables (i.e., memory 
performance), the mantel.partial function was also used to examine the signifi-
cance of partial correlations.

Data, Materials, and Software Availability. All data needed to evaluate the 
conclusions in the paper are presented in the paper and/or SI Appendix. Processed 
anonymized data and custom code have been deposited in GitHub (https://
github.com/Cynthia1229/Individualized- memory) (64).
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