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Review

Introduction

Ovarian cancer (OC), endometrial cancer (EC), and cervical 
cancer (CC) are the three most common gynecological 
malignancies1. Ovarian cancer is the fifth most frequent 
cause of death in women and the leading cause of death in 
females diagnosed with gynecological cancers, with about 
313,959 new cases and 207,252 deaths worldwide in 20202. 
The morbidity and mortality of EC are increasing globally, 
with about 417,367 new cases and 97,370 deaths worldwide 
in 20203. Cervical cancer was the fourth most common can-
cer and the fourth leading cause of women dying from can-
cer, with about 604,100 new cases and 341,831 deaths 
worldwide in 20203. Thus, treatments for gynecological can-
cer are needed urgently and extracellular vesicles (EVs), 
especially exosomes, are receiving more attention for treat-
ing gynecological cancers4.

Exosomes are one type of EC, ranging in diameter from 
30 to 150 nm, making them the smallest nano-size EVs. 
Nearly all cells produce exosomes, and the cargo of exo-
somes can be transferred to the neighbor cells, contributing 
to cell–cell communication and playing important roles in 
biological processes, including cancer development5. Among 
the cargo of exosomes, miRNAs were broadly studied and 
showed great potential for diagnosis and prognosis markers 
as well as therapeutic targets and nanocarrier for treatments. 
Therefore, we review the research progress of exosomes in 
gynecological malignancies.

Exosomes

Exosomes were first identified in platelets in 19676. 
Exosomes are small vesicles with lipid bilayer membrane 
structure and are produced by most cells, including immune 
cells, stem cells, and cancer cells. Exosomes could be 
detected in body fluid, including plasma, serum, urine, 
semen, saliva, bronchial fluid, cerebral spinal fluid (CSF), 
breast milk, amniotic fluid, synovial fluid, tears, lymph, 
bile, and gastric acid7. Exosomes range in size from 30 to 
150 nm and contain a variety of biomolecules such as pro-
teins, lipids, and nucleic acids (eg, RNA, DNA)8. Exosomal 
vesicles form by inward budding and envelop the biomole-
cules, as mentioned above, into intracavity vesicles (ILVs) 
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contained in the endosome and mature into multivesicular 
bodies (MVBs)8,9.

The CD63 along with CD9 and CD81 are considered 
markers for exosomes, and the functions are closely related 
to exosome production10. Exosomes participate in cell–cell 
communication, cell maintenance, and tumor progression 
and can be easily sampled by liquid biopsy11. Among those 
biomolecules, miRNAs, either promoting or inhibiting can-
cer, is the most studied. One miRNA can target several genes, 
regulating a series of biological functions and serve as a bio-
marker for diagnosis, prognosis, therapeutic target, and 
nanocarrier for cancer treatment, including gynecological 
cancer12.

Noncoding RNAs

Noncoding RNAs mainly include small RNA, such as micro 
RNAs (miRNAs), long noncoding RNAs (lncRNAs), circu-
lar RNAs (circRNAs), and others13. miRNAs were first dis-
covered in Caenorhabditis elegans14,15, negatively regulating 
complementary target genes (mRNAs). miRNAs are tran-
scribed by RNA polymerase II as primary miRNAs (pri-
miRNAs)16 and processed to single hairpins termed precursor 
miRNAs (pre-miRNAs) by RNase III enzyme Drosha, 
DiGeorge critical region 8 (DGCR8), and others17, after 
exporting pre-miRNAs to cytoplasm and processing to dou-
ble-strand RNA (dsRNA) by Dicer18. These mature miRNAs 
are 20 to 25 nucleotides in length and bind the Argonaute 
(AGO) protein, forming the RNA-induced silencing com-
plex (RISC) and mediating gene silencing19.

Conversely, lncRNAs are commonly defined on the 
threshold of 200 nucleotides (nt) of the RNA length, regulat-
ing chromatin remodeling, transcriptional controlling, and 
post-transcriptional processing20. The cellular localization of 
lncRNAs decides their functions. Cytoplasmic lncRNAs 
regulate mRNA stability, translation, and protein phosphory-
lation21 and nuclear lncRNAs modulate gene expressions22. 
Genomic localization and context of lncRNAs include inter-
genic lncRNAs, intronic lncRNAs, sense lncRNAs, and anti-
sense lncRNAs23. Unlike mRNA and miRNAs, lncRNAs are 
poorly evolutionarily conserved among species24. LncRNAs 
may also regulate miRNA biogenesis19.

