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ABSTRACT: Oral bioavailability is a pharmacokinetic property that
plays an important role in drug discovery. Recently developed
computational models involve the use of molecular descriptors, finger-
prints, and conventional machine-learning models. However, determining
the type of molecular descriptors requires domain expert knowledge and
time for feature selection. With the emergence of the graph neural
network (GNN), models can be trained to automatically extract features
that they deem important. In this article, we exploited the automatic
feature selection of GNN to predict oral bioavailability. To enhance the
prediction performance of GNN, we utilized transfer learning by pre-
training a model to predict solubility and obtained a final average accuracy
of 0.797, an F1 score of 0.840, and an AUC-ROC of 0.867, which
outperformed previous studies on predicting oral bioavailability with the
same test data set.

■ INTRODUCTION
Current Studies and Available Models to Predict Oral

Bioavailability. Orally administered drugs undergo first pass
effect as they are metabolized by the liver before entering the
systemic circulation. The fraction of drug that enters systemic
circulation and reaches the pharmacological target is referred
to as oral bioavailability.1 Despite displaying promising results
during pre-clinical trial stages, some drug candidates may fail to
advance through clinical trial stages due to having low oral
bioavailability. As such, one crucial aspect during the early
stages of the drug discovery process is to estimate the oral
bioavailability of drug candidates. Traditionally, methods used
to determine oral bioavailability involved the use of rodent or
non-rodent mammalian models. However, such methods are
time-consuming and expensive.2 Moreover, there are consid-
erable interspecies differences between the metabolism path-
way of animal models and humans that must be taken into
consideration, hence highlighting the need of having a
prediction model that can provide an accurate and reliable
estimate on the human oral bioavailability of small molecules.
Over the years, different in silico methods have been

developed to model such a relationship. They consist of
different conventional machine-learning models and depend
heavily on the use of appropriate molecular representations. To
determine the prediction performance of models, studies
computed and compared the accuracy of models, where the
predicted labels are equivalent to the true labels. For example,
Wei et al. conducted a study to predict oral bioavailability by
generating 1143 2D molecular descriptors and a random forest
(RF) algorithm, which resulted in an accuracy of 79.3%.2 On

the other hand, using the same test data set, Falcoń-Cano et al.
developed models using other machine-learning algorithms
such as classification and regression trees, multi-layer
perceptron, Naiv̈e Bayes, gradient-boosted trees, and support
vector machines using 1337 molecular descriptors, which
resulted in an accuracy of 78.3%.2,3 Despite using a larger
number of molecular descriptors, the models developed by
Falco ́n-Cano et al. did not manage to outperform the
consensus model developed by Wei. As such, there is a need
to carefully curate a set of molecular descriptors to be used as
features during model development. This is consistent with
other molecular properties’ study reported by Comesana et al,4

thus highlighting the need to search for a better way to
represent molecules and an algorithm to model oral
bioavailability. In addition, different machine-learning algo-
rithms used in the two studies may have resulted in the
disparity of performance obtained. Therefore, to build a
machine-learning model is not a trivial task. It requires expert
domain knowledge to study and select an appropriate set of
molecular descriptors and machine-learning algorithm for
model development.
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Graph Neural Network. On the other hand, the
emergence of the graph neural network (GNN) provided a
new way of representing molecules as 2D molecular graphs.5 In
GNN, each molecule can be represented as a graph, where
each atom is represented by a node and each bond is then
represented by an edge. After each convolution, the
embeddings of each node change carry information of its
neighbors. This aided in eliminating the problem of requiring
prior knowledge to curate features to build machine-learning
models.6,7 GNN enables extraction of abstract structural details
of molecules, allowing knowledge of molecules to be captured
automatically and be utilized in any prediction task. Presently,
there are many variants of GNN-based models8−10 reporting
state-of-the-art performance for predicting various molecular
properties using publicly available data sets. In 2019, an
attentive fingerprint (FP),8 which was based on GNN, was
developed and garnered attention for its superior performance
over molecular descriptors in predicting various molecular
properties. However, the question of whether GNN can
perform better than conventional machine-learning models
using molecular descriptors remains controversial. For
instance, Jiang et al. performed a study comparing GNN
models and conventional machine-learning models using
molecular descriptors and showed that molecular descriptors
outperformed GNN models in various prediction tasks using
publicly available data sets.11

