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Abstract
Background and Objectives: Image quality is a crucial factor

in the effectiveness and efficiency of teledermatological

consultations. However, up to 50% of images sent by pa-

tients have quality issues, thus increasing the time to di-

agnosis and treatment. An automated, easily deployable,

explainable method for assessing image quality is necessary

to improve the current teledermatological consultation flow.

We introduce ImageQX, a convolutional neural network for

image quality assessment with a learning mechanism for

identifying the most common poor image quality explana-

tions: bad framing, bad lighting, blur, low resolution, and

distance issues.

Methods: ImageQX was trained on 26,635 photographs and

validated on 9,874 photographs, each annotated with image

quality labels and poor image quality explanations by up to

12 board-certified dermatologists. The photographic images

were taken between 2017 and 2019 using a mobile skin

disease tracking application accessible worldwide.

Results: Our method achieves expert-level performance for

both image quality assessment and poor image quality ex-

planation. For image quality assessment, ImageQX obtains a

macro F1-score of 0.73 – 0.01, which places it within stan-

dard deviation of the pairwise inter-rater F1-score of

0.77 – 0.07. For poor image quality explanations, our method

obtains F1-scores of between 0.37 – 0.01 and 0.70 – 0.01,

similar to the inter-rater pairwise F1-score of between

0.24 – 0.15 and 0.83 – 0.06. Moreover, with a size of only 15

MB, ImageQX is easily deployable on mobile devices.

Conclusion: With an image quality detection performance

similar to that of dermatologists, incorporating ImageQX into

the teledermatology flow can enable a better, faster flow for

remote consultations.

Keywords: teledermatology, image quality, artificial intelli-

gence, deep learning, explainability, telemedicine

Introduction

W
ithin the past 2 years, consumers facing tele-

dermatological consultations have become

much more common owing to the SARS CoV-2

(COVID-19) pandemic and associated world-

wide isolation measures.1 Teledermatological consultations

are carried out increasingly more often via teledermatology

mobile applications that require patients to photograph their

skin lesions using their mobile devices, such as smartphones

and tablets, and send them to dermatologists who will then

diagnose the depicted skin condition remotely.2,3 To achieve

similar quality of care to an in-person consultation, high-

quality images are paramount.2,3 However, this is rarely the

ª Raluca Jalaboi et al. 2023; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative

Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

1342 TELEMEDICINE and e-HEALTH M A R Y A N N L I E B E R T , I N C . � VOL. 29 NO. 9 � SEPTEMBER 2023 DOI: 10.1089/tmj.2022.0405

http://creativecommons.org/licenses/by/4.0


case: up to 50% of patients send images taken under poor

lighting conditions, that are not centered on the lesion, or that

are blurry.4,5

When dealing with low-quality images, two main ap-

proaches exist: image denoising and image quality detection.

Image denoising processes and reconstructs noisy images

such that the noise is either reduced or entirely removed.

Many denoising methods introduce new artifacts into the

images or obfuscate characteristics critical for diagnosis.6

Therefore, in this article we focus on image quality detection.

By detecting low-quality images directly on the patient’s

mobile device, we can instruct them to retake the picture in a

way that improves the quality to an acceptable level. We can

thus reduce the evaluation burden on dermatologists while at

the same time reducing the time to diagnosis and treatment.

Several methods for image quality detection have been pro-

posed in the literature. Kim and Lee introduce DeepIQ,7 a deep

neural network that can identify noisy sections in an image, and

compare the resulting noise maps with human assessments.

Bianco et al propose DeepBIQ,8 a convolutional neural network

for identifying low-quality images, and report near human-

level results on smartphone photos from the LIVE In the Wild

challenge dataset.9 Madhusudana et al develop CONTRIQUE,10 a

contrastive deep learning system for creating generalizable

representations using unlabeled image quality datasets. One

common issue for all methods is the lack of a reference standard

label, which limits both their training and validation rigor.

Because of this reason, they often use unsupervised training

methods and limit validation to qualitative assessment.

Within teledermatology, Vodrahalli et al proposed a clas-

sical machine learning image quality classifier.5 Their method

provides patients with explanations for the quality assess-

ments through automated classical computer vision methods

for detecting blur, lighting, and zoom issues in an image.

