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Abstract

Learning high-quality, self-supervised, visual representations is essential to advance the role of 

computer vision in biomedical microscopy and clinical medicine. Previous work has focused on 

self-supervised representation learning (SSL) methods developed for instance discrimination and 

applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide 

images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes 

patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy 

of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade 

downstream performance. Importantly, sampled patches from WSIs of a patient’s tumor are a 

diverse set of image examples that capture the same underlying cancer diagnosis. This motivated 

HiDisc, a data-driven method that leverages the inherent patient-slide-patch hierarchy of clinical 

biomedical microscopy to define a hierarchical discriminative learning task that implicitly learns 

features of the underlying diagnosis. HiDisc uses a self-supervised contrastive learning framework 

in which positive patch pairs are defined based on a common ancestry in the data hierarchy, and 

a unified patch, slide, and patient discriminative learning objective is used for visual SSL. We 

benchmark HiDisc visual representations on two vision tasks using two biomedical microscopy 

datasets, and demonstrate that (1) HiDisc pretraining outperforms current state-of-the-art self-

supervised pretraining methods for cancer diagnosis and genetic mutation prediction, and (2) 

HiDisc learns high-quality visual representations using natural patch diversity without strong data 

augmentations.

1. Introduction

Biomedical microscopy is an essential imaging method and diagnostic modality in 

biomedical research and clinical medicine. The rise of digital pathology and whole-
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slide images (WSIs) has increased the role of computer vision and machine learning-

based approaches for analyzing microscopy data [51]. Improving the quality of visual 

representation learning of biomedical microscopy is critical to introducing decision support 

systems and automated diagnostic tools into clinical and laboratory medicine.

Biomedical microscopy and WSIs present several unique computer vision challenges, 

including that image resolutions can be large (10K×10K pixels) and annotations are often 

limited to weak slide-level or patient-level labels. Moreover, even weak annotations are 

challenging to obtain in order to protect patient health information and ensure patient 

privacy [54]. Additionally, data that predates newly developed or future clinical testing 

methods, such as genomic or methylation assays, also lack associated weak annotations. 

Because of large WSI sizes and weak annotations, the majority of computer vision research 

in biomedical microscopy has focused on WSI classification using a weakly supervised, 

patch-based, multiple instance learning (MIL) framework [2, 7, 20, 37, 38, 48]. Patches 

are arbitrarily defined fields-of-view (e.g., 256×256 pixels) that can be used for model 

input. The classification tasks include identifying the presence of cancerous tissue, such 

as breast cancer metastases in lymph node biopsies [13], differentiating specific cancer 

types [7, 11, 18], predicting genetic mutations [11, 26, 32], and patient prognostication 

[8, 29]. A limitation of end-to-end MIL frameworks for WSI classification is the reliance 

on weak annotations to train a patch feature extractor and achieve high-quality patch-level 

representation learning. This limitation, combined with the challenge of obtaining fully 

annotated, high-quality WSIs, necessitates better methods for self-supervised representation 

learning (SSL) of biomedical microscopy.

To date, research into improving the quality and efficiency of patch-level representation 

learning without annotations has been limited. Previous studies have focused on using 

known SSL methods, such as contrastive learning [35, 47, 50], and applying them directly 

to WSI patches for visual pretraining. These SSL methods are not optimal because the 

majority use instance (i.e., patch) discrimination as the pretext learning task [5, 9, 10, 

15, 55]. Patches belonging to the same slide or patient are correlated, which can decrease 

the learning efficiency. Instance discrimination alone does not account for patches from a 

common slide or patient being different and diverse views of the same underlying pathology. 

Moreover, previous SSL methods neglect the inherent patient-slide-patch data hierarchy of 

clinical biomedical microscopy as shown in Figure 1. This hierarchical data structure is not 

used to improve representation learning when training via a standard SSL objective. Lastly, 

most SSL methods require strong data augmentations for instance discrimination tasks [9]. 

However, strong and domain-agnostic augmentations can worsen representation learning in 

microscopy images by corrupting semantically important and discriminative features [21, 

50].

