
A Lightweight Botnet Exploiting HTTP for Control Flow Denial on
Open-Source Medical Systems

Wei Lu

Department of Computer Science, Keene State College, The University System of New
Hampshire, Keene, NH USA 03431

Abstract

The recent emergence of open-source medical cyber-physical systems has rapidly transformed

the healthcare industry. This can be attributed to advancements in 3D printing technology and

the growing popularity of open-source microcomputer systems like Arduino and Raspberry Pi.

However, the increased use of these systems in hospitals has also raised cybersecurity concerns.

In particular, new technologies, such as IoT devices and other mobile devices, have posed

new challenges in exploiting modern botnets and determining their effectiveness with limited

resources. In this paper, we propose a lightweight and full-encrypted cross-platform botnet system

that provides a proof-of-concept demonstration of how a botnet attack can block control flow

from the syringe pump in a testbed of an IoT medical network. The emphasis is placed on

minimal deployment time and resource usage, making this lightweight botnet different from most

traditional botnets, thus furthering cybersecurity research in intrusion detection for open-source

medical systems.

1 Introduction

The IoMT (Internet of Medical Things) refers to using connected devices and technologies

in the healthcare field to collect, transmit, and analyze medical data for various purposes,

such as patient monitoring, diagnostics, treatment, and health management. Medical devices

in a typical IoMT range in size from tiny implantable medical devices to massive objects

such as MRI scanners, and open-source medical devices and clinic laboratory instruments

using desktop 3D printers and open-source electronic microcomputer systems, including

such fluorescence imaging devices [1], micro-dispensers [2] and syringe pumps [3][4].

The IoMT has facilitated the development of innovative healthcare applications but has also

given rise to new security and privacy concerns that could impede its progress. For example,

in 2011, there were reports of malicious attacks on insulin pumps [5], while in 2018,

Halperin et al. revealed the potential for wireless attacks on FDA-approved Implantable

Cardiac Defibrillator (ICD) devices [6].

Although there are many good ideas for security mechanisms in the medical device domain,

they still need to develop fully. Most existing security solutions focus on prevention,

wlu@usnh.edu .

HHS Public Access
Author manuscript
Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024
June 19.

Published in final edited form as:
Int Conf Complex Intell Softw Intensive Syst. 2023 ; 176: 188–199. doi:10.1007/978-3-031-35734-3_19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which employs authentication, encryption, and trust-based security management to protect

commercial wearable, implantable, and portal medical devices [7][8]. However, open-source

medical devices are being overlooked. In addition, poorly implemented security mechanisms

make it easy for potential attackers to gain remote control of smart medical devices using

malware or botnets [9][10]. They can then manipulate sensitive data by injecting false health

data or cause malfunctions by flooding the IoMT network with many illegitimate requests.

This paper aims to address the security challenges posed by open-source medical devices.

To this end, we manufacture an open-source medical syringe pump prototype using simple

3D printed hardware parts, a Raspberry Pi system, an Arduino microcomputer, and an open-

source software program. We then propose and develop a lightweight and full-encrypted

cross-platform botnet system that provides a proof-of-concept demonstration of how a botnet

attack can block the control flow command sent from the Raspberry Pi to the syringe pump.

This botnet can completely block the communication between the microcomputer system

and the mechanical pump. It can also cause the pump to dispense an unexpectedly large

amount of fluid after the attack is terminated, creating a potential risk of overdose when used

at the bedside. Such a zero-day botnet attack may disturb the network traffic pattern of the

connected medical devices. Thus, it helps further the cybersecurity research in network

traffic analysis and intrusion detection/prevention in the domain where network flows

collected from this botnet are publicly available for feature engineering and adversarial

machine learning.

The remainder of this paper is structured as follows. Section 2 discusses the concept of

botnet attacks. Section 3 describes the prototype of the open-source medical syringe pump,

including a step-by-step guide to its manufacturing process. In Section 4, we introduce the

centralized botnet system that is based on secure HTTP protocol and is fully encrypted.

Section 5 presents the installation process of this botnet system; then, the Distributed Denial

of Service (DDoS) attacks using this botnet system are conducted against the syringe pump

in a controlled testbed IoT network where relevant network traffic using packet capture tools

is captured. Finally, in Section 6, we offer concluding remarks and discuss future work.

