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Abstract

Imaging flow cytometry combines the high throughput nature of flow cytometry with the 

advantages of single cell image acquisition associated with microscopy. The measurement of 

large numbers of features from the resulting images provides rich datasets which have resulted in 

a wide range of novel biomedical applications. In this primer we discuss the typical imaging flow 

instrumentation, the form of data acquired and the typical analysis tools that can be applied to this 

data. Using examples from the literature we discuss the progression of the analysis methods that 

have been applied to imaging flow cytometry data. These methods start from the use of simple 

single image features and multiple channel gating strategies, followed by the design and use 

of custom features for phenotype classification, through to powerful machine and deep learning 

methods. For each of these methods, we outline the processes involved in analyzing typical 

datasets and provide details of example applications. Finally we discuss the current limitations of 

imaging flow cytometry and the innovations which are addressing these challenges.

Introduction

Conventional flow cytometry is a widespread and powerful technique for the measurement 

of the light scatter and fluorescence from cells stained with phenotypic and functional 

markers 12. Cells are directed at high speed past laser excitation sources, collection optics 

and detectors allowing sampling rates of more than 10,000 cells per second, from in excess 

of 30 wavelength channels. The level of fluorescence intensity measured from each channel 

can subsequently be used to identify cells with various phenotypes of interest, using a range 

of multivariate analysis tools. Traditionally this is achieved using a series of two dimensional 

scatter plots of different combinations of markers onto which gated regions can be defined 

where marker intensities define a phenotype.

Imaging flow cytometry combines the high throughput sampling of traditional flow 

cytometry with the acquisition of an image of each cell 3, thereby providing spatial 

information as well as total fluorescence intensity from each channel. For example, the 

HHS Public Access
Author manuscript
Nat Rev Methods Primers. Author manuscript; available in PMC 2023 August 31.

Published in final edited form as:
Nat Rev Methods Primers. 2022 ; 2: . doi:10.1038/s43586-022-00167-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ImageStream system (Luminex) uses a CCD camera, run using time delay integration (TDI), 

to acquire up to 12 images of each cell including brightfield, darkfield (often referred 

to as side-scatter in traditional flow cytometry) and multiple fluorescent images at rates 

of up to 5,000 objects per second. The acquisition of images dramatically increases the 

measures available for each channel, for example cell area can be measured directly and 

more complicated metrics such as correlation, texture, and granularity give information on 

marker localization and morphology. Typically hundreds of measures or features can then be 

incorporated into the gating strategy to define cell phenotypes.

Early application of imaging flow cytometry relied on the definition of simple image 

features which relied on the spatial information, for example the overlap of a marker’s signal 

with the nucleus of the cell to measure nuclear translocation 4. However the availability of 

the rich multivariate dataset derived from the large numbers of image features has led to 

evermore powerful analyses and the application of machine learning techniques to enable 

cell classification and functional analysis.

In this primer we will focus on the typical types of analysis that can be carried out using 

imaging flow cytometry, in particular highlighting the advantages of the images acquired 

compared with traditional fluorescence flow cytometry. Using specific datasets we will 

focus on the data collection and analysis steps that can answer specific questions related 

to the biology of the cell. We will concentrate on the more typical analysis of data using 

simple features extracted from the images, however, we will highlight where more advanced 

machine and deep learning techniques can be applied to solve more advanced problems. 

While new imaging flow technologies are constantly being reported, we will focus mainly 

on the commercially available systems available from Luminex, which as a mature platform 

has been the mainstay of imaging flow studies to date. However, the strategies for using 

imaging flow cytometry data remain similar irrespective of the instrumentation and therefore 

the analysis examples given here will be easily adaptable to other systems. In this primer we 

will also discuss the limitations of imaging flow cytometry and outline the rapid advances 

which will be available in the near future to overcome them.

Experimentation

Instrumentation

The first imaging flow cytometer was introduced in 2004 when George et al. developed 

the ImageStream system marketed by Amnis (now part of Luminex) 5. Cells in suspension 

are hydrodynamically guided into a core stream which is illuminated by an LED array and 

mixture of collinear and spatially separated laser lines at rates of up to 5,000 objects per 

second (Fig. 1a). The standard excitation laser has a wavelength of 488 nm however the 

system can be expanded with up to six further lasers at 375, 405, 561, 592, and 642 nm; 

a higher-power 488 nm laser is also available. The ImageStream MkII system doubles the 

original 6 channel acquisition capacity to 12 channels by using two image detection systems 

including filters, spectral decomposition systems and two CCD cameras. This enables the 

capture of images from 10 fluorescence channels together with brightfield and darkfield 

images. Images can be captured at 3 different magnifications 20, 40 and 60X giving a 

pixel resolution of 1, 0.5 and 0.3um. An extended depth of field 6 option maintains a focus 
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over a greater depth, an option which is useful for the quantification of cellular structures 

throughout the cell. A high gain model has also been introduced which adjusts the gain 

setting to maximize the measured signal while minimally increasing the noise allowing 

the measurement of dim fluorescence markers or very small objects, such as extracellular 

vesicles 7 and viruses.

