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Abstract

A total 68 types of marine algae oligosaccharides and polysaccharides were prepared and 

used to study the structure-activity relationship of oligosaccharides and polysaccharides in their 

interactions with fibroblast growth factors (FGF) 1 and 2. Factors considered include different 

types of algae, extraction methods, molecular weight, sulfate content and fractions. In the case of 

low molecular weight polysaccharide (SJ-D) from Saccharina japonica and its fractions eluting 

from anion exchange column, both 1.0 M NaCl fraction (SJ-D-I) and 2.0 M NaCl fraction 

(SJ-D-S) had stronger binding affinity than the parent SJ-D, suggesting that sulfated galactofucans 

represented the major tight binding component. Nuclear magnetic resonance showed that SJ-D-I 

was a typical sulfated galactofucan, composed of four units: 1, 3-linked 4-sulfated α-L-fucose 

(Fuc); 1, 3-linked 2, 4-disulfated α-L-Fuc; 1, 6-linked 4-sulfated β-D-Gal and/or 1, 6-linked 3, 

4-sulfated β-D-Gal. Modification by autohydrolysis to oligosaccharides and desulfation decreased 

the FGF binding affinity while oversulfation increased the affinity. The solution-based affinities 

of SJ-D-I to FGF1 and FGF2 were 69 nM and 3.9 nM, suggesting that SJ-D-I showed better 
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preferentially binding to FGF1 than a natural ligand, heparin, suggesting that sulfated galactofucan 

might represent a good regulator of FGF1.
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1. Introduction

Growth factors (GFs) play key roles in cell development, such as survival, proliferation, 

differentiation, and some cell behavior is influenced by the balance between stimulatory and 

inhibitory signals [1]. An abnormal activity of growth factor signaling pathway can lead to 

many diseases, such as cancer, aging, intervertebral disc degeneration, metabolic disorders 

and heart disease [2–8]. Growth factors are divided into several different superfamilies/

families such as: transforming growth factor β (TGF-β) superfamily, fibroblast growth factor 

(FGF) family, platelet-derived growth factor (PDGF) family, vascular endothelial growth 

factor (VEGF) family, epidermal growth factor (EGF) family, hepatocyte growth factor 

(HGF) family and neurotrophins family [5, 9]. FGF1 and FGF2 are two of the prominent 

members belonging to fibroblast growth factor (FGF) family [8, 10], which is comprised 

of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors 

(FGFRs). For example, importin α1 protein reportedly binds directly to FGF1 and FGF2, 

and the treatment with an anti-importin α1 antibody could result in the suppression of 

cancer cell proliferation by regulating FGF1 signaling [11].

Most of growth factors functions are attributed to the ability to bind with heparan sulfate 

(HS), which is the important component of heparan sulfate proteoglycans (HSPGs) on the 

cell surface [5]. Hundreds of proteins have the capacity to interact with HS and these 

interactions are critical in the many physiological/pathological processes, including cell 

attachment, migration, invasion and differentiation, morphogenesis, organogenesis, blood 

coagulation, lipid metabolism, inflammation and responses to injury [12]. For example, 

the FGF family, relays on HS as co-receptor, has essential functions in embryogenesis 

and post-natal growth [9]. Any modifications in HS/heparin structures, such as sulfation 

patterns, domain length and conformation can be discriminated by FGF and result in the 

different potential binding abilities between FGF and HS/heparin, leading to the alteration 

of FGF signaling pathway. On the other hand, many other sulfated glycans (such as chitosan 

sulfate, sulfated fucans and sulfated galactans) have demonstrated the ability to mimic HS 

to interact and modulate the function of growth factors [13–14]. In recent years, there 

is a growing interest in the development of glycomimetics as therapeutics targeting FGF 

signaling pathway in glycoscience research.

