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A B S T R A C T   

Single-cell sequencing have been widely used to characterize cellular heterogeneity. Sample multiplexing where 
multiple samples are pooled together for single-cell experiments, attracts wide attention due to its benefits of 
increasing capacity, reducing costs, and minimizing batch effects. To analyze multiplexed data, the first crucial 
step is to demultiplex, the process of assigning cells to individual samples. Inaccurate demultiplexing will create 
false cell types and result in misleading characterization. We propose scDemultiplex, which models hashtag oligo 
(HTO) counts with beta-binomial distribution and uses an iterative strategy for further refinement. Compared 
with seven existing demultiplexing approaches, scDemultiplex achieved great performance in both high-quality 
and low-quality data. Additionally, scDemultiplex can be combined with other approaches to improve their 
performance.   

1. Introduction 

Single-cell sequencing provides an unprecedent scale for investi
gating cellular heterogeneity systematically [1,13,14,20,21,25,28]. 
Sample multiplexing where multiple samples are pooled and sequenced 
together is often used in single-cell experiments to increase capacity and 
reduce costs, and most importantly, minimize batch effects [5]. There 
are two main methods used for sample multiplexing: barcode-based and 
single nucleotide polymorphism (SNP)-based. Barcode-based multi
plexing labels samples with unique DNA barcodes (also termed hashtag 
oligos, HTO) using either an antibody tagged with a DNA barcode that 
targets the cell surface protein [19] or nucleus pore complex [6], or 
lipid/cholesterol-modified oligonucleotides that tag the cell membrane 
[15,16]. SNP-based multiplexing distinguishes multiplexed samples 
based on their natural genetic landscapes [10,27,7,9], but it can only be 
applied to genetically distinct samples, not those that share the same 
genetic background, such as samples from the same individuals at 
different developmental/lineage/experimental stages. Here, we focus 
solely on barcode-based sample multiplexing. 

While barcoded-based multiplexing is extremely useful, it introduces 
artifacts due to cross- contamination in library construction and 

sequencing errors, giving rise to the potential that cells are not labelled 
only by one barcode but varying degrees of other barcodes [15,16,18]. 
In order to assign cells to each individual sample, demultiplexing ap
proaches are aimed to classify cells into negatives (not true cells), sin
glets (cells from one sample), and multiplets (cells from two or more 
samples). Accurate demultiplexing is to recall as many singlets as 
possible and at the same time not to misrecognize negatives and mul
tiplets as singlets. After cells are hash tagged with barcoded oligos and 
then pooled and processed for single-cell RNA sequencing, reads are 
aligned to generate gene-by-cell and HTO-by-cell count matrices. The 
next step is demultiplexing based on the HTO count matrix, which is 
critical for the downstream cell type identification and characterization. 
Misrecognition of negatives and multiplets as singlets will result in false 
cell types and misleading characterization. 

Several demultiplexing approaches have been developed (Table 1). 
HTODemux uses k-medoids clustering to find negative clusters and then 
determines thresholds for classifying cells as positives or negatives by 
fitting a negative binomial distribution to the negative clusters [19]. 
MULTIseqDemux determines cutoffs based on Gaussian kernel density to 
classify cells [15,16]. hashedDrops identifies singlets and doublets by 
the log-fold changes between the most abundant HTO, the second most 
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abundant HTO, and ambient contamination[12]. Bimodal Flexible 
Fitting (BFF), including BFF_raw and BFF_cluster, first determines 
thresholds based on a simple assumption that count distribution is 
bimodal. Then BFF_raw and BFF_cluster use determined thresholds to 
identify negatives, singlets and multiplets [3]. Instead of determining 
thresholds, GMM-Demux assumes HTO counts come from two separate 
sources, background and the real sample. GMM-Demux then fits the 
HTO counts of each sample into a Gaussian mixture model and computes 
the posterior probability of being singlets or multiplets [26]. Demuxmix 
uses two-component mixture models like GMM-Demux. Different from 
GMM-Demux modeling centered log ratio (CLR)-transformed counts by 
Gaussian distribution, demuxmix models raw HTO counts by negative 
binomial distribution [11] (Table 1). Overcoming the limitations of 
threshold-based approaches, GMM-Demux and Demuxmix achieved 
better performance in identifying singlets and removing multiplets [11, 
26,8]. 