A major strength of the ImageStream system is the user-friendly acquisition and analysis 

software that allows exploration and analysis of the rich multivariate datasets that the 

instrument delivers. The data acquisition software (INSPIRE) enables the basic self test, 

calibration and set up of the instrument. During data acquisition researchers can modify 

instrument operating parameters and observe the images obtained from each channel in real 

time. Furthermore, data can be acquired selectively, based on a gating strategy from image 

features to reduce the number of unwanted images in the subsequent data file.

Sample preparation and experimental design

Sample preparation for imaging flow cytometry is analogous, in practical terms, to any form 

of fluorescent antibody or dye based technology that is used to analyze cells or particles 

in suspension. In general terms, as with any form of experimentation, the first step is to 

formulate the question and determine what key measurements are needed. So for example, 

if the goal is to measure the degree or amount of FoxP3 in the nucleus of primary human 

regulatory (T-regs) CD4T cells, appropriate markers can be selected by looking at the 

capability of the available imaging flow cytometer. This impacts how many parameters the 

researcher could measure per cell as well as which fluorochromes and dyes the system could 

detect based on things like the number and wavelength of available excitation lasers as well 

as important information about the detection channels (for example one camera versus two 

camera system). In this design of the optical setup to be used it is possible to use several 

widely available online spectral viewers to create a “virtual” machine with the right lasers 

and filters. The next stage is to then draw up a list of the minimum number of biomarkers 

that would be required to identify the cell type of interest from a heterogeneous population. 

If additional channels are available, the researcher should seriously consider whether other 

parameters might be of interest and measured simultaneously.

For example, consider a protocol previously used to identify T-regs from whole, lysed 

human blood 8. To do this effectively, one may need to stain the sample with antibodies 

against CD45 (pan-white blood cell marker) to distinguish white blood cells from un-lysed 

red blood cells and debris. Next we would want to include an antibody against CD3 to 

identify all T cells within the CD45-positive white blood cell (WBC) population. As we 

want to focus on regulatory CD4-positive T cells, we will also need to include an antibody 

against CD4, as well as CD25 and CD127 (IL-7 receptor alpha chain). In all cases, each 

antibody would need to be tagged to a unique fluorochrome that would be compatible 

with the spectral setup of the system as well as each other, although an advantage of 

imaging cytometry is that markers may be used in the same spectral channel if they are 

spatially distinct. The selection of fluorochrome to marker/target follows the same rules and 

approaches for conventional and full spectral fluorescence flow cytometry where essentially 

low expressed markers are assigned to bright fluorochromes and highly expressed markers to 
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dimmer fluorochromes 9. As we also want to measure the nuclear occupancy of the FoxP3 

protein, we would also have to select an antibody against FoxP3 tagged to a compatible 

fluorochrome as well as spectrally compatible nuclear dye. In all cases, the fluorescent 

reagents require careful titration, including the nuclear dye, because signal saturation can 

pose a challenge: first, due to the reduced dynamic range on the CCD camera (12-bit 

compared to 18-bit on a non-imaging flow cytometer) and second, the lack of control over 

each imaging channel (signal intensity is controlled by laser power, meaning that it can be 

challenging to balance a dim and bright signal for the same laser). Once reagents have been 

optimized, however, sample preparation follows the same process as with conventional flow 

cytometry.

Briefly, cells are prepared in a single cell suspension and stained with optimized 

concentrations of surface marker antibodies. After washing, the cells are fixed in 2–5% 

formaldehyde then permeabilized using a detergent (such as TritonX-100, Nonidet-P40 or 

Saponin) after which intracellular antibodies are added for a period, with any nuclear dye 

added at the end, prior to acquisition. Of note, any nuclear dye must be carefully titrated 

so as to ensure it does not saturate the other signals. As with conventional flow cytometry, 

single stained controls are required for compensation for all markers (see next section). The 

most significant difference in sample preparation comes at the last step where it is essential 

to concentrate the samples in a maximum volume of 50 μl, and ideally if cell numbers 

allow, at a concentration of 20–30 million cells per ml (thus, 1 million cells total in 50 μl). 

While this may seem extreme, the imaging flow cytometer tends to run at a slower rate than 

conventional systems so it can take impractical amounts of time to acquire enough cells 

in dilute samples, particularly if looking for rarer cell types. A concentrated sample will 

help to alleviate these issues, however if working with larger and ‘sticky’ cell types, less 

concentrated samples may be preferred. Sample acquisition is relatively easy; it is often best 

to begin with a fully stained sample that is known to contain the brightest signals in the 

panel if possible. It is then relatively simple to use plots that show the “raw maximum pixel” 

for all events in any channel and to ensure that the excitation laser powers are set to achieve 

maximum signal without any saturation.

As with traditional flow cytometry, before any quantitative analysis can be performed, the 

data must be compensated for the spectral cross-talk between channels. However the process 

of compensating imaging flow cytometry data is more involved given the spatial nature of 

the data. Essentially the spatial resolved data requires compensation at an individual pixel 

level 10. Separate aliquots of sample are stained individually with each dye/marker required 

for the full experiment; the contributions of crosstalk from each marker into the ‘empty’ 

channels can then be quantified.