Here, we introduce a method that leverages the inherent patient-slide-patch hierarchy 

of clinical biomedical microscopy to define a self-supervised hierarchical discriminative 

learning task, called HiDisc. HiDisc uses a self-supervised contrastive learning framework 

such that positive patch pairs are defined based on a common ancestry in the data hierarchy, 

and a combined patch, slide, and patient discriminative learning objective is used for visual 
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SSL. By sampling patches across the data hierarchy, we introduce increased diversity 

between the positive examples, allowing for better visual representation learning and 

bypassing the need for strong, out-of-domain data augmentations. While we examine the 

HiDisc learning objective in the context of contrastive learning, it can be generalized to any 

siamese representation learning method [10].

We benchmark HiDisc self-supervised pretraining on two computer vision tasks using two 

diverse biomedical microscopy datasets: (1) multiclass histopathologic cancer diagnosis 

using stimulated Raman scattering microscopy [41] and (2) molecular genetic mutation 

prediction using light microscopy of hematoxylin and eosin (H&E)-stained cancer 

specimens [30]. These tasks are selected because of their clinical importance and they 

represent examples of how deep learning-based computer vision methods can push the limits 

of what is achievable through biomedical microscopy [18, 24, 26, 31]. We benchmark 

HiDisc in comparison to several state-of-the-art SSL methods, including SimCLR [9], 

BYOL [15], and VICReg [1]. We demonstrate that HiDisc has superior performance 

compared to other SSL methods across both datasets and computer vision tasks. Our results 

demonstrate how hierarchical discriminative learning can improve self-supervised visual 

representations of biomedical microscopy.

2. Related Work

Biomedical microscopy and computational pathology

Biomedical microscopy refers to a diverse set of microscopy methods used in both clinical 

medicine and biomedical research. The most common clinical use of biomedical microscopy 

is light microscopy combined with H&E staining of clinical tissue specimens, such as 

tissue biopsies for cancer diagnosis [34]. The introduction of fast and efficient whole-

slide digitization resulted in a rapid increase in the availability of WSIs and accelerated 

the field of computational pathology [42,51]. Computational pathology aims to discover 

and characterize histopathologic features within biomedical microscopy data for cancer 

diagnosis, prognostication, and to estimate response to treatment.

The introduction of deep learning to WSI has resulted in clinical-grade computational 

pathology with diagnostic performance on par with board-certified pathologists [2, 18, 20]. 

See [43] for a comprehensive survey of deep learning-based methods in computational 

pathology. Ilse et al. presented MIL framework using an attention-based global pooling 

operation for slide-level inference [22]. Campanella et al. extended the strategy of a trainable 

aggregation operation using a recurrent neural network for gigapixel WSI classification tasks 

[2]. Lu et al. updated the attention-based MIL method to allow for better interpretability and 

efficient weakly supervised training using transformers [38]. HiDisc is complementary to 

any MIL framework and can be used as an effective self-supervised pretraining strategy.

Other biomedical microscopy methods have an increasing role in clinical medicine. Electron 

[39], fluorescence [44, 46, 53], and stimulated Raman scattering microscopy [14, 41] are 

a few examples of imaging methods that generate microscopy images used for patient 
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diagnosis. Several studies have applied deep learning-based methods to these modalities for 

image analysis [18, 19, 23, 24, 44, 53].

Self-supervised pretraining in biomedical microscopy

Self-supervised pretraining has been used in computational pathology to improve patch-level 

representation learning [7, 28, 43, 45, 57]. Generally, a two-stage approach is used where 

first an SSL method is applied for patch-level feature learning using instance discrimination, 

and then the patch-level features are aggregated for slide- or patient-level diagnosis. SSL 

patch pretraining can reduce the amount of data needed compared to end-to-end MIL 

training [43]. Contrastive predictive coding [36], SimCLR [28], MoCo [45], VQ-VAE [6], 

and VAE-GAN [57] are examples of deep self-supervised visual representation learning 

methods applied to biomedical microscopy images [43].

Chen et al. presented a study using vision transformers and self-supervised pretraining at 

different image scales within individual WSIs [7]. They aim to represent the hierarchical 

structure of visual histopathologic tokens (e.g., cellular features, supracellular structures, 

etc.) at varying image resolutions using a transformer pyramid, resulting in a single slide-

level representation. Knowledge distillation was used for SSL at each image resolution 

[5]. HiDisc is complementary to their method and can be used for SSL at any image 

resolution or, more generally, field-of-view pretraining for any MIL method for slide-level 

representations.