CircRNAs are the covalently linked transcripts formed by 
the back-splicing of mRNA25. Most circRNAs are expressed 
from known protein-coding genes26, including exonic cir-
cRNAs, exon–intron circRNAs (EIcircRNAs), circular 
intronic RNAs (ciRNAs), and mitochondria-encoded cir-
cRNAs (mecciRNAs). Except intron-containing circRNAs, 
most circRNAs are exported to the cytoplasm27. Many cir-
cRNAs exert important biological functions by acting as 
microRNA or protein inhibitors (sponges), enhancer of pro-
tein function, scaffold and recruitment for protein, and tem-
plates for translation25.

In summary, noncoding RNAs exert important biological 
functions and have been implicated in various diseases, 

including cancer. Elevated evidence showed that noncoding 
RNAs were presented in exosomes and regulated the cells in 
tumor microenvironments (TMEs), such as tumor cells, mes-
enchymal stem cells (MSCs), and immune cells. Thus, we 
review the sources of exosomes and the functions in received 
cells in the TME of gynecological cancers.

Exosomes in OC

Human epididymis protein 4 (HE4) and carbohydrate anti-
gen-125 (CA-125) are the main application markers in diag-
nosing OC with lacking sensitivity and specificity. Among 
the OC subtypes, high-grade serous carcinoma (HGSC, type 
II) is the most prevalent and lethal, representing more than 
70% of OC. Type I tumor includes low-grade serous, endo-
metrioid, clear cell, and mucinous carcinomas, carrying a 
good prognosis except for clear cell carcinoma. About 60% 
of OC are diagnosed at a later stage (stage III or IV), associ-
ated with poor prognosis28,29. Therefore, improving diagno-
sis and prognosis biomarkers and therapeutic targets is 
crucial for OC. Exosomes derived from OC or other cells 
from TME may have great potential to become new bio-
markers and therapeutic targets30.

The Roles of Exosomes for Diagnosis and 
Prognosis of OC

miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-
203, miR-205, and miR-214 were significantly increased in 
cancer cells, exosomes, and serum of OC patients (Table 1)31. 
miR-21, miR-100, miR-200b, and miR-320 were signifi-
cantly enriched, whereas miR-16, miR-93, miR-126, and 
miR-223 were decreased in exosomes from the plasma of 
OC patients32. Exosomal miR-1260a, miR-7977, and miR-
192-5p were significantly decreased in OC patients com-
pared with healthy controls33. miRNA-1290 was significantly 
overexpressed in serum exosomes and tissues compared to 
the benign ovarian neoplasm34. Exosomal miR-21-5p, miR-
29a-3p, and miR-30d-5p were overexpressed in ovarian clear 
cell carcinoma cells35. Ascites-derived miR-200a, miR-200b, 
miR-200c, and miR-1290 were overexpressed, and the high 
expression level of miR-200b was related to poor overall sur-
vival36. Serum exosomal miR-484 levels were significantly 
lower in OC patients, and the combination of miR-484 with 
CA-125 showed an elevated area under the curve (AUC) of 
0.912 in identifying OC patients from controls37. The expres-
sion level of miR-205 in plasma exosomes was significantly 
higher in OC patients than in benign and control groups. The 
level of miR-205 was related to OC staging and lymph node 
metastasis38. Among seven upregulated plasma-derived exo-
somal miRNAs, miR-4732-5p showed great potential to be a 
biomarker for diagnosing OC39. Conversely, plasma exo-
somal miR-320d, miR-4479, and miR-6763-5p were signifi-
cantly downregulated in OC patients and associated with 
lymph node metastasis40.
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The Therapeutic Application of Exosomes in OC