Here, we present scDemultiplex, which models HTO counts of each 
sample with beta-binomial distribution and calculates the probability of 
one cell being from the sample. Additionally, scDemultiplex uses an 
iterative strategy to further refine the model and the classifying result 
(Table 1). Compared to GMM-Demux using Gaussian mixture distribu
tion, negative-binomial distribution in demuxmix and beta-binomial 
distribution fit the count nature of the HTO data better. Compared to 
MULTIseqDemux determining HTO-specific thresholds by an iterative 
strategy [15,16], scDemultiplex fits HTO counts (specific and 
non-specific) with beta-binomial distributions (Table 1). Therefore, 
sample classification in scDemultiplex is determined not only by 
HTO-specific but also HTO-nonspecific counts. We benchmarked scDe
multiplex against seven existing demultiplexing approaches, hashed
Drops, HTODemux, GMM-Demux, MULTIseqDemux, BFF_raw, 
BFF_cluster, and demuxmix using five real HTO datasets. The evaluation 
demonstrated that scDemultiplex achieved high performance in both 
high-quality and low-quality data. The iterative strategy makes it easy to 
combine scDemultiplex with other approaches, which obtained higher 
performance than using those approaches alone. 

2. Materials and methods 

2.1. scDemultiplex 

Suppose the data have m cells pooled from n samples, i.e, labeled 
with n HTOs. The HTO count matrix xij contains the count of the HTO i in 
the cell j, where i = 1, 2, …, n and j = 1, 2,., m. scDemultiplex is designed 
to classify the cell j as a negative, a singlet, or a multiplet based on the 
HTO count distributions of the cell, denoted as Xj= (x1j ,x2j, …, xnj ). 

2.2. Parameter estimation of beta-binomial distribution 

scDemultiplex models HTO counts of each sample with beta- 
binomial distribution. That is, the corresponding HTO counts Xj from 
the sample i follow beta-binomial distribution with parameter BetaBin 
(nj, αi, βi). where nj is the total counts of the cell j, nj =

∑n
i=1xij. αi and βi 

are estimated from the data. 
To estimate the parameters αi and βi for the sample i, scDemultiplex 

uses Gaussian mixture model to perform an initial classifying. First, HTO 
raw count xij is normalized by centered log-ratio (CLR) transformation, 
where the normalized HTO values yij is the natural log-transformed of 
the counts divided by the geometric mean of a specified HTO [19]: 

yij = log
xij

(∏m
j=1xij

)1
m 

For a given sample i, the normalized HTO values of the cell j, Yj= ( y1j 
,y2j, …, ynj ) follow a mixture of two Gaussian distributions, one is a 
“negative” distribution coming from background and the other is a 
“positive” distribution deriving from the sample i. Let Zj[k] indicates that 
the cell j comes from the component k, Zj[k] ϵ {0, 1}, k = 1, 2. Zj[1] = 1 if 
the cell from the component 1, otherwise 0; and Zj[2]= 1 if the cell is 
from the component 2, otherwise 0. Let πk be the mixture proportions, 
the probability density function (pdf) for the mixture model is 

fYj

(
yj
)
=

∑2

k=1
πkfYj |Zj[k] (yj|Zj[k]), 0 < yj < ∞  

where the k-th component follows N(μik, σik). To assist in identification 
of “negative” and “positive” cells, scDemultiplex applied the Expect
ation–maximization (EM) algorithm to estimate the parameters in the 
Gaussian mixture model. The fitted mixed model is then used to calcu
late the threshold Ti that discriminate the cell j into two groups [22]. 
Given a cell j, if the normalized HTO value yij greater than the threshold 
Ti, it is a “positive” cell; otherwise, it is a “negative” cell. 

scDemultiplex models each sample with Gaussian mixture model and 
assign cells to every sample. If the cell j is identified as negative in all 

samples, that is, 
∑n

i=1I
(

yij > Ti

)
= 0, this cell is negative; if the cell j is 

recognized as positive in only one sample, e.g., ykj greater than Tk, that 

is, 
∑n

i=1I
(

yij > Ti

)
= 1, the cell belongs to the sample k (singlet); 

otherwise the cell j is a multiplet, 
∑n

i=1I
(

yij > Ti

)
≥ 2. The formula is 

laid out below: 

∑n
i=1I

(
yij > Ti

)
=

⎧
⎨

⎩

0, j ∈ negatives
1, j ∈ singlets

2+, j ∈ multiplets 

Table 1 
Summary of eight demultiplexing methods.  

Method Models Description 

HTODemux 
[19]  

• k-medoid clustering  
• Negative binomial 

distribution  

• Identifies initial clusters by an k-medoids clustering and then fits a negative binomial distribution based on negative 
cells for further classification. 

MULTIseqDemux[15, 
16]  

• Gaussian kernel density  • Determines the threshold based on Gaussian kernel density and the maximization of the number of singlets. 

hashedDrops[12]  • Log-fold change  • classifies based on the two log-fold changes between the most abundant HTO, the second most abundant HTO, and the 
ambient contamination. 

BFF_raw 
[3]  

• Gaussian Kernel density  • Determine the threshold by fitting bimodal distribution based on Gaussian kernel density estimation 

BFF_cluster 
[3]  

• Gaussian Kernel density  
• Bimodal quantile 

normalization  

• BFF_raw followed by bimodal quantile normalization. Then determines the threshold based on the distribution of 
highest and second-highest counts. 