3. Methods

3.1. The Patient-Slide-Patch Hierarchy

The motivation for HiDisc is that fields-of-view from clinical WSIs, sampled from within 
a patient’s tumor, are a diverse set of image examples that capture the same underlying 
cancer diagnosis. Our approach focuses on how to use these diverse fields-of-view in the 

context of the known clinical patient-slide-patch hierarchical structure to improve visual 

representation learning. Most patients included in public cancer histopathology datasets, 

including The Cancer Genome Atlas (TCGA) [4] and OpenSRH [24], contain multiple 

WSIs as part of their clinical cancer diagnosis. These WSIs may be sampled from different 

locations in the patient’s tumor, or different regions within the same tumor specimen. Both 

histopathologic and molecular heterogeneity has been well described within human cancers, 

encouraging clinicians to obtain multiple specimens/samples/views of the patient’s tumor 

[49]. To leverage the hierarchy shown in Figure 1, we create positive pairs at the patch-, 

slide-, and patient-level to define different discriminative learning tasks with a corresponding 

increase in visual feature diversity:

• Patch discrimination: Positive pairs are created from different random 

augmentations of the same patch. This strategy is similar to existing work on 

SSL via instance discrimination [1, 9, 10].

• Slide discrimination: Positive pairs are created from different augmented 

patches sampled from the same WSI. These pairs capture local feature 
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diversity within the same specimen. Regional differences in cytologic and 

histoarchitectural features can be captured at this hierarchical level.

• Patient discrimination: Positive pairs are created from different WSIs from 

the same patient. Patches from different WSIs have the same underlying 

cancer diagnosis, but can have the greatest degree of feature diversity due to 

spatially separated tumor specimens. Additionally, diversity in specimen quality, 

processing, and staining, etc., is captured at this level.

An overview of the hierarchical discrimination tasks is shown in Figure 2.

3.2. Hierarchical Discrimination (HiDisc)

The formulation of the HiDisc loss function is based on NT-Xent [9] and inspired by [27, 

56] for the purpose of multiple positive pairs. The fundamental difference is that no class 

labels are used during training with a HiDisc loss.

Algorithm 1

HiDisc Pseudocode in PyTorch style

Jiang et al. Page 5

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HiDisc utilizes the natural hierarchy inherent to biomedical microscopy images to improve 

visual SSL.

We randomly sample a minibatch of n patients, ns slides from each patient, np patches from 

each slide, and we augment each patch na times. For patients with less than ns slides, the 

slides are repeated and sampled. We assume np < < numbers of patches available for WSI 

sampling. Note that if a patient has only one WSI, then patient discrimination degenerates to 

slide discrimination.

The HiDisc loss consists of the sum of three losses, each of which corresponds to a 

discrimination task at a different level of the patch-slide-patient hierarchy. Similar to the 

supervised contrastive learning loss [27], the component HiDisc losses are designed to fit 

more than one pair of positives within each level of the hierarchy. We define the HiDisc loss 

at the level ℓ to be:

LHiDisc
ℓ = ∑

i ∈ I

−1
Pℓ(i) ∑

p ∈ Pℓ(i)
log exp zi ⋅ zp/τ

∑a ∈ A(i)exp zi ⋅ za/τ , (1)

where ℓ ∈ Patch, Slide, Patient  is the level of discrimination, and I is the set of all images 

in the minibatch. Aℓ(i) is the set of all images in I except for the anchor image i,

A(i) = I ∖ i , (2)

and Pℓ(i) is a set of images that are positive pairs of i at the ℓ-level,

Pℓ(i) = p ∈ Aℓ(i):ancestryℓ(p) = ancestryℓ(i) , (3)

where ancestryℓ( ⋅ ) is the ℓ-level ancestry for an augmented patch in the batch. For example, 

patches xi and xj from the same patient would have the same patient ancestry, i.e., 

ancestryPatient xi = ancestryPatient xj .

Patch-, slide-, and patient-level HiDisc losses share the same overall contrastive objective, 

but capture positive pairs at different levels in the hierarchy. Each loss has a different 

number of positive pairs within a minibatch. Details about this relationship are shown in 

Table 1.

Finally, the complete HiDisc loss is the sum of the patch-, slide-, and patient-level 

discrimination losses defined above:

LHiDisc = ∑
ℓ ∈ Patch, Slide, Patient

λℓLHiDisc
ℓ , (4)

where λℓ is a weighting hyperparameter for level ℓ in the total loss. The pseudocode in 

PyTorch-style detailing the training process is shown in Algorithm 1.
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4. Experiments

We evaluate HiDisc using two different computational histopathology tasks: multiclass 

histopathologic cancer diagnosis and molecular genetic mutation prediction. We present 

quantitative classification performance metrics, as well as qualitative evaluation with tSNE
visualizations [52] of the learned patch-level representations.

