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Introduction
Cardiovascular disease (CVD), which is a major cause 
of death globally, remains a great challenge for clinical 
remedy. CVD contains a wide array of disorders, including 
acute coronary syndrome, congenital heart disease, 
cerebrovascular disease, hypertension, arrhythmias, etc.1 

The design and development of novel drugs and their 
application in disease treatments in the human model have 
many limitations.  Also, the safety and efficacy of preclinical 
findings in two-dimensional (2D) cell cultures and animal 
models fail to represent human physiological conditions. 
To overcome these obstacles, three-dimensional (3D) cell 
models mimic human tissue-like, cell-cell, and cell-matrix 
interactions and enhance biological understanding during 
drug discovery and disease modeling.2,3 

Organoids are 3D in vitro cell constructs that include 
multiple cell types (i.e. induced pluripotent stem cells 
(iPSCs) or embryonic stem cells (ESCs) with other 
supporting co-cultured cells such as endothelial cells or 
fibroblasts).4 By using the inherent self-assembly property 

of stem cells, organoids can be considered organ-like 
multicellular constructs with key characteristics including; 
1) similarity to an original organ due to having more than 
one type of cell, 2) the existence of some specific functions 
related to the original organs including metabolic and 
physiologic function5, 3) having a resemblance to the 
native organ in terms of microscale tissue architecture, 
genes and protein expression.6

In recent years, the creation of the human heart 
organoid has received much attention due to its potential 
applications (Figure 1). In this review, we present an 
overview of the recent advances in heart organoid 
generation as novel tools for modeling human cardiac 
biology and disease. 

Materials and Methods
A literature search was done in electronic databases 
including PubMed, Cochrane Library, Scopus, and Google 
Scholar. A combination of the terms “organoid”, “cardiac 
organoid”, “heart organoid”, “stem cells”, “cardiac drug 
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Abstract
Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and 
pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created 
from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells 
(ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac 
organoid culture technologies are bringing about significant advances in organ research and 
allows for the establishment of tissue regeneration and disease modeling. The present review 
provides an overview of the recent advances in human cardiac organoid platforms in disease 
biology and for cardiovascular regenerative medicine. 
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screening”, “regenerative medicine”, “three-dimensional 
cell culture”, “3D cell culture” were used. Case reports, 
editorial letters, gray literatures, unpublished reports and 
papers for which full texts were not available in English 
were considered as exclusion criteria. The latest date of 
these searches was on September 1, 2022. We reviewed 
recent knowledge about human cardiac organoid 
generation and summarized evidences in the realm of 
the generation of cardiac organoids, architectural design, 
cardiac organoids modeling in human cardiac diseases- in 
vitro and stem-cell based cardiac regeneration: limitations 
and gaps.

Generation of cardiac organoids
Organoids are created from single cells/stem cells. Among 
the stem cells, either embryonic stem cells or tissue-
resident, can be employed for this cultivation with special 
structural pillars and defined growth factors.7 After 
co-cultivation, the cells undergo self-organization and 
differentiation similar to the processes in vivo.8

The human heart consists of cardiomyocytes (~60%), 
with the remaining ~ 14% endothelial cells and 
approximately 24% cardiac fibroblasts as the principal 
non-myocyte cell type. The rest are a small number of 
smooth muscle cells, epicardial cells, conductance cells, 
and immune cells.4,9 The limited regenerative capacity of 
cardiomyocytes (CMs) in adult cardiovascular tissue is 
the main cause of its inability to repair itself or self-renew 
after injury.10 

The advances in human induced pluripotent stem cells 
(hiPSCs) technology and cardiogenic differentiation 
resulted into an unlimited source of human cardiomyocytes 
for biomedical research. However, hiPSC-derived 
cardiomyocytes (hPSC-CMs) in traditional 2D culture 
lack many essential anatomical and physiological features, 
which hampers their capacity to predict human biology. 
A potential solution for this problem is multicellular 3D 
cardiac organoids.11,12 

The development of 3D cardiac organoids culture 
conditions is faced with a significant challenge such as 
the identification of the precise primary and supporting 
cells ratio, culture media component, and specific 
conditions that mimic the biology of the tissue model. 