2 Concept of Botnet Attacks

A bot is a self-operating software program controlled by a remote operator known as the

botmaster for performing malicious activities, often without the knowledge or consent of the

victim whose computer it has been installed on. The bot allows the remote operator to take

control of the victim’s system and instruct it to carry out malicious tasks, including but not

limited to mass spamming, distributed denial of service attacks, click fraud, and distributed

computing for password cracking or other types of cybercrime.

There are various methods that the hot uses to establish this network structure. Command

and control channels must efficiently deliver orders from the botmaster to individual bots

while evading detection by security measures [11][12]. The IRC-based channels are very

efficient mainly because of their ease of implementation and the capability to form large

networks, thanks to their simple network architecture. However, network traffic monitoring

can quickly reveal the messages being exchanged between the server and individual clients,

Lu Page 2

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

making detecting botnets based on message content analysis easy. As an alternative, botnets

use HTTP traffic for command and control (CC) schemes, as it can provide stealth by

using a legitimate communication channel and evading traditional firewall-based security.

To avoid detection based on deep packet analysis, packets are frequently encrypted. The

communication channel between bots and botmasters can be protected and kept from being

identified using robust encryption methods.

According to Feily et al. [13], there are five phases in the life cycle of a botnet. The first

phase is called an initial infection; it involves an attacker exploiting a known vulnerability in

a target system to infect it with malware, providing the attacker with additional capabilities

on the victim’s machine. A malicious binary, called secondary injection, will be fetched

during the second phase by executing additional scripts or programs. Once the binary is

installed, the victim’s computer becomes a bot. Then in the third phase of the connection,

the bot attempts to connect to the C&C server using various methods, officially joining

the botnet once the connection is established. The final phase is to maintain the bots for

updating their binaries to defend against new attacks. Furthermore, a simplified way of

categorizing the life cycle of a botnet has been described into four phases: formation,

command, and control (C&C), attack, and post-attack [14]. The attack phase is when a

bot executes malicious actions in response to orders received from the botmaster, while the

post-attack phase is akin to the maintenance phase.

Existing botnet detection techniques mainly focus on detecting bot activity during the attack,

initial infection, and secondary injection phases. These techniques often use traditional

intrusion detection methods, which identify botnets by analyzing the behavior of underlying

malicious activities and comparing them to known signatures of attacks. In our study, we

introduce and implement a lightweight centralized botnet attack exploiting secure HTTP

protocol. Unlike traditional botnet attacks, such as Sink [15], Phatbot (which utilized

WASTE command) [16], Nugache [17], and Peacomm (Storm worm) [18], the proposed

botnet system has a highly secure communication protocol between the bots and the

botmaster, making it challenging to detect during the command and control phase.

3 Manufacturing an Open-Source Medical Syringe Pump

This section provides a step-by-step guide on creating an open-source medical syringe pump

using simple hardware components, a Raspberry Pi system, an Arduino microcomputer,

and open-source software. A 3D printer with Cura software manufactures the pump’s

physical parts. The Arduino system controls the pump through a CNC shield, while the

Raspberry Pi is the control center to send data commands to the Arduino. Additionally, an

open-source program monitors the syringe pump’s working process when ejecting fluids

from the syringe. Tins study uses a regular Creality Ender 3 printer with a fully open-source

resume printing function [19]. Manufacturing one syringe pump set costs approximately

$410, cheaper than similar commercial products. Details on the raw materials and their

prices can be found in Table 1.

Throughout the manufacturing process, the most demanding aspect of 3D printing is

guaranteeing that the filament is correctly positioned and that the bed is leveled. This can

Lu Page 3

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

require several attempts with trial and error to obtain an accurate print. A heuristic approach

to determine if we have achieved a successful print is to observe if the filament adheres to

the bed firmly and does not detach easily.

Figure 1 showcases the produced medical pump, which is capable of dispensing fluids from

the syringe.

The medical pump acquires data from the Arduino and the CNC (Computer Numerical

Control) shield, which allows the motors to rotate clockwise or counterclockwise [32]. In

addition, the Raspberry Pi system is linked to a touchscreen pad, serving as the control

center for the medical pump [33]. All the directives to the Arduino are executed through

this interface. The Arduino consists of two components, the lower part contains the Arduino,

which receives data from the Raspberry Pi, and the upper part comprises the CNC shield,

which assists the Arduino in managing the medical pump’s motors.