4.1. Datasets

Stimulated Raman histology (SRH)—We validate HiDisc on a multiclass 

histopathological cancer diagnosis task using an SRH dataset. Stimulated Raman histology 

is an optical microscopy method that provides rapid, label-free, sub-micron resolution 

images of unprocessed biological tissues [14, 41]. The SRH dataset includes specimens from 

patients who underwent brain tumor biopsy or tumor resection. Patients were consecutively 

and prospectively enrolled at the University of Michigan for intraoperative SRH imaging, 

and this study was approved by the Institutional Review Board (HUM00083059). Informed 

consent was obtained for each patient prior to SRH imaging and approved the use of tumor 

specimens for research and development. The SRH dataset consists of 852K patches from 

3560 slide images from 896 patients with classes consisting of normal brain tissue and 

6 different brain tumor diagnoses: high-grade glioma (HGG), low-grade glioma (LGG), 

meningioma, pituitary adenoma, schwannoma, and metastatic tumor. All slides are divided 

into 300×300 patches, and they are preprocessed to exclude the empty or non-diagnostic 

regions using a segmentation model [18].

TCGA diffuse gliomas—We additionally validate HiDisc using WSIs from The Cancer 

Genome Atlas (TCGA) dataset. We focus on WSIs from brain tumor patients diagnosed with 

diffuse gliomas, the most common and deadly primary brain tumor [34]. Molecular genetic 

mutation classification is used as the evaluation task. The most important genetic mutation 

that defines lower grade versus high grade diffuse gliomas is isocitrate dehydrogenase-1/2 

(IDH) mutational status [3]. IDH-mutant tumors are known to have a better prognosis 

and overall survival (median survival ~10 years) compared to IDH-wildtype tumors 

(~1.5 years). The classification task is to predict IDH mutational status using formalin-

fixed, paraffin-embedded H&E-stained WSI images at 20× magnification from the TCGA 

dataset. Predicting IDH mutational status from WSIs is currently not feasible for board-

certified neuropathologists [3, 12]; genetic mutation prediction from WSIs could avoid 

time-consuming and expensive laboratory techniques like genetic sequencing. WSIs are 

divided into 300×300 pixel fields-of-view, and blank patches are excluded. The rest of 

the patches are stain normalized using the Macenko algorithm [40]. The TCGA data we 

included consists of a total of 879 patients and 1703 slides, and 11.3M patches.

4.2. Implementation details

We train HiDisc using ResNet-50 [17] as the backbone feature extractor and a one-layer 

MLP projection head to project the embedding to 128-dimensional latent space. We use 

an AdamW [33] optimizer with a learning rate of 0.001 and a cosine decay scheduler 

after warmup in the first 10% of the iterations. For a fair comparison, we control the total 
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number of images in one minibatch n ⋅ na ⋅ ns ⋅ np  as 512 and 448 for SRH and TCGA 

data, respectively. We train HiDisc with patient discrimination by setting na = ns = np = 2, 

slide discrimination by setting na = ns = 2, np = 1, and patch discrimination by setting na = 2, 

ns = np = 1. The number of patients n sampled from each batch is adjusted accordingly. λℓ

for each level of discriminating loss is set to 1, and temperature τ is set as 0.7 for all 

experiments. We define weak augmentation as random horizontal and vertical flipping. The 

strong augmentations are similar as [9], including random erasing, color jittering, and affine 

transformation (for details, see Appendix A). We train HiDisc till convergence for both 

datasets (100K and 60K iterations for SRH and TCGA, respectively) with three random 

seeds. Training details for all baselines, including SimCLR [9], SimSiam [10], BYOL [15], 

VICReg [1], and SupCon [27], are similar to HiDisc.