Exosomal miR21 from cancer-associated adipocytes (CAAs) 
and cancer-associated fibroblasts (CAFs) suppresses OC 
apoptosis and confers chemoresistance by targeting APAF1 
(Table 2)41. Exosomal miR-21-5p enhanced migration, inva-
sion, and tumor formation by targeting CDK6 and enhanced 
chemoresistance through PDHA142,43. Exosomal miR-429, 
regulated by NF-κB, enhanced the chemoresistance of OC 
cells by targeting CASR44. Ascites-derived exosomal miR-
6780b-5p promoted epithelial–mesenchymal transition 
(EMT) and tumor metastasis in OC cells and correlated to 
poor patient survival45. miR-130a was highly expressed in 
the exosome from drug-resistant OC cells and promoted 
angiogenesis46. miR-205 was overexpressed in OC tissues, 
and a high level of miR-205 in serum exosomes was associ-
ated with OC metastasis. Besides, exosomal miR-205 pro-
moted angiogenesis by regulating the PTEN-AKT pathway47. 
miR-141-3p-containing exosome derived from OC cells pro-
moted angiogenesis by activating the JAK/STAT3 and 
NF-κB signaling pathways48. The expression of miR-543 
was significantly decreased in exosomes derived from OC 
cell lines, tissues, and patient serum, and overexpression of 
miR-543 resulted in the suppression of OC cell proliferation 
and tumor growth by targeting IGF249.

CircRNA Foxo3 was significantly upregulated in OC 
cells and enhanced proliferation, migration, and invasion by 
targeting miR-422a/PLP2 axis50. Circ-PIP5K1A was highly 
expressed in chemoresistant OC cells. Knockdown of Circ-
PIP5K1A constrained the proliferation, migration, and inva-
sion as well as increased apoptosis and chemosensitivity in 
OC cells by targeting miR-942-5p/NFIB51. This phenome-
non was also found in circ_0007841/miR532-5p/NFIB52. 
CircRNA051239 expression was increased in tissues and 
plasma exosomes from OC patients and could promote pro-
liferation, migration, and invasion of OC cells in vitro53. 
Cdr1as suppressed cisplatin resistance of OC cells via miR-
1270/SCAI axis54. Exosomal circFoxp1 was significantly 
increased in OC patients and positively regulated the expres-
sion of CEBPG and FMNL3 through miR-22 and miR-
150-3p, resulting in cisplatin resistance of OC cells55. The 
expression of circNFIX was significantly increased in OC 
cells and tissues, promoting angiogenesis via miR-518a-3p/
TRIM44 and downstream JAK/STAT1 signaling56. 
Interestingly, CAF-derived exosomal circIFNGR2 inhibited 
OC cell proliferation, EMT, metastasis, and tumor growth 
via targeting miR-378/ST5 axis57.

Long noncoding RNA (lncRNA) MALAT1 was increased 
in both metastatic OC cells and their secreted exosomes, 
which could promote angiogenesis and tumor growth. Serum 
exosomal MALAT1 levels were associated with poor prog-
nosis in OC patients58. Exosomal lncRNA ATB promoted 
angiogenesis and tumorigenesis of OC cells via regulating 
miR-204-3p/TGFβR2 axis59. Exosomal lncRNA SOX2-OT 
enhanced proliferation, migration, invasion, and tumor 

growth of OC cells by miR-181b-5p/SCD1 (sterol CoA 
desaturase 1) signaling60.

Reactive oxygen species (ROS) greatly downregulated 
exosomal miR-155-5p from OC cells, while neutralization 
of ROS by N-acetyl-L-cysteine (NAC) reversed it. NAC-
derived tumor exosomes were also taken up by macro-
phages and further inhibited tumor growth and macrophage 
infiltration and promoted cytotoxic T-cell (CD8+) activa-
tion in vitro by targeting PD-L161. Tumor-associated mac-
rophages (TAMs) derived exosomal miR-29a-3p promoted 
proliferation and immune escape of OC cells through the 
FOXO3-AKT/GSK3β axis and enhanced expression of 
PD-L162. Exosomal miR-200b promoted macrophage M2 
polarization while inhibiting M1 polarization through 
inhibiting KLF6 and further facilitated OC cell prolifera-
tion and invasion63. CD163+ TAMs from ascites promoted 
migration, EMT, and chemoresistance via miR-221-3p 
downregulated ADAMTS6 and the downstream TGF-β1/
EGFR-AKT signaling64. Plasma cell–derived miR-330-3p 
significantly increased tumor growth and metastasis of OC 
cells by targeting JAM265.