CMs differentiation of pluripotent stem cells (PSCs) with 
molecular, biochemical, and functional properties of adult 
CM is a very important challenge in organoid research 
techniques. In pioneering studies, the potential of human 
embryonic stem cell (hESC) - derived cardiac progenitor 
cells (CPC) for the development of mature CMs has been 
widely considered.13,14 

Architectural design
Structural pillars including collagen, matrigel or fibrin 
are another important prerequisite for the generation 
of cardiac organoids. Having biomimetic, perfusable 
vasculature, electromechanical integrity and conductivity 
properties are basic requirements for designing 3D 
cardiovascular tissue constructs.15 

Although matrigel is the most commonly used matrix 
for 3D cultures of almost all kinds of epithelial and 
endothelial cells due to its close resemblance to the 
native extracellular matrix (ECM), using it has some 
disadvantages in organoid technology due to:7,16 
• Complex composition
• Batch to Batch variation
• Lack of reproducibility in cell culture experiment
• Impossibility of being easily tailored to obtain specific 

organoid niches for specific organs  
Given the undesirable properties of matrigel, other 

chemically and mechanically well-defined natural and 
synthetic scaffolds for organoid cultures have been 
evaluated recently. Considering their similarity to human 
ECM, some natural polymer-based hydrogels such 
as natural hydrogels, hyaluronic acid (HA), alginate, 
chitosan, PEG (Poly Ethylene Glycol)17 are preferred.

In general, Matrigel-based organoids lack the 
aforementioned essential properties, are not suitable for 
in vivo transplantation and cell therapy studies, and as a 
result, some natural alternatives to matrigel are preferred 
regarding their inherent bioactivity and similarity to 
human ECM.

Cardiac organoids modeling in human cardiac diseases- 
in vitro
Organoids, which are morphologically and physiologically 
closest to organs with tissue-like in vitro conditions, offer 

Figure 1. Human heart organoid potential applications
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a different and unique opportunity to study diseases. This 
issue becomes more important in the case of heart disease 
due to the special conditions of the heart. A group of 
cardiac diseases is defined as non-genetic diseases. Many 
Factors such as aging, interaction with other organs, diet, 
and toxicity can play an important role in causing these 
diseases. Myocardial infarction is defined as one of the 
most important and fatal diseases in this category. This 
disease begins with the interruption or severe restriction 
of blood flow in an area of the heart, causing hypoxia and 
subsequent scar tissue formation in this region, and the 
loss of cardiomyocytes in this way causes the heart to be 
unable to perform its function naturally. This situation 
leads to death or severely affects the patient’s quality of 
life. 3D organoid technology gives us this opportunity 
to model the developmental stages of this disease in 
vitro, to carefully examine the progression and course of 
this disease, and to obtain new results. Additionally, the 
survival of the surrounding cells can be able to regenerate 
damaged regions. These regeneration stages can also be 
investigated and researched by using organoids.

Genetic diseases are another category of heart disease. 
Genetic mutations in cardiomyocytes over time cause 
abnormal heart function, heart failure, or disease. In the 
field of these diseases, the use of organoids and disease 
modeling can also improve our knowledge about the 
process of development and treatment of these diseases. 
In 2016, Cashman et al were able to develop the first 3D 
human-engineered cardiac tissue model by using hiPSCs.18

In 2020, Lewis-Israeli et al presented a new method for 
producing human heart organoids using pluripotent stem 
cells. Human heart organoids (hHOs) were generated 
using a two-step conventional Wnt signaling modulation 
strategy under well-defined culture conditions. Further, 
this group was able to generate the first laboratory model of 
diabetes during pregnancy to study embryonic congenital 
heart defects.19 In 2019, Keung et al created human cardiac 
ventricular-like organoid chambers from pluripotent stem 
cells and investigated the effects of many drugs on these 
organoids.20 In 2018, Anderson et al generated a new heart 
organoid for the study of heart field/chamber-specific 
diseases.21

In a 2019 study, Zhao et al designed a cardiac tissue 
culture platform that was independent of cell source, 
and enabled drug testing under electrical pacing. They 
designed electrophysiologically different atrial and 
ventricular tissues with drug responses and different 
gene expression levels. This group managed to generate 
heteropolar cardiac tissues containing separate atrial and 
ventricular terminals for the first time. In this way, this 
group was able to model left ventricular hypertrophy with 
8-month electrical conditioning.22