Results

The ImageStream is provided with IDEAS (ImageStream Data Exploration and Analysis 

Software), software that enables the data preprocessing and the usual gating analysis 

associated with traditional flow cytometry. It also includes several ‘building block’ tools 

which suggest suitable image features, masks and gating strategies for typical cell image 

analysis. The first step using IDEAS is to generate and implement a compensation matrix 
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to correct for spectral spillover or crosstalk between channels using the individually stained 

samples. This is a familiar process for flow cytometry however in the case of image flow 

cytometry the compensation matrix is used to deconvolve the cross channel contributions in 

each single pixel. Furthermore, at instrument start-up the acquisition software corrects for 

the individual variations in each pixel’s dark current and gain, to give a uniform photometric 

response for each pixel in the image. Any vertical and horizontal pixel spatial offsets are also 

computed and these are corrected during acquisition. The result is a brightfield, darkfield 

(light scatter) and up to 10 fluorescence channel images for every event that triggers the 

acquisition process (Fig 1b).

IDEAS also automatically generates a segmentation mask for each channel per field of 

view (Fig 1b). This allows the user to mask the cell outline using the brightfield channel 

and the nucleus, for example, if a nuclear dye has been included in the experiment. Often 

the automated masking parameters need to be adjusted 11, for example, by changing the 

intensity threshold level for segmentation, a process which is critical especially when 

detecting subcellular organelles etc. Once the object masks are accurately defined, shape 

morphology features such as area, perimeter, aspect ratio etc. can be measured which can 

be used in cell gating strategies. IDEAS also allows the measurement of more complicated 

image features which measure the texture and granularity which significantly enhances the 

assay opportunities compared with traditional flow cytometry, as will be discussed later.

Preprocessing : Preparing the cell images prior to data analysis

Before analysis of the acquired cell images can take place the data set needs to be filtered 

to remove images that are out of focus due to fluctuation of the fluid stream or that 

capture objects other than single cells (Fig 2). To identify the in-focus events the intensity 

gradient along a pixel line is used (the focus ‘building block’ within IDEAS software); in 

a well-focused brightfield image, the cell boundaries create a sharp intensity change and 

hence a high gradient value (feature Gradient {RMS, Mx, Chx}). Definition of the in-focus 

sub-population can then be made with a high-pass gating of the gradient histogram. Having 

defined the in-focus events, the focus sub-population may be further filtered to select single 

cells based on object size and shape (the single cell ‘building block’). This operates on 

morphological features obtained from the brightfield image mask, producing a 2D scatter 

plot of aspect ratio versus area. A single-cell sub-population may be defined from the dense 

cluster of events with high aspect ratio (tending to circular shape) and intermediate area 

(lying above a band of smaller objects corresponding to debris, and below higher points 

representing images containing multiple cells). After gating to define the single cell, in focus 

population the user is in a position to take advantage of the unique image based features this 

technology provides.

Applications

The range of applications of imaging flow cytometry has increased significantly over the 

past 15 years and this has been driven not only by new advances in the technology’s 

hardware but also in the rapid development of computational techniques available to analyze 

the rich multivariate datasets acquired using these instruments. Applications have matured 
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from using a single, simple image feature through to the deployment of advanced deep 

learning algorithms Box 1 and in this primer we will illustrate examples of each.

1. Use of image features in flow cytometry gating

The ability to capture images of single cells at different wavelengths clearly opens up many 

new avenues of investigation in comparison with traditional flow cytometry 12. For example, 

compared with measuring just an intensity value per channel, imaging flow cytometry 

allows capturing morphological features for each channel, such as cell area, perimeter 

and shape metrics such as aspect ratio etc. Early applications of imaging flow cytometry 

exploited the use of these simple features unavailable to traditional flow cytometry for 

phenotype identification. For example, while a rough approximation of cell size and shape 

can be obtained using traditional flow cytometry using forward and side scatter, an obvious 

application of imaging flow cytometry would be the direct measurement of cell size and 

shape. Imaging flow cytometry has been used extensively to study the cell cycle control 

in fission yeast where a detailed measurement of cell size is critical 13 14 15. Similarly the 

technique has allowed the classification of the morphological phenotypes of budding yeast 

based on the measurement of the size of bud lengths 16. Similarly the change in shape of 

the nucleus during mitosis allowed the detection of the anaphase, prophase, metaphase and 

telophase of the cell cycle with only a DNA marker 17.

Furthermore, Imaging flow cytometry can analyze subcellular structures which is clearly far 

more difficult, if not impossible, with traditional flow cytometry. For example, the IDEAS 

analysis software allows the detection of ‘spots’ in the cellular image; this was used, for 

example, to measure the uptake of nanoparticles by cells, by determining the number of 

vesicles that were loaded with particles and assessing the inheritance of these by daughter 

cells during mitosis 18. Similarly spot counting was used to measure the frequency of 

γH2AX foci induction in DNA double strand break repair defective human cell lines 19. 

Imaging flow cytometry also has a resolution that allows the quantification of the uptake of 

extracellular vesicles by cells using spot counting 20. A recent update to the IDEAS software 

allows the use of connected component masks, where a channel mask can be broken down 

into multiple individual components. All the feature measurements available for masks 

can then be applied to the individual components. This addition is especially useful when 

measuring multiple subcellular structures, for example in particle uptake studies 21.