The tumor necrosis factor (TNF)–like weak inducer of 
apoptosis (TWEAK)–stimulated macrophages inhibited 
metastasis of OC cells via exosomal shuttling of microRNA, 
miR-7, and inhibiting the EGFR/AKT/ERK1/2 pathway66. 
The expression of exosomal miR-92b-3p of OC cells was 
low. The exosomal miR-92b-3p functions as a suppressor of 
tumor-associated angiogenesis via targeting SOX4. Tumor 
volume and angiogenesis were inhibited by the Arg-Gly-Asp 
peptide-engineered exosomes (RGD-SKOV3-92b/exo) from 
RGD-labeled SKOV3-92b cells, a stable miR-92b-3p over-
expression SKOV3 cells67. Another study showed that tar-
geted delivery of miR-484 via RGD-modified exosomes 
improved vascular normalization, sensitized OC cells to che-
motherapy, and prolonged the survival time of tumor-bearing 
mice68. Furthermore, the hybrid nanoparticles, formed by 
membrane fusion of engineered miR497-overexpressing 
exosomes and liposomes modified by the target peptide 
RGD, in combination with the chemotherapeutic drug trip-
tolide (TP), were effectively enriched in the tumor areas and 
exerted significant anticancer activity. This combination 
therapy decreased the PI3K/AKT/mTOR signaling pathway, 
boosted reactive oxygen species (ROS) generation, and 
upregulated the polarization of macrophages from M2 to M1 
macrophages69. Similarly, miR-21-3p, miR-125b-5p, and 
miR-181d-5p from hypoxic exosomes derived from OC 
increased the M2 macrophage population and promoted pro-
liferation, migration, and tumor growth of OC70.

Exosomal miR-146a released by hUCMSCs contributed 
to hUCMSC-derived exosome-mediated chemosensitivity of 
OC cells mediated by LAMC2 via the PI3K/Akt signaling 
pathway71. hMSC-exosomes, containing high miR-18a-5p 
expression, suppressed OC cell proliferation, migration, 
invasion, chemoresistance, and tumor growth72. OC cell–
secreted exosomal piR-25783 activated the TGF-β/SMAD2/
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6	 Cell Transplantation

SMAD3 pathway in omental fibroblasts and promoted the 
fibroblast-to-myofibroblast transition (FMT), resulting in the 
elevation of proliferative, migratory, and invasive properties 
as well as tumor implantation and growth in the omentum73. 
Exosomal miR-141 was highly secreted by OC cells and 
reprogrammed stromal fibroblasts into proinflammatory 
CAFs, facilitating metastatic colonization through activating 
YAP1/GROα/CXCRs signaling74. miR-29c-3p was down-
regulated in omental CAFs-exosomes, and miR-29c-3p 
directly targeted MMP2 to suppress OC cell invasion and 
metastasis75.

Exosomes from NK cells, which were derived from cord 
blood mononuclear cells (CBMC), displayed cytotoxicity 
against OC cells. The NK exosomes loaded with cisplatin 
could sensitize drug-resistant OC cells and activate NK cells 
from the immunosuppressive TME. However, the detailed 
mechanisms are unclear76. Conversely, HGSC exosomes 
from patients’ sera downregulated NKG2D-mediated cyto-
toxicity in NK cells, and NKG2D expression on NK cells 
was upregulated after surgery, improving the NKG2D-
mediated cytotoxic response77. The studies of exosomes 
serving as therapeutic targets on OC accumulate fast, and the 
results showed that exosomes and their components have 
great potential for treating OC.

Exosomes in EC

The current clinical screening of EC is based on vaginal 
ultrasound and biopsy of endometrial tissues lacking speci-
ficity78. There are two main types of ECs. About 80% belong 
to type I ECs, which mostly are well differentiated with 
endometrioid histology and show a high level of estrogen 
receptor (ER). Type II ECs are poorly differentiated with 
serous or clear cell histology and show an 80%~90% recur-
rence rate within 3 years, representing a poor prognosis79. 
Besides, ECs can be low-grade tumors (grades 1 and 2) car-
rying a better prognosis or high-grade carcinomas (grades 3) 
carrying an intermediate prognosis80. Thus, developing pow-
erful biomarkers and therapeutic targets is urgent, and the 
source from exosomes had great potential.