Transfer Learning. Furthermore, GNN models suffer a
major drawback with regard to the lack of a large data set to
train a model. To alleviate this problem, transfer learning
strategies can be employed.12 Generally, transfer learning
allows one to share its knowledge on one task to predict
another task. A strategy that was employed widely in computer
vision and natural language processing task is pre-training a
model using supervised learning. With this strategy, a model
can be built to predict a prior task that is akin to the actual
task. This allows better feature extraction and thus enables
better prediction performance. In the chemistry domain, the
idea of pre-training was used to generate vector embeddings of
molecules. For instance, Goh et al. designed ChemNet by pre-
training neural networks using large unlabeled chemical
databases by treating molecules as images and SMILES.13

On the other hand, Jaeger et al. designed Mol2vec which
learned vector representation of molecules represented as
SMILES in an unsupervised manner which can be used for
other downstream tasks.14

Project Objectives and Scope of Study. In this paper,
we demonstrated that GNNs can be used as an alternative to
molecular descriptors and FPs for oral bioavailability
prediction. To address the issue of small data set size, we
explored the use of transfer learning by pre-training the model
with a larger data set on a similar task using supervised
learning. Given that a close relationship exists between
solubility and oral bioavailability, we hypothesized that the
GNN models will be able to capture relevant information using

supervised learning to predict solubility, which can be
translated to oral bioavailability prediction.

■ MATERIALS AND METHODS
Solubility Data Set and Oral Bioavailability Data Set.

To develop a model for oral bioavailability prediction, we
obtained a data set from Wei et al.2 with the train data set
containing 1157 molecules and the test data set containing 290
molecules that were originally obtained from four public data
sources. Since there was no agreement in relation to the best
cut-off value to be used for this binary classification problem,
we decided to adopt the definition described by Wei et al. such
that molecules with oral bioavailability more than or equal to
50% are classified as having high oral bioavailability.
For the transfer learning to be successful, we pre-trained the

model with a data set that is large and exhibits a close
relationship with oral bioavailability. Since GNN is prone to
overfitting, training GNNs with a larger data set will allow
better generalization. In addition, using a closely related data
set allowed the model to learn structural details of molecules
that might be transferable to oral bioavailability. We adopted a
solubility data set obtained from Hou et al.15 and the identical
train, validation, and test split was used in this study. It
contained a total of 9943 non-redundant molecules. However,
three molecules were removed as it could not be processed,
resulting in a data set consisting of 9940 molecules. Molecules’
data sets can be found in the Supporting Information.

RF and GNN-Based Models. All models were built and
trained using an Intel Core i5-12600K with NVIDIA GeForce
RTX3060 Ti. A Random Forest Classifier was built using
Scikit-learn16 (1.2.0). RF is widely used as a baseline model in
different molecular property prediction studies.17,18 RF was
shown to be superior to other machine-learning algorithms
with advantages when developing a quantitative structure−
activity relationship model, such as being less sensitive to
hyperparameters and high prediction accuracy. In essence, RF
is an ensemble technique that is composed of multiple
individual decision trees, and a final prediction result is
obtained by averaging the results from each decision tree.
Two GNN-based models were developed using Pytorch

Geometric19 (2.1.0) with CUDA (11.3) enabled. First, a graph
isomorphism network (GIN) model was developed using the
GINConv layer available in Pytorch Geometric. GINConv was
developed by Xu et al.20 and possessed superior representation
ability than other GNN-based models such as GCN and
GraphSAGE. Second, a graph transformer (GT) model was
developed using the TransformerConv layer available in
Pytorch Geometric. Inspired by the transformer architecture
of Vaswani et al.,21 Shi et al.22 translated the work of Vaswani et
al. and developed the TransformerConv layer to allow the
transformer architect to be used on graphs. In addition,
another GNN-based model called Vertical GNN was
developed by merging GIN and GT convolution techniques
into a single model (Figure 1). Embeddings were first
generated by passing the graph data into a GT convolution

Figure 1. Architecture of Vertical GNN models using GINConv and TransformerConv layers.
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block and subsequently into a GIN convolution block. Finally,
the prediction of class labels was obtained by passing the final
embeddings into a classifier block.