To create the 3D-printed parts, we utilized Cura as our program of choice [34]. Numerous

public tutorials can aid beginners in setting up this program on their 3D printer before using

it. We employed this program to generate the 3D prints by obtaining premade 3D printed

files [33]. We then drag these files into the program and configure the settings to print the

file accurately, which is relatively easy to accomplish. Typically, we used Dynamic Quality

with 80% infill, and the prints were highly successful. Next, Arduino programming is

applied to upload data to the physical Arduino device. Finally, we can download and install a

third-party library called AccelStepper to transmit data from the Arduino to the CNC shield.

While transferring data to the Arduino, it is crucial to ensure that the data-sharing cord is

compatible with the serial communication ports of the device. Afterward, the open-source

python controlling program is utilized to commence running the motors.

4 Database Schema, Command Format, and Monitoring

The proposed botnet system in the paper is completely encrypted and serves as a proof-

of-concept for further research in network traffic analysis and intrusion detection and

prevention by monitoring its network flow behaviors. It comprises three key components: an

HTTPS web server, an SSL bot server, and an execution shell. The web server is built on

Apache2 with mod_wsgi, and is responsible for calling a Python script that utilizes the Flask
module to provide web services. Meanwhile, the execution shell, also built using Python,

utilizes a PostgreSQL database shared with the web service. Finally, the bot server connects

to the web service to provide updates on its status and to the execution shell to respond to

commands.

The PostgreSQL database utilized by this botnet system is specifically designed for

monitoring bot activity. It includes a concise set of tables for storing relevant data such

as command logs, bot notifications, and account information for the web service such as IP

addresses, port numbers, and command id.

A command language was created for network communication, and the syntax used for

these commands slightly differs from the syntax used when entering them through the

Lu Page 4

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

command shell. This is because the command shell applies automatic transformations to the

commands.

The syntax of the commands below represents how they are transmitted between the

execution node and the bot server. These commands transmit and execute Python scripts

and monitor and identify active bots.

The put statement is utilized to carry out simple file transfer operations. First, the

unprocessed file data is transmitted with a filename to associate with the file. Upon receiving

the command, the bot generates a write handle for the file referenced by the given filename

and truncates it according to the associated flag. Subsequently, the file data is written into

the file, and the stream is terminated. It is presumed that the file data represents a Python

script.

The execute command is intended to be executed after a put command. When a put
command is executed, a file is stored in the execution directory of the bot server and

identified by a specific name. The name of the file is determined by the execution node

when it issues the put command. This file can then be retrieved and executed by name using

Python’s eval statement.

The ping statement confirms that the bot server is still operational. Despite its name, this

statement does not generate an ICMP echo request. Instead, it establishes a connection over

the same socket for all other bot communication. When the bot receives this command, it

dispatches a ping notification to the web server.

It is important to keep track of the number of active bots at any given time. In addition,

activity monitoring tools can assist the bot manager in identifying network connectivity

problems or software issues. Currently, activity monitoring is carried out on-demand,

meaning the execution node must issue a ping command. Furthermore, we need to ensure

that malicious sources cannot commandeer our bots, so we require a method for our bots to

authenticate the commands they receive.

Each bot updates the control server whenever it starts up, performs an activity, or shuts

down. For example, an activity is storing a file (in response to a put command), executing

a file (in response to an exec command), or responding to a ping. The bot will transmit

these notifications to the address specified in bot.conf. In addition, each notification includes

the port number on which the bot server operates. When the control server receives these

notifications, it will update the bot_status table to reflect the appropriate notification time,

message, and port.

When a bot receives communication through its listening socket, the first step is verifying

the command. To verify the command, MD5 is used to hash the command, which

is then transmitted through a GET request to the configured validate_addr. The MD5

command hash is sent as this request’s ‘command’ parameter. The web service checks

the command_log table when the validated request is received. It computes the MD5 of all

commands transmitted within the last 10 seconds. If the supplied hash is found among them,

the value True will be transmitted in response to the bot. If not, False will be sent instead.

Lu Page 5

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This mechanism verifies both the origin of the command (i.e., the execution node) and the

timeliness of the command.

5 Experimental Evaluation of Botnet Effectiveness

The prerequisites for our experimental evaluation of the effectiveness of the proposed botnet

system include the python program for the web server, execution shell, and bot with several

additional modules, including flask, flask-login, and psycopg2. The control database for

the backend runs on PostgreSQL. After installing the server process, an account for the

“medibot” user must be created by adding the following line local all medibot md5 to the

postgres configuration.