Example Application 1 : Analysis of nanoparticle uptake using spot counting
—The capability to spatially analyze intra-cellular objects is probably the single most 

important factor in deciding to use imaging rather than traditional flow cytometry and 

so the most obvious example to present for imaging cytometry is the recognition and 

enumeration of sub-cellular areas, i.e. punctate spots within a cell image. Here we present 

an application using fluorescent nanoparticles (quantum dots) in which the heterogeneity of 

particle loading into endosomes is assessed. In this case the relevant fluorescent channel 

clearly shows bright spots under laser excitation corresponding to endosomal vesicles 

loaded with nanoparticles (Fig 3). Using the masks feature these fluorescent areas can 

be identified using one of a number of possible masking functions such as intensity, peak 
or spot. A measurement feature may then be generated from the spot mask to generate 
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a summed spot area or a spot count per cell. In the specific application considered here 

these represent a dose metric for the accumulated nanoparticles and would be of relevance 

to a nanotoxicology or nanomedicine assay. It should be noted that this process of mask 

generation and feature extraction relies only on the presence of distinct pixel intensity 

clusters that may be identified within the cell image. A fluorescence image is not therefore 

essential and sub-cellular morphology may be clear within the scattered light variation of the 

dark field channel or indeed, as dark spots in a bright field image (see example application 

3).

The extraction of spatial metrics is of course not an end in itself and the real impact of 

imaging cytometry lies in the application of post-measurement models and analysis of the 

data. For example, in this nanoparticle uptake data the statistical distribution of the number 

of nanoparticle loaded vesicles per cell is overdispersed relative to the Poisson distribution 

expected on a hypothesis of random particle arrival and internalization. Further study shows 

that this is due to cell area heterogeneity and provides predictions of the dose heterogeneity 

of nano-vectors 22. Here we see potential for probabilistic models of cell processes, enabled 

by the ability to extract spatial information across large populations.

2. Analysis techniques using combinations of image features, masks and different 
channels

As well as detecting changes in sizes and shape, images allow biological assays that require 

a detailed assessment of the position of fluorescent biomarkers within subcellular structures, 

such as protein colocalization. The individual channel image pixels are in spatial registry 

allowing the direct comparison of fluorescence from each channel at the resolution given 

by a single pixel. The pixel intensities from any two channel images can then be compared 

using for example a normalized Pearson correlation to define a metric or similarity score that 

measures the overlap of the fluorescence. For example, the Nuclear Factor-kappa B (NF-κB) 

translocation in THP-1 cells after treatment with lipopolysaccharide was measured using 

the similarity score of a nuclear dye and the NF-κB fluorescence using the ImageStream 

system 23. Likewise the ImageStream was used to study the interferon mediated pathway in 

hepatoma cells expressing the hepatitis C virus by measuring the nuclear translocation of 

IRF724. The accuracy of the quantification of the nuclear translocation p65 and NF-κB using 

imaging flow cytometry was confirmed by correlation microscopy, and western blot data.

Example Application 2: Spatiotemporal Calcium Mobilization in Activated T 
Cells—To illustrate the use of overlapping fluorescent image channels we use the example 

of the requirement to determine the position of calcium in the cell (Fig 4). Calcium acts as a 

ubiquitous signaling moiety in cell biology, passing on extracellular signals to drive changes 

in gene expression and cellular responses. In the immune system, calcium acts as a key 

secondary messenger downstream of the T cell Receptor (TCR) after recognising foreign 

antigens. The measurement of calcium mobilization in T cells is therefore of significant 

interest and is often a critical assay for the characterization of cells from patients and from 

various transgenic mouse models, where T cell signaling is suspected to have been perturbed 

in some way. One of the key features of calcium signaling and mobilization is the spatial 
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aspect, with temporal involvements and dependencies on different subcellular locations 

making it a very attractive model system to be measured using imaging flow cytometry.

To this end a fluorescent dye panel that is compatible with a 4 laser, 2 camera, 12 channel 

imaging flow cytometer is used to identify: two key intracellular organelles involved in 

calcium mobilization, namely the endoplasmic reticulum (ER) and the mitochondria, and 

secondly, to report the flux of calcium ions in these locations 25. These dyes were carefully 

titrated to ensure 1) optimal signal to noise 2) onward cell viability 3) organelle specificity. 

For the latter consideration, it is possible to use spatial information to confirm specificity 

of each organelle dye as it has been shown that excessive concentrations of such dyes will 

lead to a loss of specificity and a generic labeling of intracellular structures. In this case the 

bright detail similarity feature provides a metric for the spatial segregation of two distinct 

organelle dyes with low feature values (less than 1.5) representing good spatial segregation. 

After ~60 seconds of data collection, the sample was unloaded, a stimulus such as anti-CD3 

antibodies or Calcium modulator added and then the sample reloaded to continue data 

acquisition. Single-stained samples were collected for compensation purposes.

Corrected and compensated data was analyzed by creating a range of masks based on 

the specific organelle stains and restricting the kinetic measurement of various fluorescent 

calcium probes to these structures versus the whole cell signal. Utilization of this approach 

uncovers interesting features of calcium mobilization in activated T cells, namely that 

mitochondria seem to be able to act as a “sink” for intracellular ER-derived calcium and not 

just from an extracellular influx; this observation is wholly dependent on the ability to obtain 

single cell, kinetic spatial information at a population-wide level.

