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Abstract 

Background  Our study aims to investigate an intrinsic link underlying sex hormone-binding globulin (SHBG) 
and rheumatoid arthritis (RA), which remains inconclusive in observational settings.

Methods  Summary statistics were collected from the largest GWAS(s) on SHBG adjusted for BMI (SHBGadjBMI; 
Noverall = 368,929; Nmen = 180,094; Nwomen = 188,908), crude SHBG (Noverall = 370,125; Nmen = 180,726; Nwomen = 189,473), 
and RA (Ncase = 22,350; Ncontrol = 74,823). A genome-wide cross-trait design was performed to quantify global and local 
genetic correlation, identify pleiotropic loci, and infer a causal relationship.

Results  Among the overall population, a significant global genetic correlation was observed for SHBGadjBMI and RA 
( rg = 0.11, P = 1.0 × 10−4) which was further supported by local signal (1q25.2). A total of 18 independent pleio-
tropic SNPs were identified, of which three were highly likely causal variants and four were found to have effects 
on both traits through gene expression mediation. A putative causal association of SHBGadjBMI on RA was dem-
onstrated (OR = 1.20, 95% CI = 1.01–1.43) without evidence of reverse causality (OR = 0.999, 95% CI = 0.997–1.000). 
Sex-specific analyses revealed distinct shared genetic regions (men: 1q32.1-q32.2 and 5p13.1; women: 1q25.2 
and 22q11.21-q11.22) and diverse pleiotropic SNPs (16 in men and 18 in women, nearly half were sex-specific) under-
lying SHBGadjBMI and RA, demonstrating biological disparities between sexes. Replacing SHBGadjBMI with crude SHBG, 
a largely similar yet less significant pattern of results was observed.

Conclusion  Our cross-trait analysis suggests an intrinsic, as well as a sex-specific, link underlying SHBG and RA, pro-
viding novel insights into disease etiology.
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Background
Human autoimmune disorders often present sex-specific 
characteristics. In rheumatoid arthritis (RA), women 
account for more than 70% of all cases [1] whom also 
exhibit higher disease activity, worse functionality, and 
more severe comorbidities [2]. Epidemiological studies 
have linked hormone alterations with RA onset. For 
instance, post-menopause and postpartum, characterized 
by declined estrogen levels, have been linked to an 
increased risk of developing RA. Conversely, periods 
during pregnancy and breastfeeding, featured by 
increased estrogen levels, have been associated with a 
reduced risk of RA [3]. However, the potential pathogenic 
role of hormones in RA remains largely uncharacterized.

Sex hormone-binding globulin (SHBG) acts as a carrier 
of sex steroids and regulates the extent to which these 
hormones are delivered to body tissues [4], mediating 
the relationship underlying various endocrine organs 
and pathophysiology of diseases [5]. Clarifying the role 
of SHBG in RA provides novel insights into not only 
disease etiology but perhaps also sex disparity. So far, 
studies investigating the SHBG-RA relationship remain 
sparse with largely inconsistent findings [6–8]. For 
example, a small-sized case–control study (55 RA and 50 
controls) reported SHBG levels to be significantly lower 
in female cases than in controls, both pre-menopausal 
(34.8 ± 10.0 vs. 58.4 ± 17.9 nmol/L) and post-menopausal 
(35.5 ± 10.7 vs. 44.9 ± 7.1  nmol/L) [7], while another 
case–control study (120 RA and 518 controls) did not 
support such a difference (post-menopausal: 57.6 ± 26.9 
vs. 57.3 ± 27.3  nmol/L) [6]. As for men, SHBG did not 
seem to differ significantly according to results from a 
case–control study involving 104 male cases and 99 age- 
and sex-matched controls [8]. Except for insufficient 
power, discrepancies in these results could also derive 
from bias, confounding, or reverse causality which 
are common in conventional epidemiological studies. 
Mendelian randomization (MR) analysis narrows the 
gap by elucidating a putative exposure-outcome causal 
association, using genetic variants (single nucleotide 
polymorphisms, SNPs) as instrumental variables [9]. 
Applying a two-sample MR framework, a positive 
causal association of circulation SHBG with RA has 
been reported (OR = 1.003; 95% CI = 1.000–1.007) [10]. 
Nevertheless, this MR used only a handful of instruments 
(NIV = 13) and a small number of RA cases (NRA = 4017), 
substantially restricting the robustness of the results.