The medibot database schema can be created by logging in as a Postgres user, which can be

done on UNIX platforms. After the medibot user has been created, the database schema can

be created using the included schema file called “schema.sql”. This is done by executing the

command $ psql schema.sql --username=medibot

To install the medibot package, we invoke the setup script in the medibot directory using the

following syntax. The execution shell is a basic Python script that wraps the core functions

of the medibot package, i.e. $ python setup.py install

After installing the package, we edit the medibot.conf file to reflect the database

configuration and then test the installation by launching the executor script $ python
executor.py ../medibot.conf

The web service installation primarily involves installing and configuring Apache2 (i.e., the

apache2 package on Ubuntu). In addition to the base Apache installation, the mod_wsgi
and mod_ssl packages must also be installed. OpenSSL is then applied to generate an SSL

private key and certificate. Once the SSL private key and certificate have been generated,

we copy the contents of the Medibot-Web folder to a web folder managed by Apache, such

as /var/www/medibot. After this, we modified the Apache configuration file located at /etc/
apache2/apache2.conf on Ubuntu Linux. The values indicated in angle brackets depend on

the actions taken in previous steps and the specific system configuration. To create a link to

the medibot.conf file created during the “execution shell” setup within the web directory, we

need to execute the following command from the web directory where the medibot services

were copied on UNIX: $ ln <path to medibot.conf> medibot.conf

In addition to the base configuration, the bot code has several prerequisites, including the

OpenSSL server and the Python bindings to OpenSSL, pyopenssl. The bot packages are

installed as part of the medibot package installation so that we can run the command

python setup.py install for the package installation. The next step is to update the bot

configuration file to point to the correct web server. Moreover, the botnet system can use

either a statically defined port which may or may not be available when the bot server starts

up, or a dynamically assigned port which is guaranteed to be available. After completing the

configuration settings, we can run it using a command $./bot server

Lu Page 6

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

During the experimental testing of the botnet system, we discovered that it could

successfully disable the control host of a medical syringe pump. However, as shown in

Figure 2, before the attack, the communication between the syringe pump and the control

host was functioning normally, with commands to set fluid parameters being sent and

received without issue.

However, after approximately two minutes of the DDoS attack, the central control system's

graphical user interface experienced some responsiveness delays. This created a potential

safety hazard as a medical operator may accidentally click the “run” button multiple times

due to the slow response time, resulting in an overdose of fluid injected into patients. For

example, in our simulation, we observed that if the operator clicked the “run” button three

times, it would cause three times the amount of fluid to be injected, increasing the dose from

5mm to 15mm. In addition, with a continuous DoS attack, the syringe pump completely

froze after about five minutes, leading to potential undersupply issues.

The Open Argus network monitoring system [35] collected 211,364 instances, each with 13

features described in Table 2. Table 3 visually represents the descriptive statistics for these

13 features.

6 Conclusions and Future Work

This paper investigates a denial of control flow attack on an open-source medical syringe

pump system. We first create a functioning system prototype using a 3D printer and open-

source microcomputer systems like Arduino, Raspberry Pi, and CNC shields to do this.

We then explore the vulnerabilities of the open-source software monitoring system that

controls the medical syringe pump. Our proof-of-concept approach shows that the pump

could dispense too much fluid, not enough fluid, or completely stop injecting fluid into

patients in the event of a DoS attack launched by the proposed lightweight centralized botnet

system.

The future work for this research primarily involves (1) differentiating such attacks based on

the collected network traffic payloads from both malicious and malware-free environments

[36]. This can be achieved using feature selection using clustering [37] or co-clustering [38]

and advanced machine learning models for transfer learning with a focus on deep transfer

learning (DTL) models to enable the detection of such DoS attacks against medical syringe

pumps across various IoMT networking environments; and (2) enhance the performance of

the botnet system by automating tasks such as database structure creation, SSL key pair

generation, and then integrating the web service with the command shell and execution

node.

Acknowledgments.

This research is supported by New Hampshire - INBRE through an Institutional Development Award (IDeA),
P20GM103506, from the National Institute of General Medical Sciences of the NIH.

