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Abstract

Existing methods for regression-based mediation analysis assume that the exposure–mediator 

effect, exposure–outcome effect, and mediator–outcome effect are constant across levels of the 

baseline characteristics of patients. However, investigators often have insight into how these 

underlying effects may be modified by baseline characteristics and are interested in how the 

resulting mediation effects, such as the natural direct effect (NDE), the natural indirect effect 
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(NIE), and the proportion mediated, are modified by these baseline characteristics. Motivated by 

an empirical example of anti-interleukin-1 therapy’s benefit on incident anemia reduction and 

its mediation by an early change in an inflammatory biomarker, we extended the closed-form 

regression-based causal mediation analysis with effect measure modification (EMM). Using a 

simulated numerical example, we demonstrated that naive analysis without considering EMM 

can give biased estimates of NDE and NIE and visually illustrate how baseline characteristics 

affect the presence and magnitude of EMM of NDE and NIE. We then applied the extended 

method to the empirical example informed by pathophysiologic insights into potential EMM by 

age, diabetes, and baseline inflammation. We found that the proportion modified through the 

early post-treatment inflammatory biomarker was greater for younger, non-diabetic patients with 

lower baseline level of inflammation, suggesting differential usefulness of the early post-treatment 

inflammatory biomarker in monitoring patients depending on baseline characteristics. To facilitate 

the adoption of EMM considerations in causal mediation analysis by the wider clinical and 

epidemiologic research communities, we developed a free and open-source R package, regmedint.
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INTRODUCTION

Causal mediation analysis has been gaining popularity in the last decade. Several estimation 

methods have been proposed to date1–6 that share a foundation in the counterfactual 

potential outcome framework, though these methods differ in their estimation approaches 

and resulting interpretations. One of the most popular approaches is closed-form regression-

based causal mediation analysis, introduced in a landmark paper by Valeri and VanderWeele 

with accompanying SAS and SPSS macros5,7. This approach involves fitting simple 

parametric models for the mediator and for the outcome. Closed-form variance estimation 

by delta method is computationally straightforward, compared to other major estimation 

approaches that require simulation or weighted data construction1,4,8.

In this article, we develop generalized methods for mediation analysis that allow 

the inclusion of effect measure modification (EMM). Existing methods and software 

for regression-based mediation analysis assume that the exposure–mediator effect, 

the exposure–outcome effect, and the mediator–outcome effect are constant across 

levels of the controlled covariates. This is a limitation because researchers may be 

interested in investigating how mediation varies across these covariates. For example, 

in the Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) trial, 

canakinumab (anti-interleukin-1 [IL-1] medication) demonstrated beneficial estimated 

effects on cardiovascular disease as well as other outcomes9,10, including incident anemia11. 

Causal mediation analysis has been conducted for some of the outcomes11,12 to examine 

the mediating role of early post-treatment change in high-sensitivity C-reactive protein 

(hsCRP) biomarker, which relates to the activity of the IL-1 biologic pathway targeted 

by canakinumab. Moderate to high levels of mediation were observed confirming the 

relevance of the early post-treatment changes in the IL-1 pathway and the usefulness of the 
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hsCRP biomarker in assessing canakinumab benefits on subsequent clinical outcomes11,12. 

The total benefit of canakinumab on incident anemia appeared somewhat greater among 

older individuals, diabetic individuals, and individuals with higher baseline hsCRP11. 

However, to our knowledge the corresponding EMM of mediation by these variables was 

not previously investigated. The framework and software developed in this paper allow 

for formal investigation of potentially varying magnitudes of mediation through the early 

suppression of the IL-1 pathway across different baseline patient profiles.

The rest of the article is structured as follows. First, we extend the regression-based causal 

mediation approach to allow for the inclusion of EMM terms. Second, we develop closed-

form formulas for the natural direct effect (NDE) and natural indirect effect (NIE) under 

four model specifications: (1) linear mediator model, linear outcome model; (2) logistic 

mediator model, linear outcome model; (3) linear mediator model, non-linear outcome 

model; (4) logistic mediator model, non-linear outcome model. We also describe settings 

when these conditional estimates: (a) coincide with marginal estimates, such that they can be 

interpreted as population average effects; and (b) are constant across levels of the covariates. 

Third, we use numerical examples to illustrate the EMM of the NDE and NIE. Fourth, we 

investigate the consequences of model misspecification in which the mediator and outcome 

models omit product terms when in fact EMM or causal interaction are present. Last, we 

revisit the above empirical example from the CANTOS trial to examine how EMM can 

impact NDE and NIE, and proportion mediated.