The increasing availability of genetic data produced 
by large-scale genome-wide association studies (GWAS) 
enables the utilization of a compiled analytical strategy 
named genome-wide cross-trait analysis. This analy-
sis features several analytical aspects and permits the 
quantification of shared and distinct etiology underlying 

complex traits. Our study, therefore, aims to extend 
previous findings by implementing a comprehensive 
genome-wide cross-trait approach, leveraging summary 
statistics of the hitherto largest GWAS(s) conducted 
for SHBG and RA. In addition to genetic data of over-
all circulating SHBG (Noverall = 370,125), data on sex-
specific SHBG (Nmen = 180,726, Nwomen = 189,473) and 
BMI-adjusted SHBG (SHBGadjBMI, Noverall = 368,929, 
Nmen = 180,094, and Nwomen = 188,908) were further 
incorporated to detect sex disparity and to control for the 
confounding effect of BMI. We first quantified the global 
and local genetic correlation underlying SHBG and RA, 
and then identified potential pleiotropic loci affect-
ing both traits. We conducted functional annotation of 
these loci and performed fine-mapping analysis and tran-
scriptome-wide association study (TWAS) to provide 
biological insight. We finally evaluated a putative causal 
relationship. A flowchart of the overall study design is 
shown in Fig. 1.

Methods
SHBG GWAS The latest and largest GWAS of circulating 
SHBG was conducted using UK Biobank (UKBB), which 
involved 370,125 participants of European ancestry. 
Genetic variants were imputed using the Haplotype 
Reference Consortium and the 1000 Genomes Project 
reference panel. In addition to the sample quality control 
metrics performed centrally by UKBB, white European 
ancestry was determined by K-means clustering 
combined with self-report. Genetic variants with minor 
allele frequency (MAF) > 1% as well as those that passed 
quality control in batches were involved. Association 
test was performed using a linear mixed model, adjusted 
for genotyping chip, age at baseline, and ten genetically 
derived principal components (PCs). Genome-wide 
significant index variants (P < 5 × 10–8) were identified 
using 1  Mb distance-based clumping with linkage 
disequilibrium (LD) < 0.05 across all variants [11].

To account for the confounding effect of body mass 
index (BMI), additional analysis was performed among 
368,929 UKBB individuals, which consisted of individuals 
enrolled in the SHBG GWAS with BMI records. BMI was 
adjusted (SHBGadjBMI) along with the aforementioned 
variables. Sex-specific analyses were also performed 
(SHBG: Nmen = 180,726, Nwomen = 189,473; SHBGadjBMI: 
Nmen = 180,094, Nwomen = 188,908) [11].

Significant index SNPs discovered by these 
GWAS(s) were used as instrumental variables (IVs). 
For crude SHBG, 335 SNPs were identified, with 
corresponding figures of 188 for men and 176 for 
women. For SHBGadjBMI, 477 SNPs were identified, 
with corresponding figures of 251 for men and 271 for 
women. The characteristics of SHBG-associated (crude, 
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BMI-adjusted, and sex-specific) index SNPs used for MR 
analysis are presented in (Additional file  1: Table  S1–
S6). The full sets GWAS summary statistics were also 
obtained and used for other genetic analyses.

RA GWAS The hitherto largest GWAS of RA was 
conducted by meta-analyzing 25 cohorts involving 
22,350 cases and 74,823 controls of European ancestry. 
Genotype quality control, imputation, and case–control 
association analyses were conducted separately for each 
cohort. Quality control excluded samples with low call 
rate, closely related individuals, or outliers based on 
ancestries identified through PC analysis. Additionally, 
variants with low call rate, low MAF, or low Hardy–
Weinberg P value were excluded. Genotyping imputation 
was performed using 1000 Genomes Phase 3 panel 
with minimum imputation accuracy (r2) of 0.3. SNPs 

associated with RA were detected assuming additive 
effects using logistic regression models, correcting for sex 
and PCs. Finally, effect sizes of the identical SNPs across 
all participating studies were combined using a fixed-
effect inverse variance weighted meta-analysis [12]. 
Index SNPs were obtained with genome-wide signifi-
cance (P < 5 × 10–8) using 1 Mb distance-based clumping 
with linkage disequilibrium (LD) < 0.05 across all vari-
ants after removing the Major Histocompatibility Com-
plex (MHC) region. A total of 182 RA-associated index 
SNPs were identified, of which 175 were available and 
used as IVs in our bidirectional MR analysis. The full set 
of GWAS summary statistics was downloaded and used 
for other analyses. To the best of our knowledge, none of 
these 25 studies overlapped with participants in UKBB, 
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Shared genetic architecture and causal relationship between sex hormone-binding globulin and rheumatoid arthritis
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Fig. 1  Flowchart of the overall study design. We investigated the shared genetic architecture underlying sex hormone-binding globulin (SHBG) 
and rheumatoid arthritis (RA). We first quantified the genome-wide genetic correlation between SHBG and RA; we then estimated local genetic 
correlations by partitioning the genome into linkage-disequilibrium independent blocks. Next, we identified potential pleiotropic loci contributing 
to both traits and conducted functional annotation for these loci. We also performed fine-mapping and transcriptome-wide association analysis 
to provide biological insight. Finally, to make a causal inference, we conducted a bidirectional Mendelian randomization
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our exposure GWAS(s) [12]. For all analyses, the human 
reference genome build 37 (hg19) was used.