GMM-Demux 
[26]  

• Gaussian mixture model  • Computes the posterior probability of being singlets or multiplets based on Gaussian mixture model 

Demuxmix 
[11]  

• k-means clustering  
• Negative binomial mixture 

model  

• Determines initial clusters by k-means clustering and then calculates the posterior probability for positives and 
negatives by fitting a negative binomial mixture model. 

scDemultiplex  • Gaussian mixture model  
• Beta-Binomial distribution  

• Determines initial clusters based on Gaussian mixture model and then calculates the probability for positives by fitting 
Beta-Binomial distribution iteratively.  
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where I() is an indicator function. The cell assignment based on 
Gaussian mixture model is used to estimate the parameters αi and βi in 
the BetaBin(nj, αi, βi) for the sample i. scDemultiplex first fits HTO raw 
counts with Dirichlet-multinomial distribution DirMult(nj, αi’). Condi
tion on the total HTO counts, the raw count for each HTO can be 
modeled with Dirichlet-multinomial distribution, which is justified by 
the study [12]. The parameters αi’= (αi1’, αi2’, …, αin’) are estimated by 
the method described in Lun et al. [12] using R dirmult package [23]. To 
simplify the calculation, scDemultiplex replaces Dirichlet-multinomial 
distribution with beta-binomial distribution. To fit beta-binomial dis
tribution, scDemultiplex aggregates the n-dimensional vector Xj= (x1j , 
x2j, …, xnj ) into a two-dimensional vector with counts coming from the 
sample i (xij) and sum of counts from other samples 

∑n
l=1,l∕=ixlj. scDe

multiplex estimates αi by taking α̂i = α̂ii′ and β̂ i =
∑n

l=1,l∕=i α̂il′ . 

2.3. Demultiplexing 

The probability mass function (pmf) of beta-binomial distribution of 
a given sample i for the cell j follows 

f (x) =
(

nj
x

)
Γ(αi + βi)

Γ(αi)Γ(βi)

Γ
(
xij + αi

)
Γ(nj − x + βi)

Γ(nj + αi + βi)
, x = 0, 1, 2,…, nj  

where nj is the total counts of the cell j, nj =
∑n

i=1xij. The probability of 
the cell j coming from a given sample i, denoted by Pij, is estimated to be 
the tail cumulative probability p(x > =xij). The probability is then 
adjusted by controlling the false discovery rate (FDR) using the 
Benjamini-Hochberg (BH) method [2]. A specified FDR threshold is set 
at 0.1%. The cell j is identified as negative if the cell is not assigned to 
any samples, singlet if the cell is only assigned to one sample, multiplets 

Fig. 1. UMAP plots of the batch1_c1 dataset labeled with demultiplexing results from scDemultiplex, HTODemux, MULTIseqDemux, GMM-Demux, BFF_raw, 
BFF_cluster, demuxmix, and hashedDrops. 
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if others. 

∑n

i=1
I
(
Pij > 0.001

)
=

⎧
⎨

⎩

0, j ∈ negatives
1, j ∈ singlets

2+, j ∈ multiplets  

2.4. Iterative refinement of beta-binomial models and reclassifying 

scDemultiplex repeats beta-binomial parameter estimations and the 
probability calculations n times (default: n = 10) to further refine the 
model and the classification. Specifically, the classifying result from the 
previous iteration is used to estimate parameters α and β for every 
sample and then the estimated parameters are utilized to calculate the 
probabilities of each cell belonging to each sample and classify each cell 
to negatives, singlets or multiplets in the next iteration. 

The procedure will terminate earlier if there are no reassignment or 

multiple types of singlets reclassified to another type of singlet (default: 
>= 3) during one iteration. Multiple reclassifications suggest something 
might go awry in the remodeling. This stopping criterion not only in
creases the speed in high-quality data, but also helps prevent wrong 
models in poor-quality data, where different types of singlets, negatives, 
and multiplets are indistinct from each other. 

2.5. Real HTO datasets 

We used five real HTO datasets to evaluate the performance of 
scDemultiplex, named as batch1, batch2, batch3, Barnyard, and PBMC8. 

The three batches were utilized in a recent study benchmarking 
single-cell demultiplexing methods [8]. They contain 24 genetically 
distinct samples of bronchoalveolar lavage fluid. Each batch contains 
two captures pooled from 8 samples. Each sample was tagged with 
different Totalseq-A antibody-derived tag (ADT). Batch1 consists of 11, 

Fig. 2. UMAP plots of the batch1_c1 dataset labeled with singlets, negatives, and multiplets classified by scDemultiplex, HTODemux, MULTIseqDemux, GMM- 
Demux, BFF_raw, BFF_cluster, demuxmix, and hashedDrops. 
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900 and 12,923 cells, batch2 consists of 24,905 and 25,763 cells, and 
batch 3 contains 32,886 and 31,956 cells, respectively. All the datasets 
have been demultiplexed using genetic variants from the RNA by Vireo 
[8,9], which are used as “ground truth” to evaluate the accuracy of the 
HTO demultiplexing methods. As indicated in the study [8], cells in the 
batch1 are well labeled (high-quality), while those in the batch2 and 
batch3 are hash-tagged poorly (low-quality), highlighting demultiplex
ing in these two batches is more challenging. 