Molecular Descriptors and FPs for the RF Model. A
total of 208 molecular descriptors were generated using an
RDKit23 (2022.09.5). Next, we removed molecular descriptors
that are zero for all molecules. Molecular descriptors that have
zero variance were also removed since they possess little
predictive power. As a result, a set of 45 molecular descriptors
was obtained for all molecules. The list of molecular
descriptors used is available in the Supporting Information.
MACCSKeys, Morgan FPs, and RDKit FPs were generated
using RDKit. Morgan FPs were generated using a bit size of
1024 and a radius size of two. RDKit FPs were generated using
a bit size of 1024 with a minPath of one and maxPath of two.

Generating Nodes and Edge Features for GNN-Based
Models. Nodes and edge features were generated using
DeepChem24 (2.6.1) and RDKit based on WeaveNet paper.25

Node features include the atom type, formal charge, hybrid-
ization, hydrogen bonding, aromatic, degree, number of
hydrogens, and chirality. Meanwhile, edge features consist of
the bond type, whether they are on same ring, conjugated, and
the stereo configuration of the bond.

Hyperparameter Tuning for RF Models and GNN
Models Built from Scratch. Hyperparameters for all models
were tuned using the Tree-structured Parzen Estimators
algorithm provided in Optuna26 (3.1.0) in 30 evaluations
with the aim of reducing the loss function. For the solubility
data set, the mean squared error from Pytorch Geometric was
used. For the oral bioavailability data set, binary cross entropy
with logits loss from Pytorch Geometric and log loss from
Scikit-Learn were used, respectively, during hyperparameter
tuning.

Model Training, Validating, and Testing. Training was
conducted to a maximum epoch of 300 with an early stopping
algorithm set at 10 epochs to prevent overfitting. All models

were trained, validated, and tested using a five-fold cross
validation method. The whole process was subsequently
repeated five times. All hyperparameters were made available
in the Supporting Information.

Transfer Learning Data Set Pre-Processing. To avoid
data leakage, molecules that appeared in both the solubility
data set and oral bioavailability test data set were removed
from the solubility data set, resulting in the solubility data set
size decreasing to 9844. Next, the maximum Tanimoto
similarity scores for molecules between the solubility and
oral bioavailability data set were calculated using RDKit, and
the median Tanimoto similarity scores with respect to the oral
bioavailability train and test data set were 0.327 and 0.267,
respectively. The solubility data was split up into three
different sets with each set containing 5000 molecules and
having a different range of similarity scores ranging from low to
high. A violin plot, comprising a hybrid of a box plot and
kernel density plot, was plotted to show the average, median,
and distribution of Tanimoto similarity scores for molecules
(Figure 2). The number of solubility molecules to include for
pre-training is an empirical value that can be changed to suit
different needs. In this study, we decided to use 5000 to ensure
that each data set contained sufficient instances for the model
to be pre-trained with sufficient information since GNNs are
known to learn better with larger data sets. When compared to
the oral bioavailability test data set, the median similarity
scores for low, mid, and high solubility data sets were 0.217,
0.270, and 0.327, respectively. On the other hand, when
compared to the oral bioavailability train data set, the median
similarity scores for low, mid, and high solubility data were
0.275, 0.333, and 0.392. The solubility data sets and splitting
strategy can be found in the Supporting Information.