DEFINITIONS, NOTATIONS, AND ASSUMPTIONS

We use the same notational convention as in Valeri and VanderWeele (2013)5. We denote the 

exposure as A, the mediator as M, the outcome as Y, and the vector of covariates as C. We 

assume the causal structure represented in the directed acyclic graph (DAG) in Figure 1. The 

effects of interest are the total effect (TE , NDE and NIE, as defined below4,5,7,10:

TE c = g E Y a ∣ C = c − g E Y a* ∣ C = c ,

NDE c = g(E Y aMa* ∣ C = c ) − g(E Y a*Ma* ∣ C = c ),

NIE c = g(E Y aMa|C = c ) − g(E Y aMa* ∣ C = c ),

where g is a general link function. We assume the same four identification assumptions as 

in Valeri and VanderWeele (2013)5. Detailed definitions and assumptions are in Section 1 of 

the eSupplement.

EMM-Extended Closed-Form Regression-Based Causal Mediation Analysis Approach

To accommodate EMM by C in both the mediator and outcome models, we specify the 

following extended parametric models that include product terms for EMM (underlined):
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M1. gM[E(M ∣ A = a, C = c)] = β0 + β1a + β2c + β3ac,

M2. gY E Y ∣ A = a, M = m, C = c = θ0 + θ1a + θ2m + θ3am + θ4c + θ5ac + θ6mc,

where gM and gY  are the link functions and β2, β3, θ4, θ5 and θ6 are row vectors. In this article, 

we focus on identity and logit link functions, because the resulting formulas for these 

types of models can accommodate a wide range of outcome models, including survival 

outcomes.5–7 Note that logistic and Cox proportional hazards model require rare outcome25. 

Details are in the Supplement (Section 2.1).

The extended models include several product terms. Product terms can be used to model 

either causal interaction or EMM14, but there are critical differences in the interpretation and 

assumptions. Causal interaction entails a joint intervention on the two variables, while EMM 

entails heterogeneity in the causal effect of one variable across subgroups of the other14. 

Stronger assumptions regarding control of confounding will be required to identify causal 

interaction, compared to EMM14. Under the assumptions required for mediation analysis 

(A1-A4), the product term between the exposure and mediator represents causal interaction, 

but additional assumptions would be required for exposure–covariate or mediator–covariate 

product terms to represent causal interactions rather than mere EMM5,7,8,13. Throughout 

this paper, we use the same identification assumptions as are required for mediation 

analysis5,7,8,13, and so we describe product terms involving covariates as representing EMM 

rather than causal interaction.

EMM OF NATURAL DIRECT AND INDIRECT EFFECTS BY COVARIATES

Based on Models M1 and M2, we derive closed-form formulas for NDE and NIE (Table 

1). When β3 = θ5 = θ6 = 0 (i.e., no EMM product terms are included in either the mediator 

or the outcome models), the formulas reduce to the original formulas in VV20135. The 

extended formulas in Table 1 are implemented in the R regmedint package (version 1.0.0 

and later)15–17.

Proportion mediated, which most studies are interested in reporting, is defined as 
NIE

NDE + NIE  when the outcome model is linear and exp NDE ⋅ exp NIE − 1
exp NDE ⋅ exp NIE − 1  when the 

outcome model is non-linear. Derivations of point estimates and standard errors by the delta 

method are given in the eSupplement Section 3.

Due to the way that mediator and outcome models are constructed (eSupplement Section 

2.1), these formulas provide conditional effect estimates of NDE and NIE. That is, these 

natural effect formulas contain the covariate vector C in their expressions, indicating that 

these natural effects are potentially modified by covariates. It is tempting to interpret the 

conditional effect estimates evaluated at the mean covariate level as the corresponding 

population average (marginal) effect estimates. However, this marginal interpretation does 

not generally hold. Most of the time, numerical integration is necessary to obtain marginal 

Li et al. Page 4

Epidemiology. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects from the conditional mediator and outcome models1–3,8. With the extended formulas 

in Table 1, we first examine the model specifications under which conditional natural 

effect estimates evaluated at the mean covariate levels coincide with the marginal effect 

estimates. Further, we discuss model specifications under which conditional effect estimates 

are constant.

When do conditional NDE and NIE estimates at the mean covariate levels coincide with the 
marginal estimates?

Conditional NDE and NIE estimates evaluated at the mean covariate levels coincide with 

corresponding marginal estimates when their effect formulas (Table 1) are linear in C. From 

Table 1, we see that the outcome model must be linear, because a non-linear outcome model 

cannot give NDE or NIE estimates that are linear in C due to the exponentiation, regardless 

of the type of the mediator model.