The Roles of Exosomes for Diagnosis and 
Prognosis of EC

miR-15a-5p was consistently upregulated in plasma-derived 
exosomes from EC patients. Furthermore, higher exosomal 
miR-15a-5p expression was associated with larger tumors, 
p53 expression, and muscular infiltration depth (Table 3)81. 
Another study proved that the expression of miR-142-3p, 
miR-146a-5p, and miR-151a-5p was significantly overex-
pressed in the plasma of EC patients82. In the serum of EC 
patients, miR-143-3p, miR-195-5p, miR-20b-5p, miR-
204-5p, miR-423-3p, and miR-484 were significantly over-
expressed83. Besides, urine-derived exosomes from EC 
patients showed that miR-200c-3p was significantly 
increased84. Increased expression of plasma exosomal miR-
93 was associated with smoking, grade of tumor, FIGO 
stage, distance organ metastases, and overall survival (OS). 
In contrast, decreased expression of miR-205 was associated 
with smoking, lymph node involvement, FIGO stage, and 
OS of EC patients85. FOXL2 was significantly lower in EC 
tissues and associated with worse OS. Conversely, miR-133a 
was highly expressed in EC cells and exosomes derived from 
EC cells and could be taken up by normal endometrial cells86. 
circ_0109046 and circ_0002577 were highly expressed in 
the serum of stage III EC patients, while the functions of 
these two circRNAs are still unclear87.

The Therapeutic Application of Exosomes in EC

Plasma exosomal miR-26a-5p from EC patients with lymph 
node metastasis (LNM) showed significantly reduced and 
correlated with the FIGO stage (Table 4). miR-26a-5p inhib-
ited EC cell proliferation, migration, and invasion in vitro 
and tumor growth and lymph node metastasis in vivo. miR-
26a-5p-silenced exosomes strongly enhanced human lym-
phatic endothelial cells (HLECs) lymphangiogenesis and 
migration ability by targeting LEF1, and miR-26a-5p-over-
expressed exosomes reduced tumor growth and metastasis88. 
Under hypoxia conditions, miRNA-21-containing exosomes 
derived from EC cells promoted M2-like macrophage 

Table 3.  Exosomes and Their Components as Biomarkers for Endometrial Cancer.

Biomarker Trend Type Source Recipient cells Functions Application Ref

miR-15a-5p Increase miRNA Plasma — Biomarker Early detection in plasma 81

miR-142-3p, miR-146a-5p, miR-151a-5p Increase miRNA Plasma — Biomarker Early detection in plasma 82

miR-143-3p, miR-195-5p, miR-20b-5p, 
miR-204-5p, miR-423-3p, miR-484

Increase miRNA Serum — Biomarker Early detection in serum 83

miR-200c-3p Increase miRNA Urine — Biomarker Early detection in urine 84

miR-93 Increase miRNA Plasma — Biomarker Early detection in plasma 85

miR-205 Decrease miRNA Plasma — Biomarker Early detection in plasma 85

miR-133a Increase miRNA Cancer cells Cancer cells, normal 
endometrial cells

Biomarker Early detection 86

circ_0109046, circ_0002577 Increase circRNA Serum — Biomarker Diagnosis in serum 87
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polarization that may contribute to an immune microenvi-
ronment favoring EC progression89.

miR-148b was significantly decreased in CAFs and 
CAFs-derived exosomes, and exogenously transfected miR-
148b CAFs-derived exosomes could suppress EC cell inva-
sion and metastasis by targeting DNMT190. miR-320a is 
poorly expressed in EC cells as well as CAFs. The direct 
transfer of CAF-secreted exosomal miR-320a to EC cells 
inhibited their proliferation, migration, and invasion by tar-
geting HIF1α–VEGFA axis91. miR-499a-5p was also down-
regulated in EC cells, and MSC-derived exosomes loaded 
with miR-499a-5p could suppress migration, invasion, tumor 
growth, and angiogenesis of EC cells via targeting VAV392. 
Furthermore, human umbilical cord blood mesenchymal 
stem cells (hUMSCs)–derived exosomal miR-503-3p93 and 
miR302a94 inhibited migration, invasion, and tumor growth 
of EC cells by suppressing MEST, and cyclin D1–AKT axis, 
respectively. Upregulation of miR-192-5p in TAM-derived 
exosomes could significantly promote the apoptosis of EC 
cells and inhibit EMT via IRAK1/NF-κB signaling95.