Transfer Learning Models. Vertical GNN was used to
build transfer learning models. The classifier block was
replaced with a linear block to predict solubility. Hyper-
parameters were obtained using the train and validation

Figure 2. Violin plots of maximum similarity scores between the solubility data set and oral bioavailability data set. The red line indicates the
average value, while the black line indicates the median value.
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solubility data set from Hou et al. after removing molecules
that appeared in the oral bioavailability test data set. Using the
hyperparameters obtained previously, models were pretrained
at 60 epochs using different similarity levels of the solubility
data set (low, mid, high). Generally, we noted that higher
epochs of pre-training resulted in better performance during
validation (Table S8). However, the value of 60 epochs is
empirical and can be changed to correspond to different
demands. To further optimize the pre-trained model, we
experimented with different learning rates and training epochs.
The hyperparameters used for pre-trained models can be found
in the Supporting Information.

Evaluation Metrics. Since there is no global consensus as
to which metric is the best for a binary classification problem,
we employed a combination of four different metrics to

evaluate model performance. Log loss measures how close the
predicted probability is compared to the true label. A model
that correctly returns predicted probability closer to the true
label will result in a lower log loss value. Accuracy (Acc)
measures the exact match between the predicted label and the
true labels. A model that returns predicted labels that are of
exact match to the true labels would result in higher accuracy
value. F1 score, or balance F-score, takes into consideration
precision and recall and measures the harmonic mean between
the two factors. A model with a higher F1 score suggests the
model simultaneously maximizes precision and recall scores
and hence a better model. Lastly, the area under the curve of a
receiver operating characteristic (AUC-ROC) curve were
calculated and compared. AUC-ROC considers the measure
of separability. A model with a high AUC-ROC suggests that

Table 1. Prediction Performance for the RF Models Using Different Featuresa

molecular descriptor Morgan FP RDKit FP MACCSkeys

log loss 0.561±0.012 0.592 ± 0.012 0.610 ± 0.009 0.592 ± 0.010
Acc 0.722±0.016 0.684 ± 0.013 0.670 ± 0.026 0.687 ± 0.019
F1 score 0.761±0.015 0.738 ± 0.020 0.724 ± 0.026 0.738 ± 0.018
AUC-ROC 0.784±0.017 0.746 ± 0.017 0.724 ± 0.022 0.742 ± 0.012

aThe bold values represent the best scores. Prediction performance using the oral bioavailability test data set was reported in mean ± standard
deviation.

Figure 3. Beeswarm plot of top 20 important molecular descriptors for the RF model toward oral bioavailability prediction using the oral
bioavailability test data set. Analysis done on the model that was developed from the first fold data set produced using five-fold cross-validation.
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the model is capable of distinguishing between classes and is
hence a better model. We calculated the four metrics and
compared them. The model that did well for the greatest
number of metrics was deemed as the best performing model.

■ RESULTS AND DISCUSSION
Prediction Performance between RF Models. Among

various features used for RF models, the model with molecular
descriptors as its feature resulted in the best prediction
performance (Table 1).
A possible explanation could be because molecular

descriptors contain more detailed information ranging from
molecular weight to topological information. On the other
hand, FPs mainly encode structural details of molecules into
bits. Previous molecular property prediction studies had also
suggested a similar conclusion whereby molecular descriptors
were often better at representing molecules in prediction
models. For example, Orosz et al. developed a model to predict
adsorption, distribution, metabolism, elimination, and toxicity
properties using molecular descriptors and FPs and compared
their prediction performance. They reported that the model
built using molecular descriptors resulted in superior
prediction performance over the model that was built using
FPs.27 In another study by Racz and Keserű, a similar
conclusion was also derived where the molecular descriptor-
based model outperformed the FP-based model for modeling
potential drug interactions with cytochrome P450 enzymes.28