Table 2 summarizes, for different specifications of the outcome and mediator models, the 

conditions under which the NDE or NIE evaluated at the mean covariate level will have a 

marginal interpretation. If the outcome model is linear, then the NDE estimate evaluated at 

the mean covariate level will have a marginal interpretation if the mediator model is also 

linear. However, if the mediator model is logistic rather than linear, then the conditional 

NDE estimate will not have a marginal interpretation unless θ3 = 0 (no exposure–mediator 

causal interaction [A×M]). Again for a linear outcome model, the NIE estimate evaluated 

at the mean covariate level may not have a marginal interpretation unless (1) the mediator 

model is also linear and either β3 = 0 (no EMM of the exposure effect by covariates [A×C] 

on mediator) or θ6 = 0 (no modification of the mediator effect by covariates [M×C] on 

outcome); or (2) the mediator model is logistic and β2 = β3 = 0 (no covariate effects in the 

mediator model). These conditions are sufficient, but not necessary, conditions because some 

perfect cancellations can also eliminate covariates from the formulas in Table 1.

When are conditional NDE and NIE estimates constant?

Table 3 shows the model specifications for which the conditional NDE and NIE are 

constant with respect to covariates, where the conditional NDE and NIE can be interpreted 

without reference to covariates. The conditions given are again sufficient, but not necessary, 

conditions because some perfect cancellations can also eliminate covariates from the 

formulas in Table 1.

NUMERICAL ILLUSTRATIONS

To provide intuition, we use numerical examples to illustrate how the conditional NDE 

and NIE change when conditioning on different choices of covariate levels and when 

using different link functions for the mediator and outcome models. We outline the data 

generating, examine the true conditional NDE and NIE, and illustrate the bias in estimates of 

NDE and NIE when EMM terms are omitted.
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Data Generating Process

We randomly generated data for C, A, M, and Y in the following order. We generated one 

continuous covariate:

C Normal 0, 22 .

We generated a binary exposure:

A Bernoulli expit C + C2 ).

For the link functions for mediator and outcome models, we consider the following four 

model specifications:

1. Linear mediator model, linear outcome model

2. Logistic mediator model, linear outcome model

3. Linear mediator model, logistic outcome model

4. Logistic mediator model, logistic outcome model

We generated continuous or binary mediators and outcomes as follows:

Mcont = 0.2 + 0.4A + 0.5C + β3AC + ε, where ε Normal 0, 0.52 ,
or Mbin Bernoulli expit 0.2 + 0.4A + 0.5C + β3AC ),

Ycont = 0.5 + 0.3A + 0.2M + θ3AM + 0.1C + θ5AC + θ6MC + ε, where ε Normal 0, 0.52 ,
Ybin Bernoulli expit −5 + 0.3A + 0.2M + θ3AM + 0.1C + θ5AC + θ6MC , for scenarios 1 − 4,

model specifications 1, 2 and 4 .
Ybin Bernoulli expit −10 +0.3A + 0.2M + θ3AM + 0.1C + θ5AC + θ6MC , for scenarios 1 − 4,

model specification 3 .

We varied the magnitude of β3 (i.e., EMM by the covariate of the exposure’s effect on 

the mediator), θ3 (i.e., causal interaction between the exposure and the mediator on the 

outcome), θ5 (i.e., EMM by the covariate of the exposure’s effect on the outcome), and θ6

(i.e., EMM by the covariate of the mediator’s effect on the outcome). We had a total of 48 

settings representing all possible combinations of the 4 scenarios (i.e., inclusion of product 

terms), the 4 link function specifications, and the 3 parameter variations (Table 4). We then 

examined how the conditional NDE and NIE depend on the choice of conditioned covariate 

levels by evaluating them at levels of the covariate that ranged from −2 to +2 with a step size 

of 0.1.

Behavior of True Conditional NDE and NIE

In this section, we consider the true conditional NDE and NIE given the data generating 

process outlined above. Regarding the inclusion of product terms in the mediator and 

outcome models, we considered the following four possible model specifications, all of 
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which were correctly specified. In Scenario 1, the model included an A×M product term but 

not any other product terms. In Scenarios 2–4, other possible product terms were nonzero, 

corresponding to A×C in the mediator model, A×C in the outcome model, and/or M×C in 

the outcome model (Table 4). The true NDE, NIE and total effects (TE) were calculated 

by directly plugging in the true coefficients (β’s and θ’s) in the mediator and the outcome 

models from the data generating process in the previous section.

Figure 2 shows a special case of Scenario 1 θ3 = 0  in which neither regression model 

contained any of the possible product terms θ3 = β3 = θ5 = θ6 = 0 .

In this case, the conditional NDE, NIE, and TE are all constant when the mediator model is 

linear. However, the conditional NIE varies slightly by the covariate level when the mediator 

model is logistic, despite having no explicit EMM terms in either mediator or outcome 

model.

Figure 3 shows 16 selected settings with θ3 ≠ 0 (A×M causal interaction is present) and with 

the middle coefficient values from Table 4. Each row represents one choice of mediator and 

outcome link functions. The remaining settings are in the eSupplement (Sections 4.1–4.4, 

the three columns on the left).

The true conditional NDE is dependent on covariate levels in all settings when θ3 ≠ 0. 