LncRNA DLEU1 was highly expressed in EC cells and 
tissues and promoted proliferation, migration, and invasion 
of EC cells in vitro and tumor growth in vivo by regulating 
miR-381-3p–E2F3 axis96. Exosomal lncRNA NEAT1 from 
CAFs facilitated EC cell growth via miR-26a/b-5p-mediated 
STAT3/YKL-40 axis97. Exosomal circ_0001610 derived 
from M2 tumor-associated macrophage reduced the radio-
sensitivity in vitro and in vivo by miR-139-5p–cyclin B1 
axis98. miR-765 was significantly decreased in EC cells and 
tissues, and exosomes of CD45RO-CD8+ T cells suppressed 
EMT, invasion, and tumor growth, metastasis via the ERβ//
PLP2/Notch axis99.

Downregulated transfer RNA-derived small RNAs 
(tRNA, tRF-20-S998LO9D) in both EC tissues and serum 
exosomes were found. Overexpression of tRF-20-S998LO9D 
inhibited proliferation, migration, and invasion and pro-
moted apoptosis of EC cells via upregulating SESN2100. 
These results showed that exosomes and the components 
might serve as therapeutic targets. However, more studies are 
needed to elucidate the detailed mechanisms.

Exosomes in CC

Human papillomavirus (HPV), especially the high-risk 
types, has been defined as a carcinogen, and the persistence 
of high-risk HPV (hr-HPV) infection is a necessary etiologi-
cal cause of CC101. In low-resource countries, the simple and 
inexpensive way is to start with visual cytologic tests (pap 
smear test), and in high-resource situations, it starts with pap 
smear test and HPV tests to screen CC patients102. DNA 
methylation and epigenetic modification have gained atten-
tion as alternative methods for molecular diagnosis and 
prognosis in cervical neoplasia screening103. Combination 
tests, including HPV tests and DNA methylation tests, show 
great potential for improving the early detection and man-
agement of CC. However, most of the studies were limited to 
a country or cohort, and further research is needed to validate 
these biomarkers in larger national-wide or multicountry 
cohorts. Hence, the biomarkers, especially miRNAs, from 
exosomes show great potential because miRNAs may con-
trol multiple genes in one biological process rather than a 
single gene.

The Roles of Exosomes for Diagnosis and 
Prognosis of CC

Plasma exosomal let-7d-3p and miR-30d-5p were signifi-
cantly decreased in the cervical intraepithelial neoplasia II+ 
(CIN II+) group compared with the CIN I group of CC 
patients (Table 5)104. Plasma exosomal miR-146a-5p, miR-
151a-3p, miR-2110, and miR-21-5p were upregulated in CC 
patients105 while miR-125a-5p was downregulated106. 
Exosomal miR-21, miR-146a107, and lncRNA HOTAIR and 
MALAT1108 levels were increased in the cervicovaginal 
lavage specimens of CC patients, while lncRNA MEG3 was 
decreased108. Besides, serum exosomal lncRNA DLX6-AS1 
level was significantly increased in CC patients and posi-
tively associated with lymph node metastasis, FIGO stage, 
and shortened survival109. The expression of lncRNA-
EXOC7 in serum and serum-derived exosomes in CC 
patients was elevated110.

Table 5.  Exosomes and Their Components as Biomarkers for Cervical Cancer.

Biomarker Trend Type Source Recipient cells Functions Application Ref

let-7d-3p, miR-30d-5p Decrease miRNA Plasma — Biomarker Early detection in plasma 104

miR-146a-5p, miR-151a-3p, 
miR-2110, miR-21-5p

Increase miRNA Plasma — Biomarker Early detection in plasma 105

miR-125a-5p Decrease miRNA Plasma — Biomarker Early detection in plasma 106

miR-21, miR-146a Increase miRNA Cervicovaginal lavage — Biomarker Early detection in cervicovaginal lavage 107

HOTAIR, MALAT1 Increase lncRNA Cervicovaginal lavage — Biomarker Early detection in cervicovaginal lavage 108