In addition, SHapley Additive exPlanations29 (SHAP) was
employed to interpret the model built using molecular
descriptors. Briefly, SHAP was developed using game theory.
SHAP helps to connect credit allocation and local explanations
by calculating Shapley values, thus allowing us to understand a
prediction model’s decision. If a feature is of higher importance
then a larger Shapley value will be calculated. In addition to
Shapley values, Beeswarm plots were plotted to allow for a
better interpretation of a model’s decision. In a Beeswarm plot,
the molecular descriptors used for modeling are arranged in
order of importance, with the most important descriptor being
at the top (Figures 3 and S2−S5). For each descriptor in the
Beeswarm plot, every molecule is represented as a point. The
points are distributed horizontally according to the SHAP
value. For example, quantitative estimation of drug-likeness
(QED) considers the distribution of molecular properties such
as molecular weight, log P, topological surface area, and
number of hydrogen bond donors and acceptors and was
shown to have the highest predictive power. A molecule with a
large QED value (red) resulted in a higher predicted
probability of having a high oral bioavailability value. This is
expected since a drug-like molecule often exhibits a higher oral
bioavailability. Conversely, we noted that a molecule with a
small QED value (blue) resulted in a higher predicted
probability of having a low oral bioavailability value. Similarly,
we also observed a positive correlation between Mol log P and
oral bioavailability, which is expected since a higher logP
results in better drug permeation.
In addition, we summarized the number of times a feature

appeared within the top five positions in all five models
developed during the five-fold cross-validation process. We
observed that QED was the most important feature as it
appeared in the top position for all five models. The other four
common features that appeared the most in order after QED
are BCUT2D_MWHI, BCUT2D_MRLOW, MinAbsPartial-
Charge, and MaxPartialCharge (Figures S6−S10).

Next, we compared the prediction performance of our
models with previous studies that studied the prediction of oral
bioavailability using the same train and test data set. Wei et al.
constructed a consensus RF model using five RF models with
1143 molecular descriptors obtained from Mordred and
obtained an average accuracy of 0.793 and an average AUC-
ROC score of 0.830. Despite using the same machine-learning
algorithm, the RF model constructed in this study with 45
molecular descriptors obtained from RDKit only reported an
average accuracy of 0.722 and an average AUC-ROC score of
0.784. The difference in the number of molecular descriptors
that were used might have an impact on the model prediction
performance. This suggests that perhaps more descriptors will
result in a better model. On the other hand, Falcoń-Cano et al.
developed a model that was based on a different algorithm and
included using classification and regression trees, multi-layer
perceptron, Naiv̈e Bayes, gradient boosted trees, and support
vector machine. Despite using more molecular descriptors
(1337) for modeling, Falcoń-Cano et al. reported a model with
an average accuracy of 0.783 and an average AUC-ROC score
of 0.800, which were lower than what Wei et al. had reported.
This suggests that using more descriptors for modeling does
not necessarily result in better prediction performance and that
the machine-learning algorithm might have an impact on
prediction performance. As such, this highlights the
importance of possessing expert knowledge to carefully curate
a set of molecular descriptors and select a relevant machine-
learning algorithm to be used for modeling since both factors
can affect the prediction performance of models.

Prediction Performance of GNN Models. Among all the
GNN-based models, Vertical GNN resulted in the best
prediction performance (Table 2). The prediction perform-

ance of GT was better than that of GIN, suggesting that the
GT architecture was superior in its representation ability.
When different convolution techniques were combined into a
single model, higher average accuracy was recorded (0.742)
compared to that of GNN models with a single convolution
technique (0.630−0.663), thus highlighting that the predictive
performance of GNN models can be improved using merged
convolution techniques.

■ COMPARISON BETWEEN RF AND GNN
First, Vertical GNN reported better average scores among the
metrics used when compared to those obtained from the RF
model constructed with molecular descriptors in this study.
However, when standard deviations were taken into consid-
eration, the prediction performance between both models is
relatively comparable. Despite that, the benefit of using GNN
is the ability to automatically extract relevant features from a
raw graph input. In GNN, the molecular structure of a