4.3. Evaluation protocols

kNN evaluation—Standard protocols to evaluate self-supervised representation learning 

include linear and fine-tuning evaluation. However, both methods are sensitive to 

hyperparameters, such as learning rate [5]. Therefore, we use the k nearest neighbor (kNN) 

classifier for quantitative evaluation. We freeze the pretrained backbone to compute the 

representation vectors for both training and testing data, and the nearest neighbor classifier 

is used to match each patch in the testing dataset to the most similar k patches in the 

training set based on cosine similarity. It also outputs a prediction score measured by the 

cosine similarity between each test image and its k nearest neighbors. Due to the size of the 

TCGA dataset, we randomly sample 400 patches from each slide for evaluation across three 

different random seeds. Using the kNN classifier, we can compute accuracy (ACC), mean 

class accuracy (MCA), and area under receiver operating characteristic curve (AUROC) for 

patch metrics. We use MCA for SRH dataset because it is a multiclass classification problem 

and the classes are imbalanced. The AUROC is used for the TCGA dataset since it is a 

balanced binary classification task.

Slide and patient metrics—In contrast to patch-level evaluation, slide and patient 

predictions are more practical for cancer diagnosis and other clinical uses [2]. After getting 

patch prediction scores by kNN evaluation, we use average pooling over the scores within 

each WSI or patient to obtain an aggregated prediction score. Compared to most MIL 

methods, this non-parametric method directly evaluates representation learning without 

additional training.

5. Results

5.1. Quantitative metrics

In this section, we evaluate the representations learned by self-supervised HiDisc pretraining 

using the training and evaluation protocols described in Section 4. We compare HiDisc 

and SSL baselines on the testing set of both datasets in Table 2. Since HiDisc-Patch is 

most similar to SimCLR, we observe similar performances. After we add slide and patient 

discrimination in HiDisc-Slide and HiDisc-Patient, we observe a significant boost in patch 

accuracy (+6.1 and +6.6 on SRH, +5.5 and +5.9 on TCGA), and a similar increase in other 
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performance metrics as well. Among all methods, HiDisc-Patient has the best performance 

and outperforms the best baseline, BYOL, with an improvement of 3.9% and 3.1% in 

classification accuracy for SRH and TCGA, respectively. The GPU wall time needed to 

train BYOL is roughly 1.5x longer than HiDisc because it requires updating the weights of 

the target network using exponential moving average. Appendix B shows additional model 

evaluation metrics.

5.2. Qualitative evaluation

We also qualitatively evaluate the learned patch representations with tSNE [52] colored by 

class and patient label for both SimCLR and HiDisc. Figures 3 and 4 show the learned 

representations for the SRH and TCGA datasets, respectively. Here, we randomly sample 

patches from the validation set and plot them by class membership (tumor or molecular 

subtype). We observe that HiDisc learns better representations for both classification tasks, 

with more discernible clusters for each class. We also observe better patient clusters within 

each tumor class in the representations learned by HiDisc. Furthermore, patient clusters 

are not observed in normal brain tissues for both SimCLR and HiDisc-Patch, as there are 

minimal differentiating microscopic features between patients.

5.3. Ablation Studies

Weak Augmentation—We demonstrate that HiDisc is capable of preserving excellent 

performance without the use of strong, domain-agnostic data augmentations as shown in 

Table 3. SimCLR suffers from dimensional collapse with weak augmentations [25]. Similar 

to SimCLR, HiDisc-Patch collapses because it is limited to the diversity from augmentations 

alone. HiDisc-Slide and HiDisc-Patient performance remain high across both datasets and 

tasks. HiDisc-Patient outperforms HiDisc-Slide, especially when evaluating at the patch 

level. We hypothesize that this is a result of additional diversity between positive pairs 

contributed by patient-level discrimination. We also provide supervised contrastive learning 

(SupCon) baselines [27] as an upper performance bound. Figure 5 shows SimCLR fails to 

learn semantically meaningful features while HiDisc achieves high-quality representations. 

Overall, we observe that HiDisc, especially HiDisc-Patient, performs well regardless of 

whether strong augmentations are used.

Other Ablation studies—Additional experiments are included in Appendix C. We 

perform ablation studies on the weighting factor λℓ for each level of discrimination. We 

also train HiDisc with different number of iterations, learning rate and batch size. 
Some settings may marginally improve model performance but cost a significant amount 

of computation resources.

6. Conclusion

We present HiDisc, a unified, hierarchical, self-supervised representation learning method 

for biomedical microscopy. HiDisc is able to outperform other state-of-the-art SSL methods 

for visual representation learning. The performance increase is driven by leveraging the 

inherent patient-slide-patch hierarchy of clinical WSIs. The inherent data hierarchy provides 
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image diversity by defining positive patch pairs based on a common ancestry in the 

hierarchy and does not require strong, domain-agnostic augmentations. By combining patch, 

slide, and patient discrimination into a single learning objective, HiDisc implicitly learns 

image features of the patient’s underlying diagnosis without the need for patient-level 

annotations or supervision.