MEG3 Decrease lncRNA Cervicovaginal lavage — Biomarker Early detection in cervicovaginal lavage 108

DLX6-AS1 Increase lncRNA Serum — Biomarker Prognosis in serum 109

lncRNA-EXOC7 Increase lncRNA Serum — Biomarker Prognosis in serum 110
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The Therapeutic Application of Exosomes in CC

Exosomal miR-223 promoted CC migration and tumor 
growth by upstream STAT3 and downstream TGFBR3 and 
HMGCS1 axis111. Exosomal miR-106a and 106b expres-
sions were downregulated in cisplatin-resistant CC cells, and 
miR-106a/b overexpressing exosomes inhibited chemoresis-
tance of CC cells by targeting SIRT1 (Table 6)112. TGF-β1 
promoted the upregulation of exosomal miR-663b resulting 
in the enhancement of EMT and migration by targeting 
MGAT3113. Besides, exosomal miR-663b also promoted 
angiogenesis and tumor growth by targeting vinculin 
(VCL)114. miR-22 is frequently downregulated in various 
tumors, and miR-22 overexpressing exosomes deriving from 
HEK293 cells enhanced the radiosensitivity of CC cells by 
targeting MYCBP and hTERT115. miR-221-3p was highly 
expressed in CC tissues and cells. Exosomes derived from 
miR-221-3p mimic-transfected CC cells promoted invasion, 
migration, and angiogenesis of CC cells through downregu-
lation of MAPK10116 and lymphangiogenesis and lymphatic 
metastasis of HLECs by targeting VASH1117. miR-320a 
expression was decreased in CC tissues, and engineered 
miR-320a exosomes enhanced the chemoresistance and 
tumor growth by targeting MCL1118.

Exosomal miR-423–3p inhibited macrophage M2 polar-
ization to suppress the tumor growth of CC cells119. miR-
1323, which was transferred by CAFs-secreted exosomes, 
showed upregulation in CC cells, and downregulation of 
miR-1323 suppressed CC cell proliferation, migration, inva-
sion, and increased cell radiosensitivity. By targeting 
poly(A)-binding protein nuclear 1 (PABPN1) and recruiting 
insulin-like growth factor 2 mRNA binding protein 1 
(IGF2BP1), miR-1323 regulated the downstream protein 
glycogen synthase kinase 3 beta (GSK-3β) and influenced 
Wnt/β-catenin signaling pathway120. miR-142-5p could be 
delivered from CSCC-secreted exosomes into HLECs and 
suppress and exhaust CD8+ T cells by induction of IDO 
expression via ARID2–DNMT1–IFN-γ signaling. Serum 
exosomal level of miR-142-5p also positively correlated 
with the progression of CC patients121. miR-1468-5p pro-
moted lymphatic PD-L1 upregulation and lymphangiogene-
sis by targeting homeobox containing 1 (HMBOX1) and 
activating the JAK2/STAT3 signaling122. Exosomal miR-
155-5p derived from HIV-1 infected T cells enhanced prolif-
eration, migration, and invasion of CC cells by 
ARID2–ERCC5–NF-κB axis123. LncRNA-HNF1A-AS1 
enhances proliferation and tumor growth by targeting miR-
34b/TUFT1 axis124. LncRNA UCA1 was overexpressed in 
CC cells, and it promoted proliferation, migration, invasion, 
and tumor growth of cancer stem cells (CSCs) by miR-
122-5p/SOX2 axis125. LncRNA LINC01305 was increased 
in CC tumor tissues, and it promoted migration, invasion, 
and tumor growth of CC through interaction with KHSRP126. 

