Skip to main content
. 2023 Aug 29;9:20552076231197098. doi: 10.1177/20552076231197098

Table 2.

Comparison of ROC AUC and Brier scores.

Cohorts Predictive models Training AUC (95% CI) Test AUC (95% CI) Training Brier (95% CI) Test Brier (95% CI)
Sarcopenia-1 Logistic Regression 76.61 (74.42, 78.80) 71.59 (71.51, 71.66) 0.131 (0.118, 0.144) 0.154 (0.139, 0.169)
Support Vector Machine 79.92 (74.65, 85.19) 71.17 (69.28, 73.07) 0.135 (0.123, 0.146) 0.169 (0.160, 0.178)
Multi-Layer Perceptron 75.20 (67.42, 82.99) 71.48 (71.00, 71.97) 0.134 (0.125, 0.143) 0.160 (0.149, 0.171)
Random Forest 74.06 (72.65, 75.46) 69.09 (67.97, 70.22) 0.132 (0.129, 0.136) 0.156 (0.149, 0.162)
Gradient Boosting 77.63 (76.67, 78.59) 69.56 (69.28, 69.83) 0.165 (0.163, 0.167) 0.203 (0.200, 0.206)
XGBoost 73.68 (72.18, 75.18) 70.19 (69.18, 71.19) 0.130 (0.130, 0.131) 0.148 (0.146, 0.150)
Sarcopenia-2 Logistic Regression 96.46 (95.13, 97.79) 91.44 (91.28, 91.60) 0.034 (0.018, 0.051) 0.047 (0.028, 0.067)
Support Vector Machine 95.56 (92.18, 98.95) 90.81 (88.41, 93.20) 0.029 (0.022, 0.036) 0.042 (0.037, 0.047)
Multi-Layer Perceptron 94.20 (89.94, 98.46) 88.50 (85.83, 91.18) 0.035 (0.021, 0.050) 0.047 (0.039, 0.056)
Random Forest 96.18 (95.92, 96.44) 90.04 (88.16, 91.92) 0.031 (0.030, 0.032) 0.043 (0.041, 0.044)
Gradient Boosting 94.63 (89.67, 99.60) 86.18 (79.56, 92.80) 0.029 (0.018, 0.040) 0.048 (0.035, 0.060)
XGBoost 92.89 (90.94, 94.84) 89.56 (82.45, 96.68) 0.033 (0.027, 0.040) 0.045 (0.035, 0.056)

For Brier score, lower is better and <0.11 would be excellent. (The columns marked Test area under the curve [AUC] and Test Brier correspond to the graphs in Figure 1.)