Statistical analysis
Genome‑wide genetic correlation analysis
Genome-wide genetic correlation ( rg ) was estimated 
using cross-trait LD-score regression (LDSC) [13, 14]. 
This algorithm quantifies the average sharing of genetic 
effects between pairs of traits that is independent of 
environmental confounders. On average, SNPs in high 
LD exhibit higher average χ2 statistics than SNPs in low 
LD in polygenic traits. Similarly, when analyzing traits 
with genetic correlation, the product of z-scores from 
two studies presents a comparable relationship with χ2 
statistics for a single study. The algorithm is described 
in the formula as follows:

Among them,  ß j and  γ j represent the z-scores of 
SNP j on traits 1 and trait 2, rg represents the genetic 
covariance, M represents the number of SNPs, N1 
and N2 represent the sample sizes of each trait, Ns 
represents the number of overlapping samples, r 
represents the phenotypic correlation in overlapping 
samples, and lj represents the LD score. The estimates 
of genetic correlation range from − 1 to 1, with − 1 
representing a completely negative correlation and 1 
representing a completely positive correlation. The 
MHC region (chr6:28,477,797–33,448,354), known 
for its strong effects on autoimmune conditions and 
complex LD pattern, was excluded from this analysis. 
Given that analyses were repeated three times (overall 
and sex-specific populations), a Bonferroni-corrected 
P value of 0.05/3 was used to define statistical 
significance.

Local genetic correlation analysis
Genomic correlation collapses the effect of all SNPs 
across the whole genome. Even with a negligible global 
genetic correlation, there might be specific regions in 
the genome affecting both traits. We next quantified 
local genetic correlation using heritability estimation 
from summary statistics (ρ-HESS). The genome was 
partitioned into 1,703 LD-independent regions with 
an average size of 1.6  Mb. Firstly, genetic covariance 
was used to evaluate trait similarity within each 
LD-independent region under a fixed-effect model. 
Genetic covariance quantifies the covariation of traits 
on their original scales. To enable comparisons across 
different traits and genomic regions, genetic correlation 

E[βjγj] =

√
N1N2rg

M
lj +

Nsr√
N1N2

was further employed to standardize covariation using 
the jackknife approach [15]. The MHC region was 
excluded from this analysis. A Bonferroni-corrected P 
value of 0.05/(1703 × 3) was used to define statistical 
significance, considering analyses across 1703 
LD-independent regions for the overall and sex-specific 
populations.

Cross‑trait meta‑analysis
Genetic correlation suggests shared genetic 
components—either due to genetic variants having an 
independent effect on both traits (horizontal pleiotropy 
or pleiotropy) or genetic variants influencing one 
trait via its effect on the other (vertical pleiotropy 
or causality). To detect potential pleiotropic loci, 
we applied a cross-trait meta-analysis using cross-
phenotype association analysis (CPASSOC) [16]. 
This algorithm integrates association evidence from 
multiple traits to detect variants affecting at least one 
trait. CPASSOC has several attractive features. In 
addition to allowing for sample overlap and relying 
only on summary statistics, it is compatible with trait 
heterogeneity effects, where a specific genetic variant 
may have varying magnitudes of effects (including 
different directions) on different trait [17]. Given the 
fact that trait homogeneity assumption is less likely 
to hold with multiple traits involved, test statistic SHet 
(rather than SHom) which improves statistical power 
in the presence of trait heterogeneous effects was 
therefore used to combine association evidence. We 
obtained independent top-associated loci applying 
PLINK LD-based clumping function (parameters: 
–clump-p1 5e−8 –clump-p2 1e−5 –clump-r2 0.2 –
clump-kb 500). Significant pleiotropic SNPs were 
defined as variants with Psingle-trait < 1 × 10–5 in both 
traits and PCPASSOC < 5 × 10–8 in paired traits. These 
SNPs were further divided into four categories. First, 
a “known” pleiotropic SNP was one that reached 
genome-wide significance in both single traits 
(PSHBG < 5 × 10–8, PRA < 5 × 10–8, and PCPASSOC < 5 × 10–8). 
These SNPs were naturally pleiotropic even without 
performing CPASSOC. Second, a “single-trait-driven” 
pleiotropic SNP was one that reached genome-wide 
significance in one of two single traits (PSHBG < 5 × 10–8 
or PRA < 5 × 10–8 and PCPASSOC < 5 × 10–8). Third, an 
“LD-tagged” pleiotropic SNP was one that, despite not 
reaching genome-wide significance in any single trait 
(5 × 10–8 < PSHBG / RA < 1 × 10–5 and PCPASSOC < 5 × 10–8), 
was in LD (r2 threshold = 0.2) with index SNPs (or any 
SNP located within ± 250  kb around the index SNPs) 
identified by single-trait GWAS(s). Finally, a “novel” 
pleiotropic SNP was of great interest to us, which 
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was defined as those that neither reached genome-
wide significance in any single trait nor in LD with 
previously identified SHBG- or RA-associated SNPs. 
Ensembl Variant Effect Predictor (VEP) was used to 
map pleiotropic SNPs to the nearest genes based on 
location [18].