lncRNA PDHB-AS was significantly downregulated in CC 
cells, and overexpression of PDHB-AS inhibited prolifera-
tion, invasion, EMT, and chemoresistance of CC cells. 
PDHB-AS targeted miR-582-5p and inactivated the Wnt/β-
catenin pathway via regulating Wnt7b and DKK1. Human 
keloid fibroblasts (HKFs)–derived exosomal miR-4536-5p 
downregulates PDHB-AS in CC cells127. lncRNA MALAT1 
was highly expressed in CC tissues, exosomes, and chemore-
sistant cells. lncRNA MALAT1 promoted proliferation and 
inhibited apoptosis of CC cells by targeting miR-370-3p. 
While miR-370-3p was inhibited by lncRNA MALAT1, 
STAT3 could be re-expressed and further bind the promoter 
of lncRNA MALAT1, resulting in a positive feedback regu-
lation. On the contrary, lncRNA MALAT1 promoted the che-
moresistance of CC cells through STAT3/PI3K/AKT 
pathway128. Lnc LRRC75A-AS1 was highly expressed in 
exosomes derived from M2 macrophages, inducing prolifer-
ation, migration, invasion, EMT, tumor growth, and metasta-
sis of CC cells through downregulating miR-429 and SIX1/
STAT3/MMP-9 signaling129.

Circ_0074269 was overexpressed in chemoresistant  
CC samples and cells. Silencing of circ_0074269 elevated 
chemosensitivity, repressed chemoresistant CC cell prolifer-
ation and migration, and induced apoptosis through regu-
lating TUFT1 expression via sponging miR-485-5p130. 
Circ_0006646 expression was elevated in CC cells and exo-
somes of CC patients, and its knockdown suppressed CC cell 
proliferation, migration, invasion, tumor growth, and metas-
tasis through regulating RRM2 expression via sponging 
miR-758-3p131. Paclitaxel loading into Wharton jelly-derived 
mesenchymal stem cells (WJ-MSCs) exosomes, serving as 
nanocarrier, induced apoptosis and suppressed EMT signal-
ing of CC cells132. Since the HPV vaccines were developed, 
however, inexpensive tests have been needed in developing 
or less developed countries. Other than HPV tests, exosomes 
could be great targets to approach.

Limitation

There are some limitations of exosomal biomarkers and ther-
apeutic targets. First, only a few studies showed the results of 
subtypes of OC and EC, both of them have type I and type II 
cancers. Different cancer cell types may have different tumor 
etiology and studies for identifying subtype-specific exo-
somal biomarkers are needed. Second, all the studies of ther-
apeutic targets were still in the exploratory stage; the real 
clinical applications of exosomal therapeutic targets are 
needed to further elucidate, such as how to specifically target 
cancer cells or the TME and how the biomolecules exchange 
between cells. Since the TME is complex, all the studies only 
confirm the exosomes from one cell to another or reverse it. 
However, the effects of exosomes may also be from one cell 
to more cells, which is unknown and may cause side effects. 
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Thus, studies or clinical trials are needed to elucidate the 
altogether effects of exosomal biomolecules from one cell to 
another or the other cells bidirectionally or multiple-direc-
tionally (eg, bidirectional: cancer cells ⇄ CAFs, cancer cells 
⇄ immune cells, cancer cells ⇄ MSCs, or multiple-directional: 
cancer cells ⇄ CAFs ⇄ MSCs ⇄ immune cells) in the TME.

Conclusion and Perspectives

Discovery of new diagnostic and prognostic biomarkers, as 
well as therapeutic targets, for gynecological cancers are 
urgent. Exosomes play pivotal roles in the pathogenesis of 
gynecological cancers by orchestrating the communication 
between cancer cells and the TME, including CAFs, MSCs, 
and immune cells. Exosomes, especially miRNAs, may 
function as positive or negative regulators of cancer develop-
ment through various signaling pathways and associate with 
the diagnosis and prognosis. It is easy to approach because 
exosomes can secret into body fluid serving as liquid biopsy. 
Thus, exosomes have great potential as diagnostic and prog-
nostic biomarkers for gynecological cancers.

Exosomes-derived biomolecules also could serve as ther-
apeutic targets for precision medicine. Each miRNA, regard-
less of upregulation (oncomiR) or downregulation (tumor 
suppressor), regulates various signaling pathways contribut-
ing to cancer development. One miRNA could target multi-
ple genes and regulate at least one biological process which 
makes it more efficient when taking miRNAs as therapeutic 
targets. Furthermore, due to the nano-size of exosomes, it 
could be engineered by modifying the surface molecules to 
increase the tissue-targeting specificity as a nanocarrier to 
deliver drugs or functional biomolecules. In summary, exo-
somes could not only be biomarkers but also therapeutic tar-
gets as well as nanocarriers.
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