Recently, there has been a lot of research on organoid 
modeling of heart disease. The generation of these 
models will give us information about the formation 
and progression of different diseases and even their 

treatments.23

Cardiac organoids for cardiovascular regenerative 
medicine
In human adults, the myocardium is one of the tissues that 
have a very low regeneration capacity. This feature of the 
myocardium causes heart failure conditions. Today, heart 
failure is the group of diseases that are the deadliest in the 
world. Recently, many studies by scientists have focused 
on triggering the endogenous regeneration of the heart. 
A group of studies is investigating why the regeneration 
of the heart tissue of mammals is active in the neonatal 
period. The discovery of this internal mechanism may 
be the hope for the adult human heart to regain the 
regeneration feature with the endogenous mechanisms.24

On the other hand, many scientists in the field of 
human regenerative medicine are investigating the use of 
pluripotent cells in the regeneration of heart tissue. One 
group of these studies focuses on the transplantation of 
cardiomyocytes differentiated from these cells into the 
heart tissue, while the other part is working on new factors 
that promote the regeneration of cardiac tissue.25,26 In 2017, 
Tiburcy et al were able to create a model of heart failure 
and heart repair using iPSCs and embryonic stem cells.27

Mills et al in a study conducted in 2017, examined the 
CM cell cycle arrest mechanism in detail in the human 
cardiac organoid that they created. The advantage of this 
research was the creation of the 3D phenotype and the 
study of this mechanism. In addition, in this study, the 
positive and negative effects of the components that play a 
role in cell proliferation, were investigated.28 

In a study conducted by the same research group in 
2019, the effect of 105 different small molecules with 
pro-regenerative potentials was investigated after cardiac 
organoids were created from hiPSCs.29 

In 2017, Voges et al investigated the capacity of 
regenerating human immature heart tissue using cardiac 
organoids. In this study, the potential of repairing the 
damaged tissue caused by dry ice, was evaluated for two 
weeks. The obtained results showed that immature human 
hearts can regenerate intrinsically.

It is very promising that organoids can create models of 
cardiac diseases and the results can used in the treatment 
of heart diseases, as well as researching regeneration 
mechanisms on 3D cardiac organoids and in human 
heart regeneration. These researches have been increasing 
recently and valuable information on heart regeneration 
will be obtained in the field of regenerative medicine.30 

Stem-cell based cardiac regeneration: Limitations 
and gaps
As shown in pioneering investigations, iPSCs-derived 
cardiomyocytes have the ability to contract, special 
potency for expressing the essential receptors for 
hormonal regulation of the myocardium and even 
forming gap junctions. Despite what was mentioned, 
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prior to the initiation of cell based human clinical 
trials, more detailed investigations are needed in the 
realm of the risk of pluripotency-associated teratoma 
induced immunogenicity.31-33 Additionally, the long-term 
beneficial effects of a pure cell-based strategy (e.g. with 
iPSC) have a lot of flaws in terms of surviving in the injured 
myocardium micro-environment.34 Furthermore, based 
on recent evidences, organoids derived from ESCs may 
be rejected by the host immune system. In addition, since 
ESCs are created from early human embryos, they can be 
ethically problematic.35 Generally, inconsistencies in the 
reported engraftment rate, probability of tumorigenesis 
and the risk of arrhythmia may be the main concern of 
pluripotent stem cell-based therapies in CVDs.36,37 

Conclusion
Nowadays, human cardiac organoids for CVDs modelling 
have brought about considerable progress in the realm of 
maturation, improving cell therapy, and drug screening 
studies. This technology rapidly expands our knowledge 
in CVDs therapy. Given the improvement of organoid 
production technology, significant progress is expected in 
its application. At present, only one clinical trial using ESC- 
derived cardiomyocytes is ongoing.38 However, according 
to the mentioned limitations, more investigations in large- 
animal models are warranted to assess the safety and 
efficacy of cardiac regenerative therapy prior to translating 
these therapies to clinical trials. 
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