Lu Page 7

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

1. Nuñez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, Federici F Low Cost and
Open Source Multi-fluorescence Imaging System for Teaching and Research in Biology and
Bioengineering. PLoS One. 2017 Nov 15;12(11):e0187163. doi: 10.1371/journal.pone.0187163.
[PubMed: 29140977]

2. Forman CJ, Tomes H, Mbobo B et al. Openspritzer: An Open Hardware Pressure Ejection System
for Reliably Delivering Picolitre Volumes. Sci Rep 7, 2188 (2017). 10.1038/s41598-017-02301-2
[PubMed: 28526883]

3. Wijnen B, Hunt EJ, Anzalone GC and Pearce JM Open-source Syringe Pump Library. Plos One 9,
e107216, 10.1371/journal.pone.0107216 (2014). [PubMed: 25229451]

4. "Croatt Group DIY Flow Chemistry Setup – UNC-Greensboro". https://chem.uncg.edu/croatt/flow-
chemistry/ retrieved on Mar. 27, 2023.

5. Li CX, Raghunathan A, and Jha NK Hijacking an Insulin pump: Security Attacks and Defenses
for a Diabetes Therapy System. 2011 IEEE 13th International Conference on e-Health Networking,
Applications and Services, 2011, pp. 150–156, DOI: 10.1109/HEALTH.2011.6026732.

6. Halperin D., et al., Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and
Zero-Power Defenses. 2008 IEEE Symposium on Security and Privacy, 2008, pp. 129–142, DOI:
10.1109/SP.2008.31.

7. Yanambaka VP, Mohanty SP, Kougianos E and Puthal D PMsec: Physical Unclonable Function-
Based Robust and Lightweight Authentication in the Internet of Medical Things, in IEEE
Transactions on Consumer Electronics, vol. 65, no. 3, pp. 388–397, Aug. 2019, DOI: 10.1109/
TCE.2019.2926192.

8. Su J, Vasconcellos DV, Prasad S, Sgandurra D, Feng Y and Sakurai K Lightweight Classification
of IoT Malware Based on Image Recognition. 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), 2018, pp. 664–669, DOI: 10.1109/COMPSAC.2018.10315.

9. Garant D, Lu W “Mining Botnet Behaviors on the Large-scale Web Application Community.”
In Proceedings of 27th IEEE International Conference on Advanced Information Networking and
Applications, Barcelona, Spain, March 25 - 28, 2013.

10. Lu W, Miller M and Xue L “Detecting Command and Control Channel of Botnets in Cloud” in
Lecture Notes in Computer Science (LNCS, volume 10618). Springer Nature, pp. 55–62, ISBN
978-3-319-69154-1, Oct. 2017.

11. Lu W. An unsupervised anomaly detection framework for multiple-connection-based network
intrusions. Publisher: Ottawa Library and Archives Canada, ISBN: 9780494147795, 2007.

12. Lu W and Ghorbani A "Bots Behaviors vs. Eluman Behaviors on Large-Scale Communication
Networks" Proceedings of 11th International Symposium on Recent Advances in Intrusion
Detection (RAID 2008), Lippmann R, Kirda E, and Trachtenberg A (Eds.): RAID 2008, LNCS
5230, pp. 415–416, MIT, Boston, USA 2008.

13. Feily M, Shahrestani A and Ramadass S "A Survey of Botnet and Botnet Detection," 2009 Third
International Conference on Emerging Security Information, Systems and Technologies, Athens,
Greece, 2009, pp. 268–273, doi: 10.1109/SECURWARE.2009.48.

14. Leonard J, Xu S and Sandhu R "A Framework for Understanding Botnets," 2009 International
Conference on Availability, Reliability and Security, Fukuoka, Japan, 2009, pp. 917–922, doi:
10.1109/ARES.2009.65.

15. Sinit, https://www.f-secure.com/v-descs/sinit.shtml retrieved on Mar. 27, 2023.

16. Phatbot, https://www.fortiguard.com/encyclopedia/ips/103350720 retrieved on Mar. 27, 2023.

17. Nugache, https://www.usenix.org/system/files/login/articles/526-stover.pdf retrieved on Mar. 27,
2023.

18. Grizzard JB, Sharma V, Nunnery C, Kang BB, and Dagon D Peer-to-peer botnets: Overview and
case study. In proceedings of the 1st USENIX Workshop on Hot Topics in Understanding Botnets,
Cambridge, MA 2007.

19. "Creality 3D printer". https://www.amazon.com/Comgrow-Creality-Ender-
Aluminum-220x220x250mm/dp/B07BR3F9N6 retrieved on Mar. 27, 2023.