In the “linear, linear” case (i.e., a linear mediator model and a linear outcome model), 

the conditional NDE is always linearly dependent on covariate levels. As a result, as 

noted above, the conditional NDE evaluated at the mean covariate level coincides with the 

marginal NDE in this case. This marginal interpretation at the mean covariate level does not 

generally hold for other choices of link functions (i.e., cases other than the “linear, linear” 

case). In the “logistic, linear” case, the marginal interpretation does not hold in general, but 

may hold approximately if the effect of the covariate on the mediator is very weak (1(b), 

2(b), 3(b) and 4(b) in Figure 3). The dependence on covariates of NDE and NIE stratified by 

the combination of mediator and outcome models’ link function and the inclusion of product 

term is summarized in Table 5.

The true conditional NIE is constant in the “linear, linear” and “linear, logistic” cases (i.e., 

linear mediator model) when no EMM terms are involved (1(a) and 1(c) in Figure 3). 

However, if there are EMM terms, the conditional NIE is also modified by covariates even 

in the “linear, linear” and “linear, logistic” cases (2(a), 3(a), 4(a), 2(c), 3(c) and 4(c)). In the 

“linear, linear” case, the conditional NIE is linearly dependent on covariates, allowing for 

the conditional NIE at the mean covariate level to coincide with the marginal NIE, unless all 

three forms of EMM are present. Otherwise, such a marginal interpretation generally does 

not hold. In the “logistic, linear” case, approximate linearity and marginal interpretation 

holds if there is very weak covariate effect on the mediator.

Estimation of conditional NDE and NIE with misspecified regression models

Here we demonstrate the influence of misspecifying the regression models by omitting 

EMM terms (when they in fact exist in the data generating process) on the estimation 

of conditional NDE and NIE. Importantly, such misspecification could arise if one uses 
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existing statistical methods and software tools for regression-based mediation analysis, 

which do not accommodate product terms involving the covariates, if in fact such EMM 

is present. We used the same data generating process in the previous section that included 

EMM terms. One large n = 5,000  dataset was simulated for each one of the 48 settings. 

In Scenario 1, we omitted the A×M causal interaction in the fitted outcome model despite 

its presence in the data-generating process. In Scenarios 2–4, we included the A×M causal 

interaction, but omitted all A×C and M×C terms in the fitted models, despite their presence 

in the data-generating process.

Figure 4 shows 16 selected settings, corresponding to Figure 3 (true conditional NDE, 

NIE and TE). The remaining settings are in the eSupplement (Sections 4.1–4, the three 

columns on the right). Figure 5 shows how much misspecified models biases the estimated 

NDE and NIE away from the true effects, comparing the 16 selected settings in Figures 3 

and 4. In Figure 5, we see that omitting EMMs severely biases the conditional effects at 

most covariate levels, especially in “linear, logistic” cases when at least exposure–covariate 

product term is in both mediator and outcome models (3(c), 3(d), 4(c), 4(d)). The magnitude 

of bias is substantive, compared to the range of true effects.

Not only the magnitude of effects, but also their direction, can be estimated incorrectly. For 

instance, in Scenario 1 in the “linear, linear” case, the true conditional NDE at covariate 

level = 2 is negative (1(a) in Figure 3), while the estimated NDE when omitting A×M 

causal interaction is positive (1(a) in Figure 4). In Scenario 3 in the “logistic, linear” case, 

the true conditional NDE at covariate level = −2 is negative (3(b) in Figure 3), while the 

estimated NDE when omitting A×C term in both mediator and outcome models is positive. 

Although the bias in Scenario 1 (i.e., from omitting the exposure–mediator interaction) 

can be resolved using existing methods for mediation analysis that accommodate exposure–

mediator interaction6, it is critical to note that the bias in Scenarios 2–4 (i.e., from omitting 

product terms involving the covariates) can only be resolved using the proposed extended 

method.

Additionally, omitting A×M causal interaction and EMM terms can also lead one to: 

(1) Falsely conclude constant conditional effects; (2) Falsely conclude conditional effects 
coincide with marginal effects. For (1), in Scenario 1 (omitting A×M causal interaction), for 

all mediator and outcome models, the conditional NDEs in Figure 4 are all falsely constant. 

For “linear, linear” case, Scenarios 2–4, the NIEs in Figure 4 are falsely constant. In both 

cases, the natural effect estimates should vary with C, as seen in the corresponding panels 

in Figure 3. For (2), when all three EMM terms are present, the conditional NIEs at the 

mean covariate level from the correctly specified model do not correspond to the marginal 

counterparts under “linear, linear” and “linear, logistic” cases. Omitting them gives the false 

impression of a marginal interpretation.

EMPIRICAL EXAMPLE DEMONSTRATION

The previously published analysis from the CANTOS trial found that the observed reduction 

in anemia associated with use of canakinumab (anti-interleukin-1 [IL-1] medication) was 

strongly mediated through the change in hsCRP in the first three months among 8,683 
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patients without anemia at trial entry11. Here we examined whether this previously reported 

mediation is modified by clinically plausible modifiers of the underlying mechanisms.