Table 2. Prediction Performance for Different GNN-Based
Modelsa

GIN GT Vertical GNN

log loss 0.677 ± 0.154 0.618 ± 0.028 0.530±0.053
Acc 0.630 ± 0.125 0.663 ± 0.034 0.742±0.036
F1 score 0.611 ± 0.307 0.733 ± 0.027 0.778±0.046
AUC-ROC 0.665 ± 0.185 0.705 ± 0.045 0.807±0.033

aBold values represent the best scores. Prediction performance using
the oral bioavailability test data set was reported in mean ± standard
deviation.
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molecule is represented as a graph where information of atoms
and bonds is encoded into nodes and edges of a graph,
respectively. The training process of GNN automatically
extracts relevant features toward the prediction task. This is
useful especially in drug chemistry such as de-novo drug
synthesis since using explainable artificial intelligence tools
such as GNNExplainer30 can reveal the important substructure
of the molecules toward the molecular prediction tasks.
On the other hand, developing RF models using molecular

descriptors requires labor-intensive feature selection. Feature
selection is important as it reduces the number of molecular
descriptors and thus increases model interpretability. For
example, having multiple co-related features may result in
features being wrongly classified as significant during the
interpretation of the model.31 Feature selection also reduces
chances of overfitting from non-redundant molecular descrip-
tors which, in turn, can improve model prediction perform-
ance.32,33 In addition, molecular descriptors are forms of
mathematical representations of molecules that were derived
from algorithms and may not be the best way to represent a
molecule.34 For example, QED, a feature that was highlighted
to be of highest importance in this study, is derived from
multiple functions using eight molecular properties. However,
studies revealed that QED may not be practical as a feature for
modeling since the properties used to determine QED were
undistinguishable between drug and non-drug molecules.35,36

Next, we also computed the computational efficiency of the
model. RF demonstrated superiority in terms of computational
efficiency, taking less than a second to train. On the other
hand, GNN, with different model architectures, resulted in
different computational efficiencies (Table 3).
Comparing the computational times of different RF models,

we noted that despite having a smaller dimension size,
molecular descriptor-based RF took a longer time for training
to be completed. A possible reason for such observation could
be due to the max depth value. Max depth signifies the
maximum depth of the tree in RF. Molecular descriptor-based
RF was shown to have the highest max depth value after
hyperparameter optimization, and hence, training time was
recorded to be slightly longer than the rest of the RF models.

For GNN models, GT took the longest, averaging at 17.1 s
per run. A possible reason could be the hidden size. GT was
found to have the largest hidden size value after hyper-
parameter optimization as opposed to GIN and Vertical GNN.
As such, it is expected that longer training is required for GT.
When comparing between the best models of RF and GNN,
we observed that Vertical GNN required a longer time,
approximately 8 times longer, to train than the molecular
descriptor-based RF model. Despite that, the time to train
Vertical GNN was relatively short, finishing in an average of
12.4 s per run. Nevertheless, we should also factor in that
longer time is required for feature selection in developing the
RF model. In addition, having features automatically extracted
by using GNN removes the need for the user to possess expert
domain knowledge for feature selection, hence highlighting the
need to balance the trade-off between computational efficiency,
time, and knowledge required for feature selection depending
on the user’s needs.

Prediction Performance of Transfer Learning Models.
When the prediction performance of GNN models was
compared to that of Wei et al.’s model using the same test
data set, our model reported poorer average prediction
performance across all metrics used. A possible explanation
could be because GNN models were trained with a small data
set, which resulted in poor generalizability and hence poorer
performance of the model. To alleviate this problem, we
explored the use of transfer learning. The aim of transfer
learning is to pre-train a model with a task and transfer the
knowledge gained to predict downstream tasks. We hypothe-
sized that pre-training a model with a prior task that is similar
to a downstream task can improve the prediction performance
of the model. Since various studies37,38 indicated a close
relationship between solubility and oral bioavailability, we pre-
trained GNN models with a larger data set on predicting
solubility to improve the performance toward oral bioavail-
ability prediction.
One important aspect of transfer learning is the data set

used. Therefore, we evaluated the importance of data similarity
and data set size relative to the prediction performance of the
model. In this section, we utilized the Vertical GNN model
architecture as it reported better prediction performance

Table 3. Training Runtime of Different Modelsa

RF GNN

molecular descriptors Morgan FP RDKit FP MACCS-keys GIN GT Vertical GNN

time/s 1.529 ± 0.024 1.163 ± 0.045 0.277 ± 0.005 0.687 ± 0.010 7.334 ± 0.609 17.138 ± 2.317 12.449 ± 0.640
aAll runs were repeated 5 times and the measured times were reported in mean ± standard deviation.

