Skip to main content
. 2023 Aug 29;24:325. doi: 10.1186/s12859-023-05453-3

Table 8.

Classification results of algorithms using leave drug combinations out on HT29

HT29 AUC F1 score F1 score* Recall Precision Rank Rank*
Additive Antagonism Synergy Additive Antagonism Synergy
SVM 0.5963 0.3566 0.1974 0.8117 0.1560 0.1381 0.6231 0.2758 0.3253 5.8 5.8
KNN 0.5574 0.3429 0.1641 0.8660 0.1154 0.1147 0.6306 0.3209 0.2517 6.3 8.0
XGB 0.6046 0.3559 0.1864 0.8737 0.1145 0.1378 0.6258 0.3090 0.4061 4.7 5.8
MLP 0.5989 0.3448 0.1826 0.8462 0.1190 0.1418 0.6220 0.3028 0.3072 6.1 6.3
DT 0.5067 0.3710 0.2527 0.6153 0.2574 0.2611 0.6238 0.2332 0.2597 6.1 6.0
GDBT 0.6073 0.3655 0.2009 0.8641 0.1424 0.1435 0.6374 0.3020 0.3738 3.7 4.5
RF 0.6121 0.3451 0.1884 0.8180 0.1137 0.1763 0.6279 0.2123 0.3260 5.7 6.1
Single-layer Network 0.5284 0.2031 0.2482 0.3675 0.1728 0.4745 0.3439 0.1454 0.2572 8.1 6.0
DeepSynergy 0.5118 0.2526 0.0576 0.8470 0.1346 0.0000 0.6155 0.1007 0.0000 9.1 10.1
MatchMaker 0.5777 0.3124 0.3177 0.3759 0.5420 0.3039 0.5733 0.2605 0.2483 7.1 5.0
EDST 0.6129 0.4159 0.3283 0.5945 0.3464 0.3453 0.6499 0.3504 0.2746 2.8 2.1

The symbol [bold] indicates the highest value in the same evaluation indicator