Fine‑mapping analysis
Index SNPs are not necessarily causal variants. We 
further identified a 99% credible set of causal variants 
through FM-summary method, a simplified Bayesian 
fine-mapping method using summary statistics. Briefly, 
each pleiotropic SNP and the variants within 500  kb 
around, extracted from the pooled results of cross-trait 
meta-analysis, were used as input for FM-summary. 
FM-summary then set a flat prior and generated a 
posterior inclusion probability (PIP) of a true trait/
disease association for each variant using the steepest 
descent approximation [19, 20]. A 99% credible set 
is equivalent to sorting SNPs from the largest to the 
smallest PIPs and taking the cumulative sum of PIPs until 
it reaches at least 99%.

Transcriptome‑wide association study
Cross-trait meta-analysis identifies pleiotropic loci 
affecting both traits without considering gene expression, 
while many pleiotropic loci influence complex traits by 
modulating gene expression levels. To identify relevant 
genes whose expression patterns vary across tissues, 
we performed a TWAS analysis. Imputable genes 
were provided by pre-trained joint-tissue imputation 
prediction models (GTEx v8) [21]. Gene-phenotype 
association analysis was performed by S-PrediXcan [21, 
22]. We first performed a single-trait TWAS and then 
intersected these results based on gene-tissue pair to 
examine if they were shared across traits. Bonferroni 
correction was used considering the number of gene-
tissue pairs tested in each trait and the analyses repeated 
in overall and sex-specific populations.

Bidirectional Mendelian randomization analysis
A two-sample bidirectional MR analysis was performed 
to identify a putative causal relationship. Inverse 
variance weighted (IVW) approach was used as our 
primary approach, assuming all IVs were valid, or the 
overall pleiotropy was balanced to zero [23]. A series of 
sensitivity analyses were conducted to validate model 
assumptions and to guarantee the robustness of our 
findings. The MR-Egger intercept test was used to 
reflect directional pleiotropy [24]. Weighted median 
approach was performed under the assumption that 
up to 50% of IVs contributing to analysis were invalid 

[25]. MR pleiotropy residual sum and outlier test 
(MR-PRESSO) was applied to detect outliers and 
obtain outlier-corrected effects [26]. Additionally, 
MR-PRESSO distortion test was performed to examine 
the discrepancies between the causal estimates before 
and after outlier correction [26]. IVW approach was 
further repeated by excluding palindromic SNPs (A/T or 
G/C SNPs introducing ambiguity into the identification 
of effect alleles) or pleiotropic SNPs (SNPs affecting 
phenotypes served as potential confounders of the 
SHBG-RA relationship, identified through LDLink, and 
violating the exclusion restriction assumption). Details 
of the excluded pleiotropic SNPs and their associated 
confounders are shown in Additional file  1: Table  S1–
S6. Direction of causality was inferred using Steiger test. 
Robust adjusted profile score (MR-RAPS) was further 
applied to validate the conformity of results. To test 
whether the causal estimates were driven by individual 
SNP, a leave-one-out analysis was performed with each 
SNP iteratively removed, and IVW applied using the 
remaining SNPs.

Statistical power was calculated using the non-
centrality parameter of the test statistic as suggested by 
Brion et  al. [27]. The proportion of variance explained 
by IVs was computed using the formula provided by 
Shim et  al. [28]. Given analyses were repeated three 
times (overall and sex-specific populations), an assumed 
α of 0.05/3 was employed. The strength of the IVs was 
evaluated using the F-statistic.

All analyses were conducted with packages “TwoSam-
pleMR”,  “MRInstruments”,  “MendelianRandomization”, 
“MR-PRESSO” and “mr.raps” in R v3.6.3. Given analyses 
were repeated three times (overall and sex-specific pop-
ulations), a Bonferroni-corrected P value threshold of 
0.05/3 was used to define statistical significance in MR. 