Polysaccharides from Sargassum thunbergii and Saccharina japonica contain three major 

types of polysaccharides, fucoidans, laminarans and alginates [15]. Fucoidan, a family of 

heteropolysaccharides, differs in different seaweeds, with harvest times and using different 

extraction methods [15–20]. There are many excellent reviews on the structure of fucoidan 

[21–33]. After purification by anion exchange chromatography, fucoidan can be divided into 
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two fractions, sulfated heteropolysaccharides and sulfated galactofucan or fucan. Sulfated 

heteropolysaccharides have a backbone of alternating 2-linked α-D mannopyranose (Manp) 

residues and 4-linked β-D glucopyranuronosyl (GlcpA) residues, sulfated at C6 of Manp 

and branched with sulfated galactofucan, xylan and glucuronan. Sulfated galactofucan 

(or fucan) contains 3-linked fucopyranose (Fucp) residues, 4-linked Fucp, or a mixture 

of 3-linked Fucp and 4-linked Fucp, sulfated at C2, C4 or C2/C4 and branched with 

galactan, accompanied with different sulfation patterns. Polysaccharides from Enteromorpha 
prolifera belongs to sulfated glucurono-xylo-rhamnan, which is comprised of different types 

of major monosaccharides including glucuronic acid, xylose, and rhamnose. The structure 

of glucuronic-xylo-rhamnan contains many units including α-L 4-linked rhamnopyranose 

(Rha) residues sulfated at C3 or C2, 4-linked β-D GlcpA and 4-linked β-D xylopyranose 

(Xyl) residue.

In this study, 68 polysaccharides and oligosaccharides (Abbreviation and structural type 

of polysaccharides and oligosaccharides were summarized in Table S1) were prepared to 

elucidate the structure-activity relationship between marine algae polysaccharides and their 

binding affinities towards FGF1 and FGF2. Many factors including extraction methods, 

different algae, molecular weight, fractions and sulfate content were examined to understand 

their binding affinity to FGF1 and FGF2.

2. Materials and methods

2.1 Preparation of polysaccharides and oligosaccharides

Crude polysaccharides were from Sargassum thunbergii. STW polysaccharide was extracted 

by hot water, STA polysaccharide was extracted by 0.1 M HCl, STJ polysaccharide was 

extracted by 5 % Na2CO3. All S. thunbergii polysaccharides were prepared according to 

a previous study [17]. Crude polysaccharide from Saccharina japonica (SJ) was prepared 

according to the previous study by hot water extraction [15]. Enteromorpha prolifera (EP) 

polysaccharide was similarly extracted by hot water [15].

Crude polysaccharides (0.5 g of STW, STA, STJ, SJ and EP) were dissolved in 10 mL 0.2 M 

HCOOH at 70 °C for 24 h after which the solution was neutralized by NH4HCO3. Five types 

of ultrafiltration devices, Ultracel 100 kDa membrane, Ultracel 50 kDa membrane, Ultracel 

30 kDa membrane, Ultracel 10 kDa membrane, and Ultracel 3 kDa membrane were used to 

prepare 100 kD, 50 kD, 30 kD, 10 kD and 3 kD polysaccharides, respectively. All fractions 

were lyophilized.

Crude polysaccharides (8.0 g of STW, STA, STJ, SJ and EP) were purified by anion 

exchange chromatography on a DEAE-Bio Gel Agarose FF gel (6 cm × 40 cm) eluted with 

water (5 L), 0.5 M (5 L) (Fraction W: STW-W, STA-W, STJ-W, SJ-W and EP-W), 1 M (5 L) 

(Fraction I: STW-I, STA-I, STJ-I, SJ-I and EP-I) and 2 M NaCl (5 L) (Fraction S: STW-S, 

STA-S, STJ-S, SJ-S and EP-S). The polysaccharides were then dialyzed, concentrated and 

precipitated with ethanol.

Low molecular weight polysaccharide (SJ-D-I) was prepared according to a previous study 

[34–36]. Briefly, 50 g SJ was dissolved in 10 L water and 50 mM hydrogen peroxide and 
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50 mM ascorbic acid were added at room temperature for 2 h. The partially depolymerized 

fucoidans were ultra-filtered and precipitated with ethanol and the low molecular weight 

polysaccharide (SJ-D-I) was fractionated by anion-exchange chromatography on a DEAE-

Bio Gel agarose FF (6 cm × 40 cm) eluted with water (5 L), 0.5 M (5 L) (SJ-D-W), 1 M (5 

L) (SJ-D-I) and 2 M NaCl (5 L) (SJ-D-S). The resulting polysaccharide fractions were then 

dialyzed, concentrated and precipitated with ethanol.