Baseline hsCRP, age, and diabetes are three effect modifiers of interest11 (Figure 6). 

Baseline hsCRP is a potential effect modifier of canakinumab’s impact on the change 

in hsCRP (mediator) because those with a higher baseline inflammation is expected to 

experience a greater decline in hsCRP due to the biological impact of IL-1 blockade as 

well as regression to the mean. As aging and diabetes both have detrimental influence on 

hematopoietic stem cell functions18–22, we hypothesized that the beneficial impact of early 

reduction in hsCRP (mediator) on incident anemia is decreased by a higher age and diabetes.

Informed by the above clinical reasoning, the regression models were constructed as follows. 

The exposure was binary canakinumab use (treatment vs. placebo; treatment group: all doses 

combined), the continuous mediator was the change in log hsCRP (a negative value means 

improvement) from baseline to the 3rd month, and the outcome was time to incident anemia. 

We adjusted for the same baseline covariates as the previous paper (age, sex, log hsCRP, 

heart failure status, diabetes status, and hypertension status)11. We fit a linear mediator 

model and a Weibull accelerated failure time outcome model. We included baseline log 

hsCRP, age, diabetes as effect measure modifiers, where log hsCRP modifies the treatment’s 

effect on the mediator, and age and diabetes modify the mediator’s effect on the outcome. 

We evaluated the extent of mediation with the “lower anemia risk” profile, i.e. those who 

are younger (within 25th percentile value of age), having lower baseline log hsCRP (within 

25th percentile value of baseline log hsCRP), and having no diabetes, to the “higher anemia 

risk” profile, i.e. those who are older (within 75th percentile value of age), having higher 

log hsCRP (within 75th percentile value of log hsCRP), and having diabetes. The R code is 

available at the Github repository https://github.com/einsley1993/emm-ext-med-cantos and 

the eSupplement Section 5.

We analyzed data from 8,302 subjects without anemia at baseline after excluding subjects 

with missing values. The trial protocol was approved by institutional review boards or ethics 

committees in the 39 countries involved in the study. All participants provided written 

informed consent to participate, and the trial underwent surveillance by an independent data 

and safety monitoring committee. Table 6 shows the causal mediation results. For the “lower 

anemia risk” profile, 64.0% of the canakinumab effect on the incident anemia outcome was 

mediated by the change of log hsCRP in the first 3 months. For the “higher anemia risk” 

profile, the proportion mediated was 48.7%. Although the total effect estimates were similar, 

we observed a greater proportion mediated for the lower anemia risk profile compared to the 

higher anemia risk profile.

Table 7 shows the coefficients from the underlying mediator and outcome models, which 

can give further insights into the lower proportion mediated in the “higher anemia risk” 

profile. The coefficient of the Canakinumab×baseline log(hsCRP) in the mediator model 

was negative, although the magnitude of coefficients was small, confirming a greater 

canakinumab-driven reduction in hsCRP among individuals with a higher baseline hsCRP. 

The coefficient of change in log(hsCRP) on the survival time was negative, indicating that 

the effect of reduction in log(hsCRP) was protective. The coefficients of product terms Δ
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log(hsCRP)×Age and Δ log(CRP)×Diabetes were both positive, suggesting that the benefit 

of early reduction in hsCRP (mediator) on incidence anemia weakens with increasing age or 

diabetes, although the magnitude of coefficients was small.

DISCUSSION

Motivated by an empirical example on the causal mediation of canakinumab’s beneficial 

effect on incident anemia through early reduction in an inflammatory marker hsCRP, we 

extended the regression-based causal mediation approach to allow for EMM. EMM is 

a well-studied topic in the context of total effect estimation, but has not gained much 

attention in the context of causal mediation. Our methodologic results show that in many 

cases, existing methods will provide biased estimates of the NIE or NDE if there is 

exposure–covariate or mediator–covariate EMM by the covariates in the exposure–mediator 

effect, the exposure–outcome effect, or the mediator–outcome effect. The empirical example 

illustrates how substantive knowledge can inform the modeling process of the EMM in 

causal mediation. In the empirical analysis, we found that the level of mediation through 

the reduction in the hsCRP in the early post-treatment was higher for “low anemia 

risk” profile than for “higher anemia risk” profile. This finding may indicate that the 

usefulness of early post-treatment hsCRP as a therapeutic monitoring biomarker is greater 

among individuals with the “low anemia risk” baseline patient profile, providing a more 

nuanced understanding of hsCRP monitoring adding to the previous mediation investigation 

without EMM assessment11. To facilitate the adoption of EMM considerations for applied 

researchers, we provided the free and open-source R package, regmedint.