Table 1  Genome-wide genetic correlation between sex 
hormone-binding globulin and rheumatoid arthritis, excluding 
the MHC region

rg , Genetic correlation; SE, Standard error; SHBGadjBMI, Sex hormone-binding 
globulin adjusted for BMI; SHBG, Sex hormone-binding globulin

Trait rg SE Z P

Overall

SHBGadjBMI 0.11 0.03 3.8 1.0 × 10–4

SHBG 0.05 0.02 2.06 3.9 × 10–2

Men

SHBGadjBMI 0.07 0.02 3.26 1.1 × 10–3

SHBG 0.05 0.02 2.14 3.2 × 10–2

Women

SHBGadjBMI 0.09 0.02 3.71 2.0 × 10–4

SHBG 0.04 0.03 1.65 0.10
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Additionally, a P value of < 0.05 was employed for sugges-
tive significance.

Ethics/consent statement
This was a secondary analysis of existing, publicly 
available summary-level GWAS data. The statement of 
ethics for each GWAS can be found elsewhere, approved 
by relevant ethics committees [11, 12].

Results
Genetic correlations between SHBG and RA
After correcting for multiple testing (P < 0.05/3), 
as shown in Table  1, we found a minimal shared 
genetic basis between crude SHBG and RA ( rg = 0.05, 
P = 3.9 × 10–2). The effects remained null in both 
men ( rg = 0.05, P = 3.2 × 10–2) and women ( rg = 0.04, 
P = 0.10), possibly due to the confounding effect of 
BMI as studies have found a decreased level of SHBG 
[29] but an increased risk of RA [30] among individuals 
who were overweight or obese. As expected, after 
adjusting for BMI, a positive genome-wide genetic 
correlation was observed for SHBGadjBMI and RA 
( rg = 0.11, P = 1.0 × 10–4), and this effect remained 
consistent in sex-specific analysis (men: rg = 0.07, 
P = 1.1 × 10–3, women:  rg = 0.09, P = 2.0 × 10–4). 
Therefore, in our subsequent analysis, SHBGadjBMI 
was used as primary exposure, complemented by 
crude SHBG.

Partitioning the whole genome into 1703 regions, 
we identified significant local genetic correlations for 

SHBGadjBMI with RA at one region (1q25.2) (Fig.  2). 
In addition, distinct genomic regions were identified 
in men (1q32.1-q32.2 and 5p13.1) and women (1q25.2 
and 22q11.21-q11.22).

Analysis of crude SHBG with RA presented 
insignificant results, further demonstrating the 
effectiveness of focusing on SHBGadjBMI (Additional 
file 2: Fig. S1).

Cross‑trait meta‑analysis of SHBG and RA
Motivated by the significant global and local genetic cor-
relation, we further conducted a cross-trait meta-analysis 
to identify pleiotropic SNPs affecting both traits (Fig.  3 
and Additional file 1 Table S7). Of the total 18 independ-
ent pleiotropic SNPs identified for SHBGadjBMI and 
RA, rs10951192 (PCPASSOC = 8.99 × 10–10) was detected 
as a novel SNP and located in JAZF1, a gene implicated 
in transcriptional repression and inflammation suppres-
sion [31]. Additionally, we identified four “known” SNPs, 
seven “SHBGadjBMI-driven” SNPs, three “RA-driven” 
SNPs, and three “LD-tagged” SNPs. The sex-specific 
analyses revealed distinct pleiotropic SNPs underly-
ing SHBGadjBMI and RA for men and women. For men, 
16 independent pleiotropic SNPs were detected, among 
which rs7512646 (PCPASSOC = 6.61 × 10–10) was novel, 
located in IL6R, a gene encoding a subunit of the 
interleukin 6 receptor complex [32] and participat-
ing in the immune response and autoimmune dis-
eases [33]. For women, 18 independent pleiotropic 
SNPs were detected, two of which were novel: rs244468 

SHBGadjBMI and RA

Female-specific SHBGadjBMI and RA

Male-specific SHBGadjBMI and RA

1:177433381-178944309

1:206073265-208410364 5:38802410-40287729

1:177433381-178944309 22:19912358-22357325

Fig. 2  Local genetic correlation: BMI-adjusted sex hormone-binding globulin and rheumatoid arthritis (excluding MHC). X-axis represents 
chromosomes, Y-axis represents negative logarithm of P values, and each dot in the Manhattan plot represents a linkage-disequilibrium 
independent genomic region. Chromosomes and genomic regions for significant local genetic correlations are marked. MHC regions were 
excluded due to their complex LD pattern. SHBGadjBMI: sex hormone-binding globulin adjusted for BMI; RA: rheumatoid arthritis
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(PCPASSOC = 7.70 × 10–10), located in ARHGAP26, a gene 
encoding GTPase activating protein that regulates 
tumor immunity [34] and inflammation [35], as well as 
rs4921915 (PCPASSOC = 3.59 × 10–10), an intergenic variant.