3. Use of user defined masks and features

A strength of the IDEAS software is the flexibility it provides to take the basic features and 

masks and modify them to provide custom measures tailored to the application.For example, 

the internalization of nanoparticles by cells was quantified using an internalization score, 

which was derived from the correlation of the fluorescence nanoparticle pixels in the cell 

mask and the same cell mask that was eroded by 3μm to remove the outer membrane region 
26. A similar strategy was also used to measure the extent of the ciliary zone thickness in 

mature human bronchial epithelial multiciliated cells, as the difference in area between the 

cell body and the ciliated zone mask 27.

Example Application 3 : Analysis of the morphology of granulocytes—While 

traditional flow cytometry can indirectly measure granularity via the intensity of the 

scattered laser imaging flow cytometry can directly measure spatial variation in the 

brightfield, darkfield and fluorescence images. In this example we analyze the pronounced 

morphological features of granulocyte white blood cells. The granules for which these cells 

are named consist of enzyme-filled vesicles and these produce high-contrast dark spots 

within brightfield images. If we want to quantify whether the granules are located at the 

outer edge of the cytoplasm, next to the membrane, or more evenly distributed within 

the cell. Here we outline a procedure for assessing the sub-cellular distribution of these 
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granules, but the general approach is applicable to any analysis of cell morphology based on 

brightfield image contrast.

The analysis is based on the creation of area masks to define general sub-regions of the 

cell and to define the granules (using the masks function) (Fig 5). Logical mathematical 

operations using these masked areas can then identify degree of overlap and quantify the 

spatial distribution of the granule dark spots (using the features function). A mask of the 

brightfield channel is automatically generated by the IDEAS software; erosion of this mask 

isolates the inner body of the cell. Logical combination of original plus eroded masks can 

then produce a mask of the cell perimeter, through a NOT AND operation, i.e. shared areas, 

common to both masks, are removed from the original brightfield mask. Having created 

location masks that define the cell interior and perimeter, we can proceed to mask the image 

spots corresponding to granules. This can be achieved with a number of alternative masking 

functions such as intensity, peak or spot, with selection determined by user preference and 

their relative performance when applied to the specific cell image set being analyzed. Final 

extraction of a measurement feature, defining the degree of membrane association of the 

granules, is achieved by calculating the area of a combined mask resulting from logical 

combination of granule mask AND perimeter mask, i.e. selecting the masked granule areas 

that lie close to the cell membrane (Fig 6).

There are often alternative approaches that may be taken in a spatial analysis and here, 

by example, we can implement a morphology-based approach using only the dark spot 

mask (Fig 7). Rather than isolating the membrane associated granules this approach 

seeks to classify the different spatial distributions seen across a cell population, i.e. to 

differentiate between examples where granules are distributed across the whole of the cell 

and those where they are preferentially clustered at the cell membrane. Having identified 

the granule positions with the dark spot mask, their spatial orientation can be quantified 

using compactness and circularity feature functions. A scatter plot of these features presents 

a distribution of the cell-state extending from cells with centrally located granules on the 

lower left (dispersed and asymmetric pattern) to those with strong membrane association in 

the upper right (localized and symmetrical pattern).

4. Machine Learning Analysis Strategies

While scoring cells based on individual spatial features has led to numerous new biological 

cellular assays, more recently it has been recognised that combining the large numbers 

of possible features which can be derived from each channel image for every cell in the 

population can lead to an incredibly rich dataset with the power to identify more complex 

phenotypes. These multivariate datasets are perfect candidates for the application for high 

content approaches to identifying cell phenotypes and determining cell function.

One of the first examples applying machine learning to imaging flow data identified the 

stages of the cell cycle including mitosis, as well as DNA content, in a completely label-free 

assay 28. In the machine learning training step, Jurkat cells were stained with propidium 

iodide, to quantify DNA content, and a MPM2 (mitotic protein monoclonal #2) antibody, to 

identify mitotic cells. This enabled identifying cells in G1, S, G2 phases and the four mitotic 

phases–prophase, metaphase, anaphase and telophase–using traditional gating techniques. 
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The annotated cells were used to train a network to classify the phases based on the 

brightfield and darkfield channels alone – in other words, the machine learning model was 

not allowed to use the fluorescence channels. Finally, in the prediction (or inference) step, 

the trained machine learning model used the label-free channels alone to classify cells into 

phrases and predict the intensity of propidium iodide stain. This machine learning strategy 

has also been employed to classify human white blood cells where CD markers were used to 

annotate the B, T cells, eosinophils, monocytes and granulocytes. Trained machine learning 

algorithms were able to identify the cell types using just the brightfield and darkfield 

channels 29, 30.

To apply machine learning the user must extract a table of image features for each cell. 

IDEAS can measure large numbers of features for each channel and these can be output for 

future analysis. Similarly open source software tools such as CellProfiler 31 which has been 

designed specifically to extract large numbers of shape, intensity and textures features for 

multivariate analysis can be used 32. We note that the user must decide on what features are 

used in the analysis depending on the classification or regression task at hand. Care must 

be taken to remove any non-biological features that can be present such as cell number or 

a timestamp. Also the user can pre-filter the data to remove any correlated or redundant 

features which can confound the learning process and can also speed up analysis times 
3334. Once the feature table has been extracted the user is free to choose any appropriate 

analysis tools, for example, MATLAB has an user friendly machine learning toolkit, Python 

has extensive libraries such as Scikit-learn and also the open source R language has been 

specifically designed for statistical computing. Also, a machine learning module has recently 

become available within the IDEAS software package to enable the application of machine 

learning techniques to the image data with no expert knowledge.