Modification by autohydrolysis was performed based on a previous study [37]. Briefly, 

SJ-D-I and SJ-D-S (0.8 g) were converted to the H+-form using a cation exchange 

column and maintained at room temperature for 72 h. The mixture was neutralized with 

5% NH4OH solution in water, concentrated, and precipitated with ethanol. The resulting 

precipitates were fractionated on a Bio-Gel P-10 column (2.6 × 100 cm) eluted with 0.5 M 

NH4HCO3 into higher molecular weight, H-type fractions (SJ-D-I-H and SJ-D-S-H), and 

lower molecular weight, L-type fractions (SJ-D-I-L and SJ-D-S-L).

Modification by desulfation and oversulfation were performed according to the previous 

methods [15, 17]. Briefly, for desulfation 10 mg polysaccharide samples, SJ-I, SJ-S, SJ-D-I 

and SJ-D-S, were converted to the H+-form and neutralized with pyridine and lyophilized. 

The resulting pyridinium salts were dissolved in 20 mL dimethylsulfoxide: methanol (9:1) 

at 80 °C for 5 h. The solutions of the resulting desulfated polysaccharides were then 

dialyzed and lyophilized to give desulfated products, SJ-I-DS, SJ-S-DS, SJ-D-I-DS and 

SJ-D-S-DS. Oversulfation reaction was accomplished using sulfur trioxide-pyridine. Briefly, 

20 mg samples, SJ-I, SJ-S, SJ-D-I, SJ-D-S and SJ-D-S-L and 100 mg sulfur trioxide-

pyridine were added into dimethylformamide (DMF) and reacted at 60 °C for 24 h, after 

which the reaction was neutralized, dialyzed, concentrated and lyophilized. The persulfated 

polysaccharides obtained from SJ-I, SJ-S, SJ-D-I, SJ-D-S and SJ-D-S-L were SJ-I-PS, 

SJ-S-PS, SJ-D-I-PS, SJ-D-S-PS and SJ-D-S-L-PS, respectively.

Glucuronomannan oligomers (G2, G4 and G6 disaccharide through hexasaccharide) were 

prepared in our laboratory by previously described methods [38–39]. Low molecular 

weight (7.0 kDa) glucuronomannan polysaccharide (Gn) was prepared from the crude 

polysaccharide by degradation with sulfuric acid, neutralized, fractionated by anion 

exchange chromatography, desalted by Sephadex G10 chromatography.

2.2 Solution competition study between heparin on chip surface and polysaccharides or 
oligosaccharides in solution using surface plasmon resonance (SPR)

Solution competition SPR measurements were performed on a BIAcore 3000 (GE 

Healthcare, Uppsala, Sweden). Heparin chip was prepared according to the previous studies 

[5] by the immobilization of biotinylated heparin on a streptavidin (SA) chip. FGF1 or FGF2 

was pre-mixed with different concentrations of polysaccharides or oligosaccharides and 

injected over the heparin chip at 30 μL/min to measure the inhibition of polysaccharides or 

oligosaccharides on fibroblast growth factors (FGF1 and FGF2) binding to heparin surface. 

After each run, a dissociation period and regeneration with 2 M NaCl was performed.
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2.3 Compositional analysis and NMR spectroscopy

The molar ratio of monosaccharides and the fucose (Fuc) and galactose (Gal) contents were 

determined as described by Zhang et al [40]. Sulfation was determined by the method of 

Dodgson and Price [41]. The molecular weights of the polysaccharides were evaluated by 

GPC-HPLC on TSK G3000 PWxl column (7 μm 7.8 × 300 mm) with elution in 0.05 

M Na2SO4 at a flow rate of 0.5 mL/min at 40 °C with refractive index detection. Ten 

different molecular weight dextrans, purchased from the National Institute for the Control of 

Pharmaceutical and Biological Products (China), were used as molecular weight standards.

NMR spectra were recorded at a Hudson-Bruker SB 800 MHz spectrometer (Bruker 

BioSpin, Billerica, MA, USA) at 25 °C.

3. Results

3.1 SPR solution competition study of different polysaccharides obtained by different 
extraction methods and from different seaweeds

Crude polysaccharides from Sargassum thunbergii (STW polysaccharide extracted by hot 

water, STA polysaccharide extracted by 0.1 M HCl, STJ polysaccharide extracted by 5 % 

Na2CO3) and Saccharina japonica (SJ polysaccharide was extracted by hot water) showed 

very strong competition with heparin (>80%) for binding of FGF1 and FGF2 in Fig 1. In 

contrast, crude polysaccharide from Enteromorpha prolifera (EP polysaccharide extracted by 

hot water) competed poorly with heparin for binding of FGF1 and FGF2. The extraction 

methods appear to influence competition of binding of FGF1 (STW and STJ > STA), more 

than towards FGF2.