Replacing SHBGadjBMI with crude SHBG, a similar 
pattern of results was observed. In overall population, 
70.0% of pleiotropic SNPs were either overlapped or 
in LD with SNPs identified using SHBGadjBMI. The 
proportion was 66.7% in men and 76.9% in women 
when analyzed by sex. Functional annotations of these 
pleiotropic SNPs are shown in (Additional file 1: Table S9, 
S10).

Fine‑mapping analysis
For each of the pleiotropic SNPs, we further determined 
a 99% credible set of causal SNPs, providing targets for 
future downstream experimental analysis (Additional 
file  1: Table  S11). In general, we found 448 candidate 
causal SNPs across all shared loci between SHBGadjBMI 
and RA. Of these, three pleiotropic SNPs (rs113243085, 
rs917770, and rs575623373) showed a posterior 
probability of 1.00. In sex-specific analysis, 327 candidate 
causal SNPs were identified for men, and 385 for women.

Transcriptome‑wide association studies
After Bonferroni correction, single-trait TWAS identified 
148 genes significantly associated with RA and 2,115 
genes with SHBGadjBMI. Intersecting the single-trait 
TWAS results, we finally identified 16 pleiotropic genes 
(AC007389.1, AC007389.5, AC007613.1, AC012370.2, 

ACOXL-AS1, AP000553.3, CCDC116, FADS1, FADS2, 
PHF19, SNN, TMEM258, TRAF1, TRIM38, UBE2L3, 
and YDJC) shared by SHBGadjBMI and RA, and the 
corresponding figure was four for men and 11 for women 
(Additional file  1: Table  S12). Notably, AC007389.1 and 
AC007389.5, the two pseudogenes, were originated 
from the same locus on chromosome 2. Moreover, seven 
pleiotropic genes identified through TWAS overlapped 
with nearby genes mapped by CPASSOC-identified 
SNPs.

Bidirectional Mendelian randomization analysis
We performed a bidirectional two-sample MR analysis 
to evaluate a causal relationship. As shown in Fig. 4 and 
(Additional file 1: Table S13), a 20% increased risk of RA 
was observed per each SD (approximately 30.3  nmol/L) 
increment in genetically predicted SHBGadjBMI (IVW 
OR = 1.20, 95% CI = 1.01–1.43). The estimates remained 
directionally consistent in weighted median approach 
although with large uncertainty. In sex-specific analy-
ses, the magnitude of effect size indicated potential dis-
parities between men and women, with an OR of 1.13 
(95% CI = 0.93–1.34) in women, and an OR of 1.07 (95% 
CI = 0.90–1.26) in men, although none of these estimates 
reached statistical significance.

We performed sensitivity analyses to verify the 
robustness of the results. The causal associations 
for SHBGadjBMI with RA were remained in overall 
population after correcting outliers (OR = 1.21, 95% 
CI = 1.04–1.38), removing confounding SNPs (OR = 1.49, 

Fig. 3  Cross-trait meta-analysis: BMI-adjusted sex hormone-binding globulin and rheumatoid arthritis (excluding MHC). Independent 
top-associated loci of sex hormone-binding globulin adjusted for BMI and rheumatoid arthritis were located in the inner and middle circles 
of the circular Manhattan plot, respectively. Results of cross-trait meta-analyses were listed in outer circles. Significant pleiotropic SNPs were 
presented by red spots, defined as variants with P SHBGadjBMI < 1 × 10–5, PRA < 1 × 10–5, and PCPASSOC < 5 × 10–8. Novel pleiotropic SNPs detected 
for SHBGadjBMI with RA were marked by a green spot, and defined as a significant pleiotropic SNP neither reached genome-wide significance 
in a single trait (5 × 10–8 < PSHBGadjBMI < 1 × 10–5, 5 × 10–8 < PRA < 1 × 10–5, and PCPASSOC < 5 × 10–8) nor in linkage-disequilibrium (LD) with previously 
identified SHBG- or RA-associated SNPs. MHC regions were excluded due to their complex LD pattern. Chr: chromosome; SHBGadjBMI: sex 
hormone-binding globulin adjusted for BMI. RA: rheumatoid arthritis
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95% CI = 1.10–2.01) or palindromic SNPs (OR = 1.20, 95% 
CI = 0.99–1.45) (Additional file 1: Table S14). Consistent 
findings were also observed in MR-RAPS (Additional 
file 1: Table S15). Leave-one-out analysis indicated small 
fluctuations upon the exclusion of individual SNPs 
(Additional file 2: Figure S2).

On the contrary, no reverse causality was observed 
as genetically predicted RA did not seem to affect 
SHBGadjBMI either in overall or sex-specific analyses. 
The estimates were non-significant with effect sizes close 
to 1. These findings were further confirmed by Steiger 
directionality test (all P < 1 × 10–99) (Additional file  1: 
Table S13).