Table 4. Hyperparameter Tuning Results for the Transfer Learning Vertical Modela

number of training epochs 10 15 20

learning rate ÷ 5 log loss 0.626 ± 0.026 0.636 ± 0.031 0.650 ± 0.034
Acc 0.647 ± 0.033 0.637 ± 0.055 0.635 ± 0.050
F1 score 0.671 ± 0.093 0.646 ± 0.133 0.645 ± 0.124
AUC-ROC 0.674 ± 0.042 0.674 ± 0.045 0.672 ± 0.043

learning rate ÷ 10 log loss 0.622±0.030 0.625±0.033 0.629±0.036
Acc 0.656±0.050 0.656±0.052 0.649±0.050
F1 score 0.675±0.108 0.678±0.107 0.663±0.117
AUC-ROC 0.680±0.042 0.681±0.044 0.680±0.046

aVertical GNN models were pre-trained with a solubility data set of high similarity levels for 60 epochs with different learning rates and trained
with different epochs before triggering the early stopping mechanism. Prediction performances were reported in mean ± standard deviation using
the five-fold cross-validation method and validation data set. Bold values represent the best scores across different learning rates.
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among various GNN models listed above, suggesting better
representation ability than the others. We froze the parameters
of the feature extraction blocks (GIN + GT convolution block)
while allowing the classifier block to update during training so
that correct prediction can be given. We trained the pre-trained
models with data sets of different similarities (low, mid, high)
and different sizes (5000 vs 9844) and noted better
performance when using high similarity data (Table S9). To
ensure optimal performance, we fine-tuned the model further
by experimenting with different numbers of training epochs
before triggering the early stopping mechanism as well as
contrasting learning rates to improve the prediction model
performance (Table 4). As noted in the work mentioned
above, high similarity data resulted in the best performance, so
we decided to fine-tune the model that was pre-trained with
high similarity data.
We observed that using a learning rate which is 10 times

smaller than the original learning rate resulted in a better
performance across all training epochs during validation. This
suggests that allowing model to learn at a slower learning rate
may allow a pre-trained model to pick up relevant details
regarding oral bioavailability while still retaining the main bulk
of the information that was learnt previously. Finally, we
compared the prediction performance of the transfer learning
model that was tuned with the best hyperparameters with
other models that were published recently (Table 5). It is

worth noting that we used the same train and test data set as
Wei et al. and Falcoń-Cano et al. and the results were
reproduced from Wei et al. Unfortunately, their results did not
include standard deviations for comparison. Nevertheless, by
comparing the average values, our transfer learning model
reported an average accuracy of 0.797, which is a slight
improvement from Wei’s and Falcoń-Cano’s models. More-
over, our transfer learning model reported highest average F1
score (0.840) and AUC-ROC (0.867). When compared to the
prediction performance of the Vertical GNN model that was
built from scratch, we observed an improvement in prediction
performance across all metrics. This suggests that transfer
learning using a closely related data set such as solubility can
indeed improve prediction performance of oral bioavailability
prediction. The pre-trained model could potentially be used for
other downstream tasks that are closely related to solubility.
However, to perform transfer learning, it is noted that an
additional step of pre-training is required and undoubtedly will
result in an increase in computational cost and time.