However, this method has several limitations: it cannot handle

cases where only the background is blurry or with poor

lighting, it cannot detect lesion framing issues, and it cannot

discard images containing no skin.

The lack of explainability is regarded as one of the biggest

obstacles toward the adoption of automated methods in

medical practice.11–13 Gradient-based class activation maps

(Grad-CAM)14 is the most common explainability method in

medical computer vision owing to its ease of use, intuitive

output, and low computational requirements. Grad-CAM

creates CAMs on a given convolutional layer using the

backpropagation gradients—the higher the gradient, the more

important the region is to the final classification.

In this study, we introduce ImageQX, a convolutional

neural network-based method for detecting image quality.

Our novel approach uses image quality evaluations obtained

from dermatologists in a teledermatology setting to learn the

image quality required for a successful remote consultation.

Figure 1illustrates the ImageQX architecture, which learns the

image quality and its explanations in an end-to-end manner.

ImageQX was trained and validated on 36,509 images col-

lected using a skin lesion progression tracking mobile appli-

cation. Images were labeled by up to 12 board-certified

dermatologists. We evaluate the network performance with

regard to the reference standard, and we obtain a macro F1-

score of 0.73 for image quality assessment, with the per-

explanation performance between 0.37 and 0.71. Moreover,

ImageQX occupies only 15 MB, making it ideal for deploying

on mobile devices as a prefiltering step during data collection.

Methods
A total of 36,509 images were collected between 2017 and

2019, using Imagine,15 a skin disease tracking mobile appli-

cation available worldwide. Self-reported user ages range

between 18 and 80 years, and self-reported sex showing a

distribution of 49% men, 47% women, and 4% other. Users

span 146 countries, with images from Ukraine, United King-

dom, United States, Georgia, Russia, Albania, Kazakhstan,

India, Denmark, South Africa, Bulgaria, and Israel making up

45% of the dataset. Images cover a wide variety of body parts.

Self-reported body part tags show that faces, arms, elbows,

legs, and groin comprise the majority of images. All data was

anonymized a priori and did not involve human subjects. 45

CFR part 46 does not apply, and thus an independent ethics

committee approval was not applicable for this research.

Fig. 1. ImageQX network architecture. To facilitate deployment on
mobile devices, we use the lightweight EfficientNet-B0 architecture
as a feature extractor. A linear block, composed of a linear layer,
batch normalization, and a dropout layer, is used to parse these
features before predicting poor image quality explanations, that is,
bad framing, bad light, blurry, low resolution, and too far away.
Another similar linear block parses the image features and then
concatenates them with the poor image quality explanations to
predict the image quality label.
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Each image was evaluated by up to 12 board-certified

dermatologists using an in-house labeling tool. Dermatolo-

gists diagnosed each image with an International Classifica-

tion of Diseases, 10th Revision (ICD-10) code16 whenever a

lesion was present in the image and was depicted with a suf-

ficient quality, or alternatively with one of three nonlesion

labels: poor quality when the image quality detracted from

their ability to diagnose, healthy skin whenever no lesions

were visible, or no skin for images that had no dermatological

relevance. Poor quality images were additionally tagged with

Fig. 2. Labeling protocol for the ImageQX training and validation dataset. Dermatologists start by assessing whether or not the image can
be diagnosed. If the image can be assessed, they diagnose it using an ICD-10 code. Otherwise, if there is no visible skin or if there are no
visible lesions in the picture, the dermatologists discard the image as no skin or healthy skin, respectively. Finally, if the image cannot be
evaluated because of poor quality, they select one of the five investigated poor image quality explanations.

Fig. 3. Illustration of poor image quality explanations that can be detected by ImageQX. (a) Bad framing: the image was not centered on the
lesion. (b) Bad light: the lighting conditions in which the image was taken were too dark or too bright. (c) Blurry: the image is not focused
on the lesion, masking out its details. (d) Low resolution: the image was taken with a low-resolution camera and few details can be
discerned. (e) Too far away: few lesion details could be seen owing to the distance from the camera. Images courtesy of the authors.
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poor quality explanations: bad framing for images not cen-

tered on the lesion, bad light for images that are too bright or

too dark, blurry for images suffering from motion blur or

inadequate focus, low resolution for images taken with a low-

resolution camera, or too far away for images where the pic-

ture was taken from afar and no details could be discerned.