Replacing SHBGadjBMI with crude SHBG, similar 
but insignificant results were observed. Genetically 
predicted levels of crude SHBG may increase the risk of 
RA overall (IVW OR = 1.18, 95% CI = 0.99–1.41), but this 
trend was not observed either in men (IVW OR = 1.03, 
95% CI = 0.86–1.22) or women (IVW OR = 1.10, 95% 
CI = 0.91–1.32).

Under the current sample size of outcome (97,173 
with 23.00% of RA cases) and assuming an α of 
0.05/3, given the phenotypic variance explained by 
SHBGadjBMI-associated IVs to be 0.178, our study had 
80% power to detect a 6% change for the risk of RA with 
SHBGadjBMI. The corresponding effect sizes were 6% 

for men and 7% for women. For crude SHBG, with the 
phenotypic variance explained by index SNPs to be 0.132, 
our study had 80% power to detect a 7% change, with 
the corresponding effect sizes of 6% for men and 8% for 
women (Additional file 1: Table S16).

Discussion
To the best of our knowledge, this is the first large-scale 
genome-wide cross-trait design that comprehensively 
investigates the shared genetic architecture underlying 
SHBG and RA. We found a significant shared genetic 
basis, both globally and locally, between SHBGadjBMI 
and RA overall. Such a genetic correlation could be 
further decomposed into horizontal pleiotropy and 
vertical pleiotropy, reflected by the multiple independent 
pleiotropic loci identified in cross-trait meta-analysis 
as well as the putative causal relationship confirmed by 
MR. Looking into men and women separately, most 
findings were replicated in both sexes, while sex-specific 
results were also observed, reflecting a distinct role of 
SHBG in affecting RA susceptibility across sex. Replacing 
SHBGadjBMI with crude SHBG, a largely similar yet less 
significant pattern of results was observed, corroborating 
main findings.

The SHBG-RA relationship remains largely 
inconclusive in clinical and epidemiological 

Fig. 4  Causal associations: sex hormone-binding globulin and risk of rheumatoid arthritis in Mendelian randomization. Green squares represent 
odds ratio of outcomes per each SD increment in genetically predicted exposures. Bars represent 95% confidence intervals. The Mendelian 
randomization analysis was performed based on the inverse variance weighted approach. SHBG: sex hormone-binding globulin; SHBGadjBMI: sex 
hormone-binding globulin adjusted for BMI; RA: rheumatoid arthritis; SNP: Single nucleotide polymorphism; OR: odds ratio; CI: confidence interval
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investigations [6–8]. A study suggested a lower SHBG 
level in RA patients [7], while other studies did not 
support this finding [6, 8]. Additionally, it is challenging 
to determine whether the decreased SHBG levels are 
caused by RA itself or by glucocorticoid treatment, 
a common method of treating RA which may result 
to decreased SHBG level [36]. Our findings, however, 
overcame the limitation of these studies and extended 
prior findings in several important ways. Through 
a comprehensive genome-wide cross-trait design, 
our study for the first time confirmed an intrinsic 
link underlying SHBG and RA, expanding beyond 
observational associations. The significant global 
and local SHBG-RA genetic correlations support a 
shared genetic basis unconfounded by environmental 
factors, of which magnitude ( rg = 0.11) is noteworthy 
in comparison with figures estimated among 
autoimmune diseases, e.g., between RA and systemic 
lupus erythematosus ( rg = 0.40, P = 6.01 × 10–10) or 
between RA and its well-established risk factor obesity 
( rg ranging from − 0.01 to 0.08, all P > 0.05) or between 
RA and its possible consequence bone mineral density 
( rg = − 0.059, P = 0.005) [37, 38]. Our study found a 
non-negligible genetic correlation of 11%, indicating a 
strong pathogenic link. The identification of multiple 
pleiotropic loci provides further evidence of a shared 
genetic basis. The validities of these pleiotropic SNPs 
were supported by fine-mapping analysis which 
identified three loci to be highly likely causal, and by 
TWAS analysis which overlapped with nearby genes 
mapped by CPASSOC-identified SNPs. We hereby 
provide a description of some of these pleiotropic 
genes. UBE2L3, a “known” pleiotropic gene, plays a role 
in both RA and sex hormone signaling [39, 40]. PHF19, 
TRAF1, and CCDC116 have been previously confirmed 
to be associated with RA [41–43]. However, their 
potential roles in SHBG were implicated by us. PHF19 is 
involved in the pathway of RNA polymerase I promoter 
opening and gene expression (transcription); TRAF1 
is related to apoptosis and autophagy; CCDC116, a 
protein-coding gene located in centrosome, may be 
involved in RNA processing [44]. The level of SHBG 
may be regulated through these pathways. SNN, a 
protein-coding gene playing a role in the toxic effects 
of organotin [45] and endosomal maturation [46], has 
been proved to be linked to SHBG [11] and a number of 
other autoimmune diseases [47] including ankylosing 
spondylitis, psoriasis, ulcerative colitis, Crohn’s 
disease, and sclerosing cholangitis. AC007389.1 and 
AC007389.5, the two pseudogenes originating from the 
same locus, may interactively influence gene expression 
regulation. Finally, leveraging summary statistics of the 
hitherto largest GWAS(s) of both traits, the statistical 