Our EMM-extended regression-based causal mediation generalizes Valeri and 

VanderWeele’s closed-form regression-based approach5. However, it is beneficial to make 

a brief comparison to other causal mediation analysis approaches, including Imai et al.1–3,8 

and Lange et al.,4 and discuss how they address EMM. Imai et al.’s approach relies on 

the same set of mediator and outcome regression models, but supports the evaluation of 

EMM (discussed as “moderated mediation”, the common terminology used in the social 

science literature). However, their method gives NDE and NIE estimates only on the 

difference scale, whereas our proposed methods can provide such estimates on either the 

difference or the ratio scale. Additionally, our approach that uses closed-form formulas can 

be more computationally efficient than Imai et al.’s simulation-based approach26. Lange et 
al.’s approach is a modification of the inverse probability weighted estimation of marginal 

structural model4,23. This method accommodates EMM of the conditional NDE and NIE 

by including two product terms, one between the covariate and the reference exposure 

level, and the other between the covariate and the new exposure level, in the weighted 

counterfactual outcome model. The advantages of this approach are that users can read off 

NDE and NIE and how much they are modified by covariates directly from the coefficients 

of the model. Nevertheless, a downside of this approach is that inverse probability of 

weighting may give less-stable estimates for continuous exposures and mediators than the 

regression-based approach.

There are nonetheless a few limitations in our extended models. First, we consider only 

the cases when the additional product terms represent EMMs. To interpret the exposure–

Li et al. Page 10

Epidemiology. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariate and mediator–covariate product terms as causal interactions, we need further 

identification assumptions. Indeed, a covariate can be an effect modifier and causally 

interacts with exposure or mediator simultaneously14. Our intention is to extend the original 

closed-form mediation approach, so we extend the underlying mediator and outcome 

models without introducing additional assumptions. Hence, the limitations of Valeri and 

VanderWeele (2013)5 such as untestable cross-world independency assumptions still remain 

in our extended models. To accommodate the violation of the assumption of no exposure-

induced mediator–outcome confounding24,25, the randomized interventional analogue 

approach has been developed where the mediator values are sampled from a distribution, 

instead of fixed to the natural value it would take when treated or untreated. However, the 

natural direct and indirect effects redefined under a randomized interventional analogue 

are different from the classical NDE and NIE10. Although there is continued interest 

in developing mediation methods in the natural effects framework in recent years27–35, 

some have also criticized the use of natural effects because the cross-world independency 

assumptions do not have corresponding real-world implications36–42, though these views 

are not universal7,43. A new approach called “separable treatment effect approach” (or 

“interventionist approach”) has been proposed that could mitigate the concerns around 

implausible cross-world assumptions by decomposing the treatment to two components to 

make the natural direct and indirect paths have an empirical meaning from the interventional 

perspective in the real world36–42. If the investigators can build a story around treatment 

decomposition, the identification formulas provided in our paper also apply to the separable 

treatment effect approach.

In conclusion, we extended the regression-based causal mediation method5–7 with EMM 

terms in the underlying mediator and outcome regressions models. Given the influence of 

covariates on conditional NDE and NIE, investigators are encouraged to consider EMM 

terms in the underlying regression models if substantive knowledge justifies these as 

exemplified by the CANTOS trial analysis. Our free and open-source R package regmedint 
is a convenient tool to conduct the EMM-extended closed-form regression-based causal 

mediation analysis and investigate the nature of covariate dependence of NDE and NIE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Assumed causal structure.
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Figure 2. 
Effect measure modification (EMM) of conditional natural effects by covariates despite 

having no product terms in mediator or outcome regression model (i.e., Scenario 1).
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Figure 3. 
Selected plots across combinations of scenarios and link functions for the true NDE, NIE 

and TE effects.
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Figure 4. 
Selected plots across combinations of scenarios and link functions when models are 

misspecified.
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Figure 5. 
Selected plots showing bias, comparing true effects versus estimated effects from 

misspecified models.
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Figure 6. 
Effect measure modification graph for the CANTOS trial example

Long-dashed arrow: baseline log(CRP) modifies exposure–mediator relationship

Dotted arrow: Age and diabetes modify mediator-outcome relationship
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Table 1.

Closed-form formulas for NDE and NIE with different mediator and outcome models.