Lu Page 8

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://chem.uncg.edu/croatt/flow-chemistry/
https://chem.uncg.edu/croatt/flow-chemistry/
https://www.f-secure.com/v-descs/sinit.shtml
https://www.fortiguard.com/encyclopedia/ips/103350720
https://www.usenix.org/system/files/login/articles/526-stover.pdf
https://www.amazon.com/Comgrow-Creality-Ender-Aluminum-220x220x250mm/dp/B07BR3F9N6
https://www.amazon.com/Comgrow-Creality-Ender-Aluminum-220x220x250mm/dp/B07BR3F9N6

20. "Creality CR Touch Auto Bed Leveling Sensor Kit". https://www.amazon.com/dp/B09P4YKRTD/
ref=cm_sw_r_apan_i_6ZGJ0ATJ3JRJB55EKEPY?_encoding=UTF8&psc=1 retrieved on Mar. 27,
2023.

21. "HATCHBOX 1.75mm Cool Gray PLA 3D Printer Filament". https://www.amazon.com/dp/
B01511CYFE/ref=cm_sw_r_apan_i_N75E3SG3T7T1CPTMQ26C?_encoding=UTF8&psc=1
retrieved on Mar. 27, 2023.

22. "uxcell® M5x14mm 316 Stainless Steel Metric Fully Thread Hex Socket
Cap Screws". https://www.amazon.com/gp/product/B01LJROXK0/ref=ox_sc_saved_title_2?
smid=A1THAZDOWP300U&psc=1 retrieved on Mar. 27, 2023.

23. "SanDisk SDSDQM-016G-B35A 16 GB Class 4 MicroSDHC Memory Card
with SD Adapter". https://www.amazon.com/gp/product/B004G605OA/ref=ox_sc_saved_title_7?
smid=ABYURLNKK9M7V&psc=1 retrieved on Mar. 27, 2023.

24. "Raspberry Pi Touch Screen Display". https://www.amazon.com/gp/product/B0153R2A9I/
ref=ox_sc_saved_title_6?smid=A6EGA15UEFYEQ&psc=1 retrieved on Mar. 27, 2023.

25. "5mm to 5mm Aluminum Flexible Shaft Coupling". https://www.amazon.com/gp/product/
B01EFFBM4I/ref=ox_sc_saved_title_1?smid=A26373IMBF4DLW&psc=1 retrieved on Mar. 27,
2023.

26. "3D Printer Kits CNC Shield V3.0, Keyestudio R3 Board, Nema 17 Stepper Motor, 4PCS A4988
Driver & USB Cable, Heat Sink, Stepper Motor Controller Shield Kit". https://www.amazon.com/
Tangxi-Printer-Stepper-Heatsink-Arduino/dp/B07SBDD4HL retrieved on Mar. 27, 2023.

27. "Linear Ball Bearings, Linear Motion Ball Bearing Bushing for 3D
Printer CNC Parts". https://www.amazon.com/Linear-Motion-Bearing-Bushing-Printer/dp/
B07K71FWMG/ref=dp_prsubs_1?pd_rd_i=B07K71FWMG&psc=1 retrieved on Mar. 27, 2023.

28. "uxcell 2pcs 6mm x 200mm Metal Machine Turning Tool Rod Bar Lathe Round Stick". https://
www.amazon.com/uxcell-Metal-Machine-Turning-Tools/dp/B0BJ7D7V23 retrieved on Mar. 27,
2023.

29. "uxcell a16071500ux0127 M5 x 170 mm 304 Stainless Steel Fully Threaded Rod Bar Studs
Fasteners". https://www.amazon.com/Uxcell-a16071500ux0127-Stainless-Threaded-Fasteners/dp/
B01M4L8JDC retrieved on Mar. 27, 2023.

30. "Raspberry Pi 3 Model B+ Board". https://www.amazon.com/ELEMENT-Element14-Raspberry-
Pi-Motherboard/dp/B07P4LSDYV retrieved on Mar. 27, 2023.

31. "uxcell M3x10mm Thread 304 Stainless Steel Hex Socket Head Cap
Screw Bolt". https://www.amazon.com/gp/product/B01MFA9YEP/ref=ox_sc_saved_title_1?
smid=A1THAZDOWP300U&psc=1 retrieved on Mar. 27, 2023.