3.2 SPR Solution competition study of different molecular weight polysaccharides 
obtained by membrane separation techniques

Five MWCO membranes (100K, 50K, 30K, 10K and 3K) were used in ultrafiltration to 

fractionate the partially degraded polysaccharides. All of the resulting size fractionated 

polysaccharides from E. Prolifera showed relatively low competitive affinity towards 

FGF1 (4~32%) and FGF2 (2~39%) in Fig 2. Very strong competitive affinity (>80%) 

towards FGF1 were observed for STW-100K, STW-50K, STW-30K, STA-100K, STA-50K, 

STJ-100K, STJ-50K and STJ-30K. In addition, very strong inhibitory activities (>80%) 

towards FGF2 were observed for STW-100K, STW-50K, STA-100K, STA-50K, STJ-100K, 

STJ-50K and STJ-30K. Thus, polysaccharides with certain molecular weight characteristics 

(>50 kDa) from S. thunbergii had very strong affinity towards FGF1 and FGF2. 

Additionally, polysaccharides with certain molecular weight characteristics (>10 kDa) from 

S. japonica exhibited very strong inhibitory affinity towards FGF1 and FGF2.

3.3 SPR solution competition study of different polysaccharides fractions obtained by 
anion exchange chromatography

Anion exchange chromatography was next performed. All crude polysaccharides were 

fractionated into three fractions: fraction W was eluted with 0.5 M NaCl, fraction I was 

eluted with 1 M NaCl, and fraction S was eluted with 2 M NaCl. Polysaccharide fractions, 

EP-W, EP-I and EP-S, showed relatively low affinities towards FGF1 (36~43%) and FGF2 
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(26~42%) in Fig 3. STW-W and STJ-W displayed very strong affinities towards FGF1, 

while STA-W only displayed 53% inhibitory activity. STW-W and STJ-W showed modest 

affinities (>40%) towards FGF2 while STA-W only displayed 20% affinity towards FGF2. 

Strong affinities (>60%) towards FGF2 were observed for STJ-I while STW-I and STJ-I 

has only modest affinity. However, STA-I and STJ-I had very strong affinity towards FGF1 

while STW-I had 63% inhibitory activities. In addition, it is noteworthy that very strong 

affinities towards FGF1 and FGF2 for STW-S, STA-S and STJ-S were observed. Moreover, 

all fractions (SJ-W, SJ-I and SJ-S) from SJ exhibited very strong affinities towards FGF1 

and FGF2.

3.4 SPR Solution competition study of low molecular weight polysaccharide (SJ-D) and 
its fractions

A partially depolymerized polysaccharide with 11.5 kDa molecular weight (SJ-D) was 

prepared using H2O2 and ascorbic acid. SJ-D had strong affinity (~80%) for FGF1 and 

FGF2 in Fig 4A and 4B. In addition, SJ-D was also fractionated by anion exchange 

chromatography into three fractions, SJ-D-W, SJ-D-I and SJ-D-S. SJ-D-I and SJ-D-S 

exhibited stronger affinity for FGF1 and FGF2 than SJ-D-W. Previous studies [34–36] 

showed that both SJ-D-I and SJ-D-S were mainly sulfated galactofucan and suggest that 

sulfated galactofucan might be the major active component of fucoidan polysaccharides.

3.5 SPR Solution competition study on modified polysaccharides

Autohydrolysis was performed, and two fractions, the higher molecular weight H-type 

fraction and the lower molecular weight L-type fraction were obtained. For SJ-D-W, both 

SJ-D-W-H and SJ-D-W-L in Fig 4C and 4D showed relatively low affinities towards FGF1 

and FGF2. However, for SJ-D-I and SJ-D-S, the H-type fractions, SJ-D-I-H and SJ-D-S-H, 

displayed higher FGF affinity than the L-type fractions, SJ-D-I-L and SJ-D-S-L, suggesting 

that molecular weight had an impact on the inhibitory activity. SJ-D-S-L-S, obtained by 

oversulfation of SJ-D-S-L showed no enhancement in FGF binding.