Example Application 4 - White blood cell classification using machine 
learning—To provide a clear demonstration of the steps involved in applying machine 

learning for automated analysis we consider the common, well understood task of white 

blood cell phenotype identification. In traditional flow cytometry this is typically achieved 

by manually gating a scatter plot of side and forward scatter. A similar procedure can 

be invoked in imaging cytometry using the darkfield intensity and brightfield mask area 

features (Fig 8). To employ machine learning for this task the first step is to export all 

used features to a data text file (in this example the measurement features for darkfield, 

brightfield and channel 4, which contains autofluorescence images). In this demonstration 

example this is done for each of the four gate-defined populations of eosinophil, neutrophil, 

monocyte and lymphocyte cell phenotypes. It should be noted that in addition to image 

channel features IDEAS also exports cell object and time data columns, these biologically 

irrelevant metrics need to be removed from the data prior to implementation of machine 

learning. Here we assess the ability of machine learning algorithms to correctly classify 

the cell phenotypes using the combined data set of all sub-populations. In this case the 

combined data for the 3 channels provides a data matrix of 115 metrics for 3,168 cells. The 

feature data matrix may be used with any chosen machine learning software, in the figure 

below we present results, in the form of confusion matrices, from MATLAB’s classification 
learner app. For illustration purposes we choose two algorithms: a naive Bayes and a 
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fine tree. Both deliver highly accurate classification and unsurprisingly the decision tree 

is optimum as it follows the binary signal discrimination employed in the original manual 

gating.

5. Application of deep learning

The examples we have described so far can be quite powerful, and they all have one step 

in common: they require the measurement of particular image features that are pre-defined 

by software. The IDEAS software, as well as open-source bioimage analysis tools such as 

CellProfiler and ImageJ, can measure a large number of features, which can be selected 

by the researcher or used en masse for machine learning. A new type of machine learning 

algorithm has the potential to go beyond features that humans have pre-programmed into 

software: deep learning. Also known as neural networks and named for their many, deep 

layers, deep learning algorithms use full images as the input to a convolutional network. 

When appropriately trained, the network generates the features required for the analysis 

applications; these features can often be more powerful than human-designed ones. Deep 

convolutional neural networks for image classification are well suited to small multichannel 

images and they require large numbers of images to train, which makes them perfect 

candidates for the analysis of data from imaging flow cytometers.

One of the first applications of deep learning to imaging flow data 35 trained a deep 

convolutional neural network to detect the different phases of the cell cycle using the pixel 

data of the images rather than extracting conventional image features. Other challenging 

applications are quite diverse. Dunker et. al. trained a convolution neural network to classify 

phytoplankton species and also identify the stages of the life cycle 36. More recently the 

same researchers used the same deep learning algorithms to classify large numbers of pollen 

species with high accuracy 37. Furthermore, they were able to determine morphological and 

fluorescence features that were conserved at the various levels of taxonomy. Similarly, deep 

learning was similarly used for predicting Cryptosporidium and Giardia in drinking water 38.

Example 5: Classification of micronuclei events using deep learning—A typical 

application of deep learning to imaging flow cytometry data is to take advantage of the 

large number of single cell images to classify individual phenotypes. As an example we will 

examine the use of deep learning to classify micronuclei events from imaging flow data. 

The in vitro micronucleus assay is the standard method for the assessment of possible DNA 

damage induced by chemical / radiative perturbation. The assay is the gold standard test of 

genotoxicity in the development of all chemicals and pharmaceuticals. When the nucleus 

divides during mitosis, chromosome fragments that fail to be incorporated into the daughter 

nuclei appear as ‘micronuclei’ within the cell. Imaging flow cytometry has been shown to be 

an effective measurement tool for the micronucleus assay giving the high throughput single 

cell nature of the data 39, 40, 41. The assay was partly automated using spot counting to find 

the micronuclei within the cells 42 however it was subsequently shown that this is a perfect 

application for the use of deep learning to fully automate the classification of cells with 

micronuclei 43 44.
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As with the application of deep learning to any problem we must first decide on the type 

of neural network to be used. Several classification networks have been applied to imaging 

flow data including AlexNet 45, ResNet50 46 and VGG-16 47, all of which have been pre 

trained on many thousands of annotated images. The number of layers and complexity 

of the network can improve classification accuracy but also increase the time required to 

re-train the neural network. Once the network has been selected the input layer needs to be 

matched to the single cell image size pixel sizes. The individual images extracted are often 

of different sizes and therefore they need to be cropped or padded to the network input size. 

Also the application will dictate which image channels will be input into the network for 

classification. While classification networks were the first to be applied to imaging flow data 

we note that other networks can be used, for example a Faster region-based convolutional 

neural network was used to quantitatively analysis of phagocytosis in cells using imaging 

flow cytometry data 48.

As discussed for the application of machine learning techniques it is also important to 

consider which programming language to use to implement the network. Matlab has useful 

deep learning toolboxes however again Python has a host of different packages to implement 

convolutional neural networks including Keras, Cafe and TensorFlow. Although for non-

experts, as with the addition of machine learning into the IDEAS software, likewise a deep 

learning module has now also been developed. This tool was used recently to classify 

silicone oil droplets from protein particles 49, a protocol which has significant application in 

the development of biopharmaceuticals.