32. Booeshaghi AS, Beltrame E.d.V., Bannon D, et al. Principles of Open Source Bioinstrumentation
Applied to the Poseidon Syringe Pump System. Sci Rep 9, 12385 (2019). 10.1038/
s41598-019-48815-9 [PubMed: 31455877]

33. "poseidon: Open source bioinstrumentation". https://github.com/pachterlab/poseidon retrieved on
Mar. 27, 2023.

34. "Ultimaker Cura". https://ultimaker.com/software/ultimaker-cura retrieved on Mar. 27, 2023.

35. "Argus ra 3.0.8". https://qosient.com/argus/man/man1/ra.1.pdf retrieved on Mar. 27, 2023.

36. Ghorbani A, Lu W and Tavallaee M Detection Approaches, Network Intrusion Detection and
Prevention: Concepts and Techniques. Springer Publisher, ISBN-10: 0387887709, pp. 27–53, Oct.
20, 2009.

37. Lu W and Traore I "A New Evolutionary Algorithm for Determining the Optimal Number of
Clusters." In Proceedings of IEEE International Conference on Computational Intelligence for
Modeling, Control and Automation (CIMCA 2005), Volume 1, pp. 648–653, 2005.

38. Lu W and Xue L "A Heuristic-Based Co-clustering Algorithm for the Internet Traffic
Classification," 2014 28th International Conference on Advanced Information Networking and
Applications Workshops, 2014, pp. 49–54, doi: 10.1109/WAINA.2014.16.

Lu Page 9

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.amazon.com/dp/B09P4YKRTD/ref=cm_sw_r_apan_i_6ZGJ0ATJ3JRJB55EKEPY?_encoding=UTF8&psc=1
https://www.amazon.com/dp/B09P4YKRTD/ref=cm_sw_r_apan_i_6ZGJ0ATJ3JRJB55EKEPY?_encoding=UTF8&psc=1
https://www.amazon.com/dp/B01511CYFE/ref=cm_sw_r_apan_i_N75E3SG3T7T1CPTMQ26C?_encoding=UTF8&psc=1
https://www.amazon.com/dp/B01511CYFE/ref=cm_sw_r_apan_i_N75E3SG3T7T1CPTMQ26C?_encoding=UTF8&psc=1
https://www.amazon.com/gp/product/B01LJROXK0/ref=ox_sc_saved_title_2?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B01LJROXK0/ref=ox_sc_saved_title_2?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B004G605OA/ref=ox_sc_saved_title_7?smid=ABYURLNKK9M7V&psc=1
https://www.amazon.com/gp/product/B004G605OA/ref=ox_sc_saved_title_7?smid=ABYURLNKK9M7V&psc=1
https://www.amazon.com/gp/product/B0153R2A9I/ref=ox_sc_saved_title_6?smid=A6EGA15UEFYEQ&psc=1
https://www.amazon.com/gp/product/B0153R2A9I/ref=ox_sc_saved_title_6?smid=A6EGA15UEFYEQ&psc=1
https://www.amazon.com/gp/product/B01EFFBM4I/ref=ox_sc_saved_title_1?smid=A26373IMBF4DLW&psc=1
https://www.amazon.com/gp/product/B01EFFBM4I/ref=ox_sc_saved_title_1?smid=A26373IMBF4DLW&psc=1
https://www.amazon.com/Tangxi-Printer-Stepper-Heatsink-Arduino/dp/B07SBDD4HL
https://www.amazon.com/Tangxi-Printer-Stepper-Heatsink-Arduino/dp/B07SBDD4HL
https://www.amazon.com/Linear-Motion-Bearing-Bushing-Printer/dp/B07K71FWMG/ref=dp_prsubs_1?pd_rd_i=B07K71FWMG&psc=1
https://www.amazon.com/Linear-Motion-Bearing-Bushing-Printer/dp/B07K71FWMG/ref=dp_prsubs_1?pd_rd_i=B07K71FWMG&psc=1
https://www.amazon.com/uxcell-Metal-Machine-Turning-Tools/dp/B0BJ7D7V23
https://www.amazon.com/uxcell-Metal-Machine-Turning-Tools/dp/B0BJ7D7V23
https://www.amazon.com/Uxcell-a16071500ux0127-Stainless-Threaded-Fasteners/dp/B01M4L8JDC
https://www.amazon.com/Uxcell-a16071500ux0127-Stainless-Threaded-Fasteners/dp/B01M4L8JDC
https://www.amazon.com/ELEMENT-Element14-Raspberry-Pi-Motherboard/dp/B07P4LSDYV
https://www.amazon.com/ELEMENT-Element14-Raspberry-Pi-Motherboard/dp/B07P4LSDYV
https://www.amazon.com/gp/product/B01MFA9YEP/ref=ox_sc_saved_title_1?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B01MFA9YEP/ref=ox_sc_saved_title_1?smid=A1THAZDOWP300U&psc=1
https://github.com/pachterlab/poseidon
https://ultimaker.com/software/ultimaker-cura
https://qosient.com/argus/man/man1/ra.1.pdf