NDE

Linear mediator model, Linear 
outcome model

a − a* θ1 + θ3 β0 + β1a* + β2c + β3a*c + θ5c

Logistic mediator model, Linear 
outcome model

a − a* θ1 + θ3 ⋅ expit β0 + β1a* + β2c + β3a*c + θ5c

Linear mediator model, Non-linear 
outcome model

exp a − a* ⋅ θ1 + θ5c + θ3 β0 + β1a* + β2c + β3a*c + 1
2σ2θ3 2θ2 + θ3a + θ3a* + 2θ6c

Logistic mediator model, Non-
linear outcome model

exp θ1 + θ5c a − a* 1 + exp β0 + β1a* + β2c + β3a*c + θ2 + θ3a + θ6c
1 + exp β0 + β1a* + β2c + β3a*c + θ2 + θ3a* + θ6c

NIE

Linear mediator model, Linear 
outcome model

θ2 + θ3a + θ6c β1 + β3c a − a*

Logistic mediator model, Linear 
outcome model

θ2 + θ3a + θ6c expit β0 + β1a + β2c + β3ac − expit β0 + β1a* + β2c + β3a*c

Linear mediator model, Non-linear 
outcome model

exp θ2 + θ3a + θ6c β1 + β3c a − a*

Logistic mediator model, Non-
linear outcome model

1 + exp β0 + β1a + β2c + β3ac + θ2 + θ3a + θ6c
1 + exp β0 + β1a* + β2c + β3a*c + θ2 + θ3a + θ6c ⋅ 1 + exp β0 + β1a* + β2c + β3a*c

1 + exp β0 + β1a + β2c + β3ac

The formulas for non-linear outcome model accommodate logistic, log-linear, Poisson, negative binomial, accelerated failure time model and a 
Cox proportional hazards model, with appropriate link functions and modeling assumptions. Note that logistic and Cox proportional hazards model 
require the outcome to be rare. Details are in the Supplement (Section 2.1). NDE=natural direct effect; NIE=natural indirect effect.
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Table 2.

Sufficient conditions for conditional natural direct effect (NDE) and natural indirect effect (NIE) estimates at 

the mean covariate level to coincide with the marginal NDE and NIE estimates.

NDE Linear outcome model Non-linear outcome model*

Linear mediator model Always
Never

Logistic mediator model θ3 = 0

NIE Linear outcome model Non-linear outcome model*

Linear mediator model β3 = 0 or θ6 = 0
Never

Logistic mediator model β2 = β3 = 0

Abbreviations. EMM: effect measure modification; A: exposure; C: covariates; M: mediator.

Coefficients.

θ5 = 0: no EMM of the exposure effect by covariates [A×C] on outcome

θ3 = 0: no A×M interaction

β2 = 0: no confounder in mediator outcome

β3 = 0: no EMM of the exposure effect by covariates [A×C] on mediator

θ6 = 0: no EMM of the mediator effect by covariates [M×C] on outcome

*
: The non-linear outcome model accommodates logistic, log-linear, Poisson, negative binomial, accelerated failure time model and a Cox 

proportional hazards model, with appropriate link functions and modeling assumptions. Note that logistic and Cox proportional hazards model 
require the outcome to be rare. Details are in the Supplement (Section 2.1).
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Table 3.

Sufficient conditions for constant conditional natural direct effect (NDE) and natural indirect effect (NIE) 

estimates with respect to covariates.

NDE Linear outcome model Non-linear outcome model*

Linear mediator model θ5 = 0 AND {θ3 = 0 OR β2 = β3 = θ6 = 0}

Logistic mediator model θ5 = 0 AND β2 = β3 = θ6 = 0

NIE Linear outcome model Non-linear outcome model*

Linear mediator model β3 = θ6 = 0

Logistic mediator model β2 = β3 = θ6 = 0

Abbreviations. EMM: effect measure modification; A: exposure; C: covariates; M: mediator.

Coefficients.

θ5 = 0: no EMM of the exposure effect by covariates [A×C] on outcome

θ3 = 0: no A×M interaction

β2 = 0: no confounder in mediator outcome

β3 = 0: no EMM of the exposure effect by covariates [A×C] on mediator

θ6 = 0: no EMM of the mediator effect by covariates [M×C] on outcome

*
: The non-linear outcome model accommodates logistic, log-linear, Poisson, negative binomial, accelerated failure time model and a Cox 

proportional hazards model, with appropriate link functions and modeling assumptions. Note that logistic and Cox proportional hazards model 
require the outcome to be rare. Details are in the Supplement (Section 2.1).
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Table 4.

Parameter settings under four simulation scenarios.

Scenario Product terms in mediator and outcome models θ3 β3 θ5 θ6

1 A×M in outcome model {0, 0.5, 0.8} 0 0 0

2 A×M in outcome model, A×C in mediator model 0.5 {0.1, 0.4, 
0.7} 0 0

3 A×M in outcome model, A×C in mediator model, A×C in 
outcome model 0.5 0.2 {0.2, 0.5, 

0.8} 0

4 A×M in outcome model, A×C in mediator model, A×C in 
outcome model, M×C in outcome model 0.5 0.2 0.3 {0.3, 0.6, 

0.9}

Coefficients. 

θ3: A×M causal interaction in outcome model

β3: A×C effect measure modification in mediator model

θ5: A×C effect measure modification in outcome model

θ6: M×C effect measure modification in outcome model
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Table 5.

Summary of effect modification by covariates, stratified by combinations of scenarios and link functions.