power of our MR was greatly improved compared 
with previous MR [10]—involving a 37-fold increased 
number of IVs (481 vs. 13) and a six-fold augmented 
number of RA cases (22,350 vs. 4,017), we were able to 
detect a modest effect of 6–8% per standard deviation 
increment of genetically predicted SHBG with RA 
which previous studies were not well-powered to detect 
The negligible causal effect size observed in previous 
MR (OR = 1.003) is perhaps of limited clinical relevance 
in comparison with our findings (OR = 1.20). We were 
also able to determine the direction of association 
via bidirectional MR, suggesting SHBG may plays a 
pathogenic role in the development of RA rather than a 
secondary accompanying abnormality.

In addition to an overall landscape, distinct genetic 
architecture and biological mechanisms were identified 
for men and women separately through our sex-
specific analysis. In addition to sex-specific shared 
genetic regions, nearly half of the pleiotropic loci we 
identified were sex-specific. We also observed potential 
differences in the pattern of pleiotropic genes between 
sexes, which may indicate the distinct pathways. Future 
studies are needed to validate the sex-specific role of 
these genes. TRIM38 and ZSCAN23 are men-specific 
genes. The former plays a role in modulating the severity 
of autoimmune disease [48] and negatively regulates 
inflammatory responses triggered by TLR3/4 and TNF/
IL-1β [49] and nuclear factor (NF)-κB signaling [50]. 
ZSCAN23 has also been identified as an immune-related 
target gene [51]. In women, FADS2 is a member of the 
fatty acid desaturase gene family, which is involved 
in the pathways of alpha-linolenic acid metabolism 
and arachidonate biosynthesis III. Moreover, studies 
have shown that long-chain polyunsaturated fatty 
acids, synthesized by FADS2, have anti-inflammatory 
properties, and may be involved in regulating immune 
function [52, 53]. RGL2, a protein-coding gene, relates to 
the pathway of immune response antigen presentation by 
MHC class II. These identified genes may provide insights 
into the underlying sex-specific biological mechanisms.

Our analyses must be interpreted with caution. First, 
due to limited data availability, we could not examine 
RA subtypes characterized by anti-citrullinated antibody 
status or classify subgroups according to the severity 
of RA [41]. To our knowledge, nearly 90% of RA cases 
involved in our RA GWAS summary statistics were 
seropositive. Moreover, it appears that the seropositive 
and seronegative RA share heritability and have similar 
risk alleles outside of the MHC locus [54, 55]. Second, 
our study was conducted restricted to European ancestry 
populations. While this reduces population stratification 
and genetic heterogeneity, it also constrains the 
generalizability of findings to other ethnicities. Third, we 
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need to be cautious in explaining the identified potential 
pleiotropic SNPs and genes through computational 
analysis. Further experimental validation is needed to 
strengthen the underlying biological mechanisms that 
we have detected. Fourth, adjusting for BMI in SHBG 
GWAS(s) could lead to BMI-associated SNPs being 
mistakenly identified as SHBG-associated SNPs (BMI as 
a collider), which may further violate the independence 
assumption of MR analysis (IVs are not associated with 
confounders). However, this collider bias has been 
minimized in the original GWAS study by discarding 
all loci which changed effect direction and/or had large 
changes in effect estimate and statistical significance 
when compared to the unadjusted model [11]. Moreover, 
we found a comparable effect of SHBG and SHBGadjBMI 
on RA (1.19 vs. 1.21) in MR analysis, which indicates a 
less likely biased result. Fifth, considering the uncertainty 
of the effect in a few sensitivity analyses and in sex-
specific MR analysis, further validation may be needed 
to establish a robust causal relationship between 
SHBGadjBMI and RA.

Conclusions
In conclusion, leveraging the hitherto largest 
genome-wide genetic data and advanced statistical 
approaches, the current study expands understanding 
of the observational association of SHBG with RA by 
providing evidence of genetic correlation, pleiotropic 
loci, and causal relationships. Our findings demonstrate 
an intrinsic, as well as a potential sex-specific link 
underlying SHBG and RA, and further shed novel light 
on biological mechanisms. Future studies are warranted 
to validate the function of the identified variants and 
genes, and to extend our findings on the diagnostic and 
therapeutic values of SHBG in RA.
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