Fig. 1.
The syringe pump

Lu Page 10

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Command sent/received between syringe pump and central control system.

Lu Page 11

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu Page 12

Table 1.

Raw materials for manufacturing the open-source medical syringe pump.

Materials Price

Creality CR Touch Auto Bed Leveling Sensor [20] $39.0

HATCHBOX 1.75mm Cool Gray PLA 3D Printer Filament [21] $24.99

uxcell® M5x14mm 316 Stainless Steel Metric Fully Thread Hex Socket Cap [22] $9.49

SanDisk SDSDQM-016G-B35A 16 GB Memory Card [23] $6.75

Raspberry Pi 7" Touch Screen Display [24] $69.99

5mm to 5mm Aluminum Flexible Shaft Coupling [25] $14.09

CNC Shield V3.0 & Keyestudio R3 Board & Nema 17 Stepper Motor [26] $36.17

Linear Ball Bearings, Linear Motion Ball Bearing Bushing [27] $10.62

uxcell 2pcs 6mm x 200mm Metal Machine Turning Tool Rod Bar [28] $7.49

uxcell a16071500ux0127 M5 x 170 mm 304 Stainless Steel Fully Threaded Rod [29] $11.51

Raspberry Pi 3 Model B+ Board [30] $169.99

uxcell M3x10mm Thread 304 Stainless Steel Hex Socket Head Cap Screw Bolt [31] $9.99

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu Page 13

Table 2.

Feature description.

Feature Description

SrcBytes/DstBytes Number of bytes from source to destination (or from destination to source)

SrcLoad/DstLoad Source to destination bits per second (Destination to source bits per second)

SrcPkts Number of packets from source to destination

DstPkts Number of packets from destination to source

SrcRate Number of packets per second from source to destination

DstRate Number of packets per second from destination to source

Dur Transaction record total duration

TotPkts Total transaction packets count

TotBytes Total transaction bytes

Load Total transaction bits per second

Rate Number of packets per second

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu Page 14

Table 3.

Descriptive statistics of features for a total of 211,364 data instances.

Feature Mean Std. Min 25% 50% 75% Max

SrcBytes 286.255 2822.596 0.0 71.0 120.0 180.0 435324

SrcPkts 2.439 22.385 0.0 1.0 1.0 3.0 4890

DstPkts 0.938 10.365 0.0 0.0 0.0 1.0 2411

DstBytes 1052.62 57168.03 0.0 0.0 0.0 142.0 12858140

Dur 0.442 0.801 0.0 0.0 0.0 0.598 4.999

TotPkts 3.377 30.879 1.0 1.0 2.0 3.0 5979

SrcLoad 4765462 55782630 0.0 0.0 0.0 683.77 15168000000

DstLoad 12886.2 292332 0.0 0.0 0.0 0.0 74981780

SrcRate 1551.3 15807.7 0.0 0.0 0.0 1.4 4000000

DstRate 1.983 17.58 0.0 0.0 0.0 0.0 1851.57

TotBytes 1338.9 58882.5 54 74 180 243 13230630

Load 4778348 55782350 0.0 0.0 0.0 684.4 15168000000

Rate 2535.2 17395.6 0.0 0.0 1.25 250 4000000

Int Conf Complex Intell Softw Intensive Syst. Author manuscript; available in PMC 2024 June 19.

	Abstract
	Introduction
	Concept of Botnet Attacks
	Manufacturing an Open-Source Medical Syringe Pump
	Database Schema, Command Format, and Monitoring
	Experimental Evaluation of Botnet Effectiveness
	Conclusions and Future Work
	References
	Fig. 1.
	Fig. 2.
	Table 1.
	Table 2.
	Table 3.