Model 1: linear mediator model, linear outcome model

Simulation Coefficient Inclusion of product terms Dependence on covariates

Scenario NDE NIE

1 β3 = θ5 = θ6 = 0 only A×M linearlya constant

2 θ5 = θ6 = 0 adding A×C in mediator model linearly linearly

3 θ6 = 0 adding A×C in outcome model linearly linearly

4 adding M×C in outcome model linearly non-linearly

Model 2: logistic mediator model, linear outcome model

Simulation Coefficient Inclusion of product terms Dependence on covariates

Scenario NDE NIE

1 β3 = θ5 = θ6 = 0 only A×M non-linearlya non-linearly

2 θ5 = θ6 = 0 adding A×C in mediator model non-linearly non-linearly

3 θ6 = 0 adding A×C in outcome model non-linearly non-linearly

4 adding M×C in outcome model non-linearly non-linearly

Model 3: linear mediator model, non-linear outcome model b

Simulation Coefficient Inclusion of product terms Dependence of covariates

Scenario NDE NIE

1 β3 = θ5 = θ6 = 0 only A×M non-linearlya constant

2 θ5 = θ6 = 0 adding A×C in mediator model non-linearly non-linearly

3 θ6 = 0 adding A×C in outcome model non-linearly non-linearly

4 adding M×C in outcome model non-linearly non-linearly

Model 4: logistic mediator model, non-linear outcome model b

Simulation Coefficient Inclusion of product terms Dependence of covariates

Scenario NDE NIE

1 β3 = θ5 = θ6 = 0 only A×M non-linearlya non-linearly

2 θ5 = θ6 = 0 adding A×C in mediator model non-linearly non-linearly

3 θ6 = 0 adding A×C in outcome model non-linearly non-linearly

4 adding M×C in outcome model non-linearly non-linearly

a
: NDE is constant when θ3 = 0. This is corresponding to the special case shown in Figure 2.

b
: The non-linear outcome model accommodates logistic, log-linear, Poisson, negative binomial, accelerated failure time model and a Cox 

proportional hazards model, with appropriate link functions and modeling assumptions. Note that logistic and Cox proportional hazards model 
require the outcome to be rare. Details are in the Supplement (Section 2.1).

Abbreviations. NDE: natural direct effect; NIE: natural indirect effect.

Coefficients.

θ3: A×M causal interaction in outcome model

β3: A×C effect measure modification in mediator model
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θ5: A×C effect measure modification in outcome model

θ6: M×C effect measure modification in outcome model
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Table 6.

Results of mediation analyses for the CANTOS trial example.

Subgroup Effect Point Estimate 95% CI

Lower anemia risk profilea

NDE 1.149 (0.951, 1.388)

NIE 1.230 (1.137, 1.330)

TE 1.413 (1.182, 1.689)

PM 63.96% (30.05%, 97.87%)

Higher anemia risk profileb

NDE 1.210 (1.012, 1.447)

NIE 1.164 (1.065, 1.273)

TE 1.409 (1.162, 1.708)

PM 48.65% (21.06%, 76.23%)

Abbreviations. EMM: effect measure modification; NDE: natural direct effect; NIE: natural indirect effect; PM: proportion mediated; CI: 
confidence interval.

The effects are on the mean time ratio scale, a value greater than 1.0 indicates a protective effect of canakinumab on the incident anemia outcome.

a
: Conditioning on 25th percentile value of age, 25th percentile value of baseline logarithm of high-sensitivity C-reactive protein, and having no 

diabetes.

b
: Conditioning on 75th percentile value of age, 75th percentile value of logarithm of high-sensitivity C-reactive protein, and having diabetes.
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Table 7.

Coefficients in the fitted mediator and outcome models in the CANTOS trial example

Mediator model

Estimate SE

(Intercept) 0.423 0.069

Canakinumab −0.604 0.047

Age −0.001 0.001

Sex (female) 0.013 0.021

Baseline log(hsCRP) −1.437 0.023

Heart failure 0.093 0.019

Hypertension 0.016 0.023

Diabetes 0.043 0.023

Canakinumab×Baseline log(hsCRP) −0.031 0.028

Outcome model

Estimate SE

(Intercept) 7.401 0.536

Canakinumab 0.082 0.149

Δ log(hsCRP)a −0.484 0.205

Age −0.048 0.008

Sex (female) −0.009 0.090

Baseline log(hsCRP) −0.734 0.089

Heart failure −0.639 0.082

Hypertension −0.067 0.106

Diabetes −0.214 0.170

Canakinumab×Δ log(hsCRP) −0.045 0.062

Δ log(hsCRP)×Age 0.004 0.003

Δ log(hsCRP)×Diabetes 0.047 0.064

a
: Δ log(hsCRP) = log(hsCRP) at month 3 - log(hsCRP) at month 0
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