Figure 2 outlines the protocol dermatologists followed when

labeling the data, whereas Figure 3 illustrates each poor image

quality explanation included in the dataset.

We evaluate the performance of the raters and the network

using sensitivity:

Se =
TP

TP + FN
,

specificity:

Sp =
TN

TN + FP
,

and F1-score:

F1 =
2TP

2TP + FP + FN
,

where TP, FP, and FN denote the true positives, false positives,

and false negatives, respectively. The inter-rater pairwise F1-

score is calculated as the average of all dermatologist pairs,

where one dermatologist is considered the reference standard

whereas the other is considered the prediction. For evaluating

the network performance, we calculate the macro F1-score,

that is, we average the F1-scores for each class.

During training, we parsed the dermatologist evaluations

into four classes by merging all ICD-10 evaluations into the

lesion class. We used plurality label fusion, that is, the class

selected by most dermatologists, for defining the image

quality class for each image. Alongside assessing whether

the image can be evaluated, our proposed method also offers

explanations to the poor quality images. To obtain the ref-

erence standard for poor image quality explanations, we

chose to mark explanations as relevant if at least one der-

matologist discarded an image with that explanation.

Table 1 provides the distribution of labels within the dataset,

whereas Table 2 details the distribution of poor image

quality explanations. Higher agreement is achieved on le-

sion and no skin, whereas low agreement between raters can

be seen for healthy skin and poor quality. Poor image quality

explanations display low inter-rater agreements, with blurry

being the only one achieving an inter-rater pairwise F1-

score of >0.80.

The ImageQX architecture is inspired by the DermX archi-

tecture introduced by Jalaboi et al to intrinsically learn the

expert explanations, as illustrated in Figure 1.17 EfficientNet-B0

was used as the feature extractor to increase the image pro-

cessing speed and reduce the network size.18 To increase the

convergence speed, we used weights pretrained on the ImageNet

dataset,19 made available by the Pytorch framework.20 Our

network optimizes Equation (1) from Jalaboi et al17:

L = kDLD + kCLC ,

where LD is the categorical cross-entropy loss for the image

quality label

LD = -
1

ND
+
N

i = 1

+
D

j = 1

yi, dlog ŷi, d,

and LC is the binary cross-entropy loss for poor image quality

explanations

LC = -
1

ND
+
N

i = 1

+
D

j = 1

log ẑi, z + 1 - zi, cð Þlog 1 - zi, cð Þ½ �:

Table 1. Distribution of Image Quality Labels Over the
Training and Test Sets, Including the Pairwise Inter-Rater
Agreement Calculated as the Pairwise F1-Score

CLASS

TRAIN
IMAGE
COUNT

TEST
IMAGE
COUNT

PAIRWISE
TRAIN F1

PAIRWISE
TEST F1

Lesion 17,534 4,803 0.86 – 0.03 0.84 – 0.08

No skin 461 265 0.93 – 0.03 0.92 – 0.04

Healthy skin 3,903 2,421 0.62 – 0.10 0.65 – 0.10

Poor quality 4,737 2,385 0.63 – 0.08 0.67 – 0.07

Mean 6658.75 2468.5 0.76 – 0.06 0.77 – 0.07

Table 2. Distribution of Poor Image Quality Explanations
over the Training and Test Sets, Alongside the Pairwise
Inter-Rater Agreement for Each Explanation, Calculated
as the Pairwise F1-Score