Here we take the publicly available dataset 44 which contains TK6 cells which exhibit 

mono, bi, tri and quardanuclated phenotypes together with micronuclei events (Fig 9) 

after exposure to carbendazim. The human annotated dataset has both brightfield and 

DNA fluorescence images which have been cropped/padded to 64×64 pixels and maximum/

minimum renormalised per image. As a simple example we input just the DNA channel into 

the ‘DeepFlow’ neural network 35 developed specifically for Imaging flow cytometry data 

which is available in Python and Matlab 44 for this image size and trained on 6445 randomly 

selected images from each class over 30 epochs, minibatch size of 30 using the ADAM 

optimizer. The resulting confusion matrix (Fig 9e) shows the results of the trained network 

on 1609 test images, which gives an overall accuracy of 79.1% This can be significantly 

improved by augmenting the rarer cell classes, using the brightfield channel and increasing 

the number images used to train. As well as classification the weights of the penultimate 

layers of the trained network can be used to visualize the performance of the network or 

even for regression analysis. Here we demonstrate this by extracting the weights from the 

(average pooling) layer above the classification layer and use tSNE to reduce the features to 

2 dimensions to visualize the class prediction.

Reproducibility and data deposition

If we consider the ImageStream system which has an extensive calibration, self check and 

initialisation start-up process the data reproducibility is excellent. As with all protocols 

that require staining or labeling cells, variable uptake of the markers or target binding 

can lead to problems with reproducibility in the analysis, however this is not a problem 
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specific to imaging flow cytometry. In fact, a study to detect micronuclei events in cell 

conducted at three different laboratories (using different instrument settings e.g. excitation 

laser intensities) using different DNA stains demonstrated that deep learning algorithms 

trained on data from one laboratory could be used to classify results from the other 

laboratories with high accuracy 44.

The move to open and transparent data analysis has led to authors depositing data and 

analysis code using platforms such as FigShare, GitHub and also within supplementary 

information with manuscripts. The flow cytometry community has adopted a set of 

minimum standards required for data 50 and the prefered depository, FlowRepository. While 

no formal standards exist for Imaging Flow Cytometry, attempts have been made to outline 

best practice in report results and depositing data 51 which will become more important as 

more data is being made available.

Limitations and optimizations

Clearly, imaging flow cytometry has proven value in combining the advantages of a 

microscope and a flow cytometer. However the technique does have limitations, for example, 

in lacking capability for: workflow automation, cell sorting, repeated time-lapse imaging of 

the same cell and 3D resolution. Nevertheless, recent advances, in the field of imaging flow 

cytometry itself and from other disciplines, are beginning to address these limitations.

Automation:

An imaging flow cytometry workflow involves multiple steps, in which both the laboratory 

procedures for data acquisition and the computational procedures for data analysis often 

require manual handling, including sample staining, centrifuging, washing, sample handling, 

instrument preparation, data capturing, event gating, triggering, data cleaning, profiling 

and so forth. For wet-lab procedures, as yet there are no robotic options as seen in 

plate-based or slide-based high-throughput machines. For computational processes, although 

batch processing capability could be deployed, custom, expert-guided analysis is the norm 

and thus difficult for scaling within an automated and distributed computing platform. 

This poses a major challenge in downstream analyses, in which 100+ unique features, 

typically dozens of masks for cellular objects and subcellular compartments, as well as 

a large collection of algorithms available for each channel, yields several thousands of 

combinations to identify features and populations of interest. Partial automation is available, 

for instance, the Luminex ImageStream system is accompanied by data acquisition software 

(INSPIRE) and a separate analysis suite (IDEAS). This analysis platform does provide 

biologist-friendly templates (“wizards”) to guide users through common analysis scenarios, 

including foundational (compensation, gating), application-specific (apoptosis, localization, 

internalization), and exploratory (feature finder) schemes. Moreover, there are open-source 

attempts to orchestrate software modules and algorithms to improve automation in analysis 

procedures, commonly written in Python, MatLab 52, or R 53.

Sorting is an important feature of a cytometric system, regardless of imaging capability, 

because it allows physical segregation of objects to isolate subpopulations of unique cell 

types. This can allow subsequent assays on the subpopulations, or valuable procedures 
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such as clonal selection and expansion. Unfortunately, constructing an image-based cell 

sorter requires several major modernizations in high-speed image acquisition, intelligent 

data analysis (often machine learning-based), and microscale sorting modules. In contrast to 

a range of choices for sorting flow cytometry, only a few sorting Imaging flow cytometry 

systems have been designed, and these are yet to become commercially available 54, 55, 56, 
57.

Temporal resolution:

In a flow-based system, once the objects flow past the imager, they are either discarded 

or recollected in a common container. It is not, therefore, readily feasible to enable 

repeated imaging of the same cell, as seen in time-lapse, slide-based microscopy. The 

limitation to a single snapshot of each cell also rules against implementation of 3D 

reconstruction approaches such as confocal sectioning. Future development could alleviate 

snapshot restrictions through implementation of object tracking and unique identification 

using cellular barcodes 58 59.