Desulfated polysaccharides, SJ-I-DS, SJ-S-DS, SJ-D-I-DS and SJ-D-S-DS, and oversulfated 

polysaccharides SJ-I-PS, SJ-S-PS, SJ-D-I-PS and SJ-D-S-PS, were prepared to elucidate 

the impact of sulfate content on FGF binding affinity. It was apparent to see in Fig 5 that 

Oversulfated polysaccharides enhanced binding affinities (>80%) towards both FGF1 and 

FGF2 while desulfated polysaccharides showed only weak binding affinities. SJ-S-DS was 

an exception with only modest inhibitory activity towards to FGF1, suggesting that sulfate 

content play an important role in FGF binding affinity. In addition, the inhibitory activities 

of glucuronomannan and its oligomers were next determined. Unfortunately, all of these 

showed extremely low affinity for FGF.

3.6 Kinetics measurements of growth factors interaction with SJ-D-2

The FGFs are well known heparin-binding proteins [5, 42–45]. Kinetic measurements of 

the interaction of SJ-D-I with FGF1 and FGF2 were determined by solution-based affinities 

(Ki), which was calculated from IC50 values measured from SPR competition experiments. 

The IC50 values of SJ-D-I binding to FGF1 and FGF2 are shown in Fig 6. Using the 

equation of Ki is Ki=IC50/(1+[C]/KD), where [C] is the concentration of FGF1 (100 nM) 
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and FGF2 (33 nM) used in the competition SPR, and Kd for FGF1 (KD=220 nM) and FGF2 

(KD=1.2 nM) binding affinity (KD) for heparin we calculated in a previous study [5, 46]. 

The Ki of SJ-D-I binding to FGF1 and FGF2 were calculated to be 69 nM and 3.9 nM, 

respectively. SJ-D-I showed preferential binding to FGF1 when compared with heparin.

3.7 Structure features of SJ-D-I

The molar ratio of the monosaccharides comprising SJ-D-I are 0.26: 1 (galactose (Gal): 

fucose (Fuc)), demonstrating that SJ-D-I is a sulfated galactofucan with a fucose content of 

41.63 % and a sulfate content of 48.26%. The galactose content was calculated from the 

equation: 0.26*(Fuc content/164)*180, was 11.88%. The molar ratio of sulfate to Fuc was 

calculated from the equation: (sulfate content/96)/(Fuc content/164)) and was 1.98, while 

the molar ratio of sulfate to (Fuc+Gal), calculated from the equation: (sulfate content/96)/

(Fuc content/164+Gal content/180)), was 1.57. DEPT-135, 1H – NMR and two-dimensional 

NMR was performed on SJ-D-I to elucidate its structure and the results are shown in Fig 

7. Based on previous studies [37, 47–53], the spectra of SJ-D-I showed resonances with 

chemical shifts 97.9–100.0 (C-1) / 5.13–5.56 (H-1) ppm that are characteristic of the 1, 

3-linked α-L-fucopyranose sulfated at C4 or C2/C4. Resonances with chemical shifts of 

102.9–103.6 (C-1) / 4.62 (H-1) were assigned to 1, 6-linked β-D-galactopyranose sulfated 

at C4 or C3/C4. Therefore, we concluded that SJ-D-I contained two units, one unit was 1, 

6-linked β-D-galactopyranose (β-D-Gal)n, sulfated at C4 and/or C3/C4, and the second unit 

was 1,3-linked α-L-fucopyranose residues (α-L-Fuc)n, sulfated mainly at C4 and/or C2/C4.

4. Discussion and Conclusion

The FGF family has eighteen secreted protein members that interact with four signaling 

tyrosine kinase FGF receptors (FGFRs) [10]. At the cellular level, secreted FGFs control 

fundamental cellular processes including positive and negative regulation of proliferation, 

survival, migration, differentiation and metabolism [10]. Heparin could regulate the 

biological activity through directly binding the FGF-FGFR complex [10]. Marine seaweeds 

contain large amounts of sulfated polysaccharides that are structurally similar to heparin. 

Thus, this source of polysaccharides has attracted much attention for their array of 

biological activities, including as anti-cancer, anticoagulant, antithrombotic, antiviral, 

immune-inflammatory and neuroprotective agents [32, 54–66].

Five types of crude polysaccharides were prepared to perform the SPR solution competition 

study to screen for their ability to compete with heparin for binding to FGF1 and FGF2. 