REASON

TRAIN
IMAGE
COUNT

TEST
IMAGE
COUNT

PAIRWISE
TRAIN F1

PAIRWISE
TEST F1

Bad framing 1,947 982 0.26 – 0.18 0.24 – 0.15

Bad light 5,144 2,481 0.63 – 0.07 0.65 – 0.08

Blurry 5,499 2,640 0.81 – 0.05 0.83 – 0.06

Low resolution 3,965 1,907 0.33 – 0.14 0.32 – 0.14

Too far away 936 497 0.48 – 0.16 0.51 – 0.30

Mean 4372.75 2126.75 0.63 – 0.15 0.64 – 0.18
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We set kD = 1.0 and kC = 5.0. To address the imbalance in

image quality labels, we used class weighted training. Weights

were set inversely proportional to frequency in training set, as

follows:

wc = min
nmax

nc
, 10:0

� �
,

wherewc is theweight associatedwith each sample in class c,nc is

the number of samples in class c, and nmax is the number of

samples in the most common class. Class weights were clipped to

10.0 toavoid overfitting on small classes. This process resulted in

1.0, 10.0, 4.49, and 3.70 as weights for lesion, no skin, healthy

skin, and poor quality, respectively. The network was trained for

39 epochs with the AdamW optimizer,21 cosine annealing with

warm restarts,22 64 U in each linear block, and 0.2 dropout. Five

runs with identical hyperparameters were performed to estimate

the standard deviation between training runs.

Results
Table 3 provides the image quality assessment performance,

whereas Table 4 provides the performance on each poor image

quality explanation. The F1-scores for healthy skin and poor

quality are within standard deviation of the inter-rater agree-

ment, whereas for lesion and no skin the performance is slightly

lower. The lower performance on no skin may be explained by

the limited training data available. For poor image quality ex-

planations, all F1-scores except for blurry are within standard

deviation of the mean inter-rater agreement. The high speci-

ficity visible in both image quality assessment and in poor

image quality explanation suggests that deploying this network

on patient phones would not negatively impact the patient

experience by rejecting high-quality images.

Figure 4 provides the Grad-CAM attention maps for each

poor image quality explanation detected in a blurry image.

ImageQX correctly detected blurry as one of the poor image

quality explanations, focusing almost entirely on the skin area

and paying more attention to the lesion. Two other explana-

tions were also marked as present: bad light with a focus on a

slightly shaded part of the arm, and low resolution that

highlights the edges of the hand and a part of the background.

Discussion
Our data-labeling process confirms the previously reported

findings that poor image quality is a significant issue in

teledermatology—around 20% of the images collected

through the mobile application were labeled as poor quality

by dermatologists. Dermatologists have low levels of agree-

ment on which images are poor quality, with inter-rater F1-

scores of 0.62 – 0.08. Explaining what makes an image poor

quality is a difficult task, with inter-rater F1-scores varying

between 0.26 and 0.81. Part of the disagreement can be as-

cribed to personal preference and level of experience with

teledermatology, as some dermatologists tend to reject a lar-

ger proportion of images than others.

ImageQX reaches dermatologist-level performance on as-

sessing the image quality on all quality assessment classes

except for no skin. One reason for this lapse may be the low

amount of training data for images with no skin. For poor

image quality explanations, ImageQX obtains F1-scores

within a standard deviation of the inter-rater agreement for all

explanations except blurry.

Within a real world use case, the high specificity on both the

image quality assessment and poor image quality explanation

suggests that the image retake burden placed on the users

would be low—only truly low-quality or irrelevant images

would be flagged for retake. A low percentage of poor quality,

no skin, or healthy skin images are likely to be seen by

Table 3. ImageQX Performance on Image Quality
Assessment over Five Training Runs (Mean – Standard
Deviation)

CLASS SENSITIVITY SPECIFICITY F1-SCORE

Lesion 0.84 – 0.03 0.78 – 0.04 0.82 – 0.00

No skin 0.76 – 0.05 0.99 – 0.00 0.74 – 0.02

Healthy skin 0.61 – 0.09 0.90 – 0.02 0.63 – 0.04

Poor quality 0.71 – 0.02 0.93 – 0.00 0.74 – 0.01

Mean 0.73 – 0.01 0.90 – 0.01 0.73 – 0.01

F1-scores in bold show the assessments where ImageQX reaches expert-level

performance.