Multi-object interaction:

Imaging flow cytometers can capture multiple objects if they appear within the same field of 

view at the point of acquisition, and can therefore provide information on close-proximity, 

object interaction. For example, the platform has been used to identify platelet binding to 

white blood cells 60. However, complex and/or long-range interactions between multiple 

objects would be a considerable challenge, if not impossible, to achieve.

Outlook

Similar to many imaging systems, Imaging flow cytometry is susceptible to the triangle of 

imaging constraints—speed, resolution, and sensitivity—improving one parameter causes 

the others to suffer. These compromises become even more critical as data volumes, 

velocity, and variety of biomedical research (the famous 3 Vs of Big Data) increase in 

the next 5–10 years. Even so, there are certain gaps for improvement in photonics and optics 

that are likely to improve Imaging flow cytometry systems. Future iterations may bring 

novel data acquisition and sorting technologies at higher resolution, with higher dimensions 

(larger 2D/3D FOV, temporal feature availability), while retaining, if not improving, the high 

throughput that makes Imaging flow cytometry advantageous over other single-cell imaging 

platforms.

Equally important will be improvements in data analysis techniques, in which feature 

stability, model reproducibility, and automation should be prioritized. Even with machine 

learning-based assistance incorporated in today’s workflows, users are still heavily taxed 

with many iterations of data cleaning and modeling processes, such as quality control 

checks, manual annotations in supervised learning, normalization of all features to a 

common base to offset the wide variation in feature value ranges, feature selection 

to alleviate the curse of dimensionality, feature ranking and combinations to optimize 

population separations. It would be helpful to see advanced AI methodologies incorporated 
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into a biologist-friendly pipeline to deliver more automated, less supervised and more 

reliable classifier/phenotyping models.

Considering clinical applications the ever-increasing levels of information to be captured 

from single cells, Imaging flow cytometry coupled with machine learning approaches 

provides a powerful platform for disease fingerprinting. Rare events (e.g., metastatic cancer 

cells) may be detected better than by microscopy, and disease states may be detectable 

that are otherwise invisible to clinicians. With sorting capability, Imaging flow cytometry 

would prove to be a very useful tool for clinical diagnosis and treatment monitoring, 

especially for hematological disorders, even without the use of biomarkers 61. If an 

intelligent, label-free, sorting Imaging flow cytometry is developed, users might collect 

sorted cells to allow clonal selection and expansion, and do so iteratively to produce an 

effective cell therapy. Sorting Imaging flow cytometry would excel in pooled screening 

campaigns, in which multitudes of gene/compound combinations can be tested in an 

unprecedented throughput. In pool-based format, nucleic acids, CRISPR-ed oligos, small 

molecules or antibodies are mixed in the microfluidic device into the cellular or droplet 

form, then screened by image-based sorting followed by downstream omic techniques 

such as next-generation sequencing or proteomics. Novel readouts include combinatorial 

treatment responses, differential co-expression, network and pathway analyses, to help 

discern complex phenotypes and regulatory programs, and subsequently prioritize candidate 

genes or compounds for biopharmaceutical manufacturing.
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Box 1:

Progression of analysis of imaging flow cytometry data
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Figure 1: 
Diagram of the optical layout of the Imagestream flow cytometer
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Figure 2: 
Process flow employed to select in-focus, single cell images from an acquired event set.
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Figure 3: 
Histogram of the number of nanoparticle loaded vesicles (NLV) in a cell population under 

uniform particle exposure. The distribution exhibits over-dispersion relative to a Poisson 

process (dotted line) with accurate representation of the data being achieved using a negative 

binomial distribution function (solid red line).
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Figure 4: 
(a) A schematic overview highlighting the major methodological steps required to measure 

the spatio-temporal flux of calcium in immune cells in response to various stimuli. (b) 

Example data whereby Jurkat T cells were labeled with the relevant vital dyes and acquired 

on an ImageStream X (ISx), initially for a period of 60 seconds to establish a resting 

baseline after which samples were unloaded and either Thapsigargin (red line) or anti-CD3 

(blue line) was added at optimized concentrations. Samples were then re-loaded on to the 

ISx and acquired for a further time period. As a positive control for calcium mobilization, 

samples were unloaded for one final time and the ionophore Ionomycin was added prior 

to reloading the sample and a further period of data acquisition. The upper panel shows 

the intensity of MagFluo4 within the area of the cell image defined as the Endoplasmic 
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reticulum (ER) as a percentage of the initial value at baseline. The lower panel shows 

example multi-spectral images at each phase of measurement.
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Figure 5: 
Process flow for the masking strategy used to isolate membrane-associated granules.
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Figure 6: 
Differentiation of cell populations with membrane-associated or dispersed granules, 

according to mask area.
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Figure 7: 
Differentiation of cell populations with membrane-associated or dispersed granules, 

according to the morphology of their spatial distribution.
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Figure 8: 
Machine learning approaches to white blood cell classification.
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Figure 9: 
Application of deep learning to classification of micronuclei events in TK6 cells. Typical 

images of (a) binucleated cell with micronuclei, (b) trinuclated cell, (c) mononuclear cell 

with micronucleus and a (d) quadra nucleated cell. Confusion matrix (e) for a random 

sample of 1609 cells and the tSNE plot of the penultimate layer (pooling layer) to the 

classification layer (f)
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