Some of the crude polysaccharides exhibit very strong FGF binding affinity similar to 

heparin. However, the affinities of these seaweed-derived polysaccharides are influenced 

by the extraction methods as well as the type of seaweed from which they are derived. 

Because the molecular weights of crude polysaccharides are very large, polysaccharide 

fractions of different molecular weights were prepared by ultrafiltration. SPR results 

showed that polysaccharide fractions with certain molecular weight exhibited very strong 

inhibitory activity. The anti-complement activity of sulfated fucan in the classical pathway 

reportedly increases with increasing molecular weight and reached a plateau at 40 kDa, 

indicating that molecular weight can be an important positive factor on the activity [67]. 
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All FGFs, except the FGF19 subfamily (FGF15, 19, 21 and 23), show a strong affinity 

for heparin and require 1–1.5 M NaCl for elution from a heparin-Sepharose column [5]. 

Therefore, the crude seaweed-derived polysaccharides were fractionated by anion exchange 

chromatography. Fractions eluting at 1 M and 2 M NaCl showed strong FGF binding 

affinities. Polysaccharide fractions from S. japonica eluting with 1 M and 2 M NaCl 

were mainly sulfated galactofucans [34]. NMR studies showed that SJ-D-I, a typical 

sulfated galactofucan from Saccharina japonica, was composed of (1, 3-linked 4-sulfated 

α-L-fucose (Fuc)) n1, (1, 3-linked 2, 4-disulfated α-L-Fuc) n2, (1, 6-linked 4-sulfated β-D-

Gal) n3 and/or (1, 6-linked 3, 4-sulfated β-D-Gal) n4. Modification by autohydrolysis and 

desulfation decreased the FGF binding affinity while oversulfation increased FGF binding 

affinity. The IC50 of SJ-D-I towards to FGF1 and FGF2 were 100 nM and 110 nM, 

respectively, suggesting that solution-based affinities (Ki) of SJ-D-I to FGF1 and FGF2 

were 69 nM and 3.9 nM. SJ-D-I shows more preferential binding to FGF1 over FGF2 than 

does heparin.

In conclusion, sulfated galactofucans from Saccharina japonica might represent a good 

regulator of FGF1.
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Figure 1. 
Bar graphs of normalized different growth factors binding preference to surface heparin 

by competing with different polysaccharides in solution. (A) FGF1 and (B) FGF2. 

Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively, and concentrations of 

different polysaccharides were 1000 nM. All bar graphs are based on triplicate experiments 

and std. dev. is displayed.
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Figure 2. 
Bar graphs of normalized different growth factors binding preference to surface heparin 

by competing with different polysaccharides in solution. (A) FGF1 and (B) FGF2. 

Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively, and concentrations of 

different polysaccharides were 1000 nM. All bar graphs based on triplicate experiments and 

std. dev. is shown.
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Figure 3. 
Bar graphs of normalized different growth factors binding preference to surface heparin 

by competing with different polysaccharides in solution. (A) FGF1 and (B) FGF2. 

Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively, and concentrations of 

different polysaccharides were 1000 nM. All bar graphs based on triplicate experiments. Std. 

dev. is displayed.
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Figure 4. 
Bar graphs of normalized different growth factors binding preference to surface heparin 

by competing with different polysaccharides in solution. (A and C) FGF1 and (B and 
D) FGF2. Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively, and 

concentrations of different polysaccharides were 1000 nM. All bar graphs based on triplicate 

experiments. Std. dev. is shown.
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Figure 5. 
Bar graphs of normalized different growth factors binding preference to surface heparin 

by competing with different polysaccharides in solution. (A and C) FGF1 and (B and 
D) FGF2. Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively, and 

concentrations of different polysaccharides were 1000 nM. All bar graphs based on triplicate 

experiments. Std. dev. is shown.

Jin et al. Page 16

Int J Biol Macromol. Author manuscript; available in PMC 2023 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
SJ-D-2 competes with heparin for FGF1 (A and B) binding with a IC50 of 100 nM and 

SJ-D-I competes with heparin for FGF2 (C and D) binding with an IC50 of 110 nM. 

Concentrations were 100 and 33 nM for FGF1 and FGF2, respectively. All bar graphs based 

on triplicate experiments. Std. dev. is shown.
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Figure 7. 
1H-NMR spectrum (A), The DEPT-135 spectrum (B), HSQC spectrum (C) and primary 

structure (D) of SJ-D-I.
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