Analysis of Chemical Space and Applicability Domain
of the Transfer Learning Model. To understand the
chemical space generated by the transfer learning model, we
extracted the embeddings right after the graph convolution
techniques were operated on the test molecules. We obtained a
vector with a size of 490 for each test molecule and plotted the
chemical space using T-distributed Stochastic Neighbor
Embedding39 (T-SNE). T-SNE employs a technique known
as Kulbeck−Liebler Divergence. T-SNE enables the distances
between distributions to be reduced and hence converts high-
dimensionality data to low-dimensionality data. For compar-
ison, we also conducted a similar analysis on various FPs that
encode structural information (Figure 4). Such FPs include
Morgan FPs, RDKit FPs, and MACCSkeys FPs. Surprisingly,
despite having a smaller vector size than Morgan and RDKit
FPs, the embeddings generated by the transfer learning model
showed a clearer distinction between test molecules of high
and low oral bioavailability. This suggests that the transfer
learning model is capable of learning and extracting
information relevant to oral bioavailability that was learnt
during the training process.
Next, we analyzed the applicability domain of the transfer

learning model. We extracted the embeddings generated from
the transfer learning model and reduced its dimension to two
using T-SNE. We plotted the chemical space and observed that
the oral bioavailability train and test molecules exist within the
same chemical space (Figure 5). This indicates that reliable
prediction can be made for those test molecules. However, a
potential caveat of our study is that no test molecules were
spotted to be distinctively located out of the chemical space of
the oral bioavailability train data set. As a result, we were
unable to analyze if our model can accurately predict the oral
bioavailability of a molecule that exists outside the chemical
space. Future work can be done to include molecules that are
outside the chemical space to test the robustness of the model.

■ CONCLUSIONS
In conclusion, we showed that GNN-based models can be
exploited for automatic feature selection to predict oral
bioavailability. This eliminates the need for expert domain
knowledge and time to carry out feature selection for modeling
purposes. To further improve the prediction performance of
Vertical GNN, we trained Vertical GNN using a larger data set
to predict solubility, allowing the model to automatically
extract the important substructure of molecules. Next, we fine-
tuned the same model to predict oral bioavailability and
managed to achieve better prediction performance than a
model that was built from scratch. Like conventional machine-
learning models, GNN models are also termed as “black box”
models due to their low interpretability. Similar to how SHAP
analysis is carried out to explain the decision made by
conventional machine-learning models, different ways have
been explored to interpret GNN models. For instance, Ying et
al.30 devised a method known as GNNExplainer, which could
identify important substructures of graphs that can in turn
affect the prediction choices made by the model. Future works
could explore the utilization of an even larger data set of higher
similarity molecules to improve prediction performance. To
assess the robustness of the model, future studies can include
test molecules outside of the applicability domain of the
model. In addition, GNNExplainer can be used to provide
insights into how structures affect oral bioavailability, or other

Table 5. Prediction Performance for Our Best Model
against Other Established Modelsa

Vertical GNN
transfer learning

model
Wei et
al2

Falcoń-Cano
et al2,3

log loss 0.530 ± 0.053 0.467 ± 0.007 NA NA
Acc 0.742 ± 0.036 0.797 ± 0.005 0.793 0.783
F1 score 0.778 ± 0.046 0.840 ± 0.006 0.817 NA
AUC-ROC 0.807 ± 0.033 0.867 ± 0.003 0.830 0.800

aTransfer learning model was pre-trained with 60 epochs using a high
similarity solubility data set and subsequently trained with a learning
rate that was 10 times smaller than the original learning rate and a
training epoch of 15 before the trigger of early stopping mechanism.
Bold values represent the best scores. Prediction performances were
reported in mean ± standard deviation using the oral bioavailability
test data set. Mean values were reported for Wei et al. and Falcoń-
Cano et al.
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Figure 4. Chemical space generated from embeddings obtained from the transfer learning model and various FPs. Dimensionality reduction
conducted using T-SNE with a perplexity of 50, number of iterations of 5000, and learning rate of 10.

Figure 5. T-SNE plot of oral bioavailability train and test data set with a perplexity of 50, number of iterations of 5000, and learning rate of 10.
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bioactivities of interest, which could aid in the drug discovery
process.
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