Limitations

Like other WSI classification methods, HiDisc representation learning is currently limited 

to single-resolution fields-of-view that are arbitrarily defined. Expanding HiDisc to include 

multiple image resolutions could improve its ability to capture multiscale image features of 

the patient’s underlying diagnosis. Also, we have limited the evaluation to a contrastive 

learning framework and HiDisc can also be evaluated using other siamese learning 

frameworks [1, 5, 10].

Broader Impacts

We have limited this investigation to biomedical microscopy and WSIs. However, many 

imaging medical modalities, such as magnetic resonance imaging and fundoscopy [16], 

have a clinical hierarchical data structure that could benefit from a similar hierarchical 

representation learning framework. We hope that hierarchical discriminative learning will 

extend beyond microscopy to other medical and non-medical imaging domains.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Hierarchical self-supervised discriminative learning for visual representations.
Clinical biomedical microscopy has a hierarchical patch-slide-patient data structure. HiDisc 

combines patch, slide, and patient discrimination into a unified self-supervised learning task.
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Figure 2. HiDisc Overview.
Motivated by the patient-slide-patch data hierarchy of clinical biomedical microscopy, 

HiDisc defines a patient, slide, and patch discriminative learning objective to improve visual 

representations. Because WSI and microscopy data are inherently hierarchical, defining a 

unified hierarchical loss function does not require additional annotations or supervision. 

Positive patch pairs are defined based on a common ancestry in the data hierarchy. A major 

advantage of HiDisc is the ability to define positive pairs without the need to sample from or 

learn a set of strong image augmentations, such as random erasing, shears, color inversion, 

etc. Because each field-of-view in a WSI is a different view of a patient’s underlying cancer 

diagnosis, HiDisc implicitly learns image features that predict that diagnosis.
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Figure 3. Visualization of learned SRH representations using SimCLR and HiDisc.
Top. Randomly sampled patch representations are visualized after SimCLR versus HiDisc 

pretraining using tSNE [52]. Representations are colored based on brain tumor diagnosis. 

HiDisc qualitatively achieves higher quality feature learning and class separation compared 

to SimCLR. Expectedly, HiDisc shows within-diagnosis clustering that corresponds to 

patient discrimination. Bottom. Magnified cropped regions of the above visualizations show 

subclusters that correspond to individual patients. Patch representations in magnified crops 

are colored according to patient membership. We see patient discrimination within the 

different tumor diagnoses. Importantly, we do not see patient discrimination within normal 

brain tissue because there are minimal-to-no differentiating microscopic features between 

patients. This demonstrates that in the absence of discriminative features at the slide- or 

patient-level, HiDisc can achieve good feature learning using patch discrimination without 

overfitting the other discrimination tasks. HGG, high grade glioma; LGG, low grade glioma; 

Normal, normal brain tissue.
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Figure 4. Visualization of learned TCGA representations using SimCLR and HiDisc.
We randomly sample patches from the validation set, and visualize these representations 

using tSNE [52]. Representations on the plots are colored by IDH mutational status. 

Qualitatively, we can observe that HiDisc forms better representations compared to 

SimCLR, with clusters within each mutation that corresponds to patient membership. This 

observation is consistent with the visualizations for the SRH dataset in Figure 3.
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Figure 5. Hierarchical self-supervised discriminative learning without strong data 
augmentations.
Randomly sampled patch representations are shown after SimCLR and HiDisc-Patient 

pretraining without the use of strong, domain-agnostic data augmentations on SRH dataset. 

HiDisc achieves high-quality representation learning, while SimCLR is unable to learn 

semantically meaningful features via instance discrimination alone. HGG, high grade 

glioma; LGG, low grade glioma; Normal, normal brain tissue
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Table 1.
Batch composition at all discrimination levels.

The number of samples in the batch treated as independent and the number of positive pairs at each 

discrimination level.n, number of patients in the batch, ns, number of slides sampled per patient, np, number of 

patches sampled per slide, na, number of augmentations performed on each patch.

Discrimination level Number of samples treated as independent Number of Positive pairs

Patch n ⋅ ns ⋅ np na

Slide n ⋅ ns np ⋅ na

Patient n ns ⋅ np ⋅ na
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