Table 4. ImageQX Performance on Poor Image Quality
Explanation Performance over Five Training Runs
(Mean – Standard Deviation)

REASON SENSITIVITY SPECIFICITY F1-SCORE

Bad framing 0.31 – 0.01 0.96 – 0.00 0.37 – 0.01

Bad light 0.58 – 0.02 0.90 – 0.01 0.61 – 0.00

Blurry 0.60 – 0.02 0.95 – 0.00 0.70 – 0.01

Low resolution 0.47 – 0.02 0.92 – 0.01 0.52 – 0.01

Too far away 0.35 – 0.02 0.98 – 0.00 0.42 – 0.02

Mean 0.39 – 0.01 0.95 – 0.00 0.45 – 0.01

F1-scores in bold show the explanations where ImageQX reaches expert-level

performance.
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dermatologists. Poor image quality explanations also show

high specificity, indicating that, if given proper guidance on

how to fix each issue, users would find them useful in their

retake attempt. By changing the threshold for poor quality

image detection or for the image quality explanations we can

further reduce the poor quality images sent to the dermatol-

ogists. Such an intervention should be carried out after

thorough testing with both patients and dermatologists to

ensure that we identify the ideal balance between asking pa-

tients to retake the images without being too disruptive.

A Grad-CAM analysis of the poor image quality explana-

tions on an example image shows that ImageQX mostly bases

its decisions on relevant areas. The blurry attention map is

focused on the blurry lesion, whereas bad light concentrates

on a slightly shaded area to the left of the lesion. Low reso-

lution illustrates the debugging capabilities of Grad-CAMs:

ImageQX bases its assessment primarily on the background

rather than the original image. If these attention maps were to

be presented to users alongside the explanations, they could

help focus the users’ attention to which sections of the image

require improvement. For example, the Grad-CAM map for

blurry suggests that the users should focus on the lesion in-

stead of ensuring that the background is not blurred.

These findings open up several exploration avenues. First, by

adding more nonskin images from publicly available datasets

we could improve the no skin performance. This dataset addition

requires the data to be from the same distribution, that is,

smartphone images, to avoid in-class domain shift. Second, to

more accurately model the uncertainty inherent in the image

quality assessment task, we could train ImageQX using soft

labels. Third, we believe that by introducing a skin segmentation

network as preprocessing we would avoid misclassifications

because of ImageQX focusing on the background. One draw-

back of this approach is the failure case of the segmentation

network: if the segmentation removes the areas containing skin,

the image quality assessment classifier is bound to fail. Finally,

we would like to perform a usability study to quantify the im-

pact an on-device image quality assessment network would

have on the time to diagnosis and treatment in a tele-

dermatology setting. Such a study would require an in-depth

analysis of how to best communicate the image quality as-

sessments and explanations to the patients.

Conclusions
Our work on ImageQX introduced several elements of

novelty. First, we quantified the dermatologist levels of

agreement on what constitutes a high-quality image for a

teledermatological consultation and their reasoning when

tagging images as low quality. Second, we introduced Im-

ageQX, an expert-level image quality assessor that explains its

reasoning for marking an image as poor quality. The added

explainability component aims to facilitate the patient un-

derstanding on how to improve images. Moreover, with a size

of only 15 MB, ImageQX can be easily packaged and deployed

in a teledermatology mobile application, and thus incorpo-

rated as a step between users taking photos and sending them.

Having such a network integrated in the application during

the data collection step of this study would have prevented

1,819 poor quality or no skin images from being sent for as-

sessment to the dermatologists. In the future, we will perform

a validation study to quantify the impact of introducing such a

method within a consumer facing teledermatology setting.

Our solution offers an improvement to the current con-

sumer facing teledermatology flow by increasing the likeli-

hood that patients send better photos, decreasing the time

spent by dermatologists on diagnosing a single patient, and

reducing the time needed to arrive at a diagnosis and a

treatment for patients.

Fig. 4. Grad-CAM attention maps for the blurry test image introduced in Figure 3. The image was correctly classified as poor quality. (a)
Original blurry image. (b) Grad-CAM attention map for bad light. (c) Grad-CAM attention map for blurry. (d) Grad-CAM attention map for low
resolution. When predicting bad light, ImageQX focuses on a slightly shaded part of the arm, whereas for blurry it highlights the lesion and
its surrounding area. The low-resolution prediction is based on the edges of the arm and the background. Image courtesy of the authors.
Grad-CAM, gradient-based class activation map.
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