The Barnyard dataset was downloaded from a previous study [15, 
16]. Briefly, by combining lipid- and cholesterol-modified oligonucleo
tides (LMOs, CMOs) with three separate cell lines, including Human 
Embryonic Kidney (HEK) cells, Jurkat T cells, and Mouse Embryonic 
Fibroblast (MEF) cells, twelve samples consisting of 5877 cells were 
multiplexed and sequenced. The ‘ground truth’ was obtained from the 
original study [15,16], which was generated by marker gene expression 
analysis. 

The PBMC8 dataset was downloaded from a previous study [19]. The 
dataset comprised 15,113 cells extracted from PBMC in eight different 
human donors. The “ground truth” was obtained by genetic-based 
demultiplexing using Vireo [9]. 

2.6. Performance evaluation 

We first evaluated the performance of demultiplexing by visual in
spection of low dimensional embeddings of HTO profiles. The low 
dimensional embeddings was generated by the Seurat RunUMAP func
tion using HTO counts as input [4]. In the low-dimensional embeddings, 
we expect to find cells from the same sample form a distinct cluster 
(singlet-cluster), while negative cells generally spread and/or loosely 
connect to clusters from singlets, and multiplets locate at the edge of 
singlet-clusters or form a separate cluster between two singlet-clusters. 
The visual distribution is useful but subjective and lack a quantitative 
measure for robust comparisons. 

Additionally, we used two quantitative metrics to evaluate the per
formance, the adjusted rand index (ARI) and F-score based on the 
“ground truth”. ARI measures the agreement between the HTO classi
fication and the “ground truth”. The higher ARI value means the better 
agreement, indicating more accuracy of HTO classification. ARI was 
calculated by the mclust package using adjustedRandIndex function 
[17]. The F-score is the harmonic mean of precision and recall, defined 
as TP/(TP+1/2(FP+FN))[8]. The higher F-score suggests better 
performance. 

2.6.1. Implementation and Code availability 
We implemented our algorithm in an R package scDemultiplex, 

which is publicly available at Github (https://github.com/shengqh/ 
scDemultiplex). The code for analyzing the three batches, Barnyard, and 

PBMC8 datasets by the eight demultiplexing approaches is also provided 
at the Github repository (https://github.com/shengqh/scDemultiplex_
analysis). A web server running scDemultiplex is available at https:// 
bioinfo.vanderbilt.edu/scdemult/. 

3. Results 

3.1. Application on the batch1, Barnyard, and PBMC8 datasets with 
high-quality 

We applied scDemultiplex and seven existing demultiplexing ap
proaches on the batch1 datasets with two captures (batch1_c1 and 
batch1_c2). We obtained similar results for the two captures within the 
batch1. The UMAP plots labeled with demultiplexing results from each 
method showed similar patterns (Fig. 1 and Supplementary Fig. S1). 
There were eight distinct and dense clusters representing eight samples, 
which were identified as singlets by every method (singlet-cluster). The 
distinct singlet clusters indicates high-quality data [8]. Negatives spread 
and/or loosely connected to singlet clusters, and multiplets located at 
the edge of singlet-clusters or formed a separate cluster between two 
singlet-clusters. 

We further investigated negatives and multiplets identified by each 
method (Fig. 2 and Supplementary Fig. S2). The visual inspection found 
most methods obtained reasonable results, which had negatives 
spreading and loosely connecting to singlet-clusters, and multiplets 
locating at the edge of singlet-clusters. MULTIseqDemux and BFF_raw, 
however, misrecognized many singlets as negatives. MULTIseqDemux 
and BFF_raw had the greatest number of negatives identified (Supple
mentary Tables S1-S2). The negatives identified by MULTIseqDemux 
and BFF_raw extended to the center of singlet-clusters (Fig. 2 and Sup
plementary Fig. S2). 

Table 2 listed the ARI and F-score based on the genetic “ground 
truth”. BFF_cluster achieved the highest ARI and F-score in both two 
captures, followed by scDemultiplex. MULTIseqDemux, in contrast, had 
the lowest ARI and F-score due to its misrecognizing many singlets as 
negatives, especially for the BAL_02 and BAL_08 samples (Supplemen
tary Tables S3 and S4). Other methods, such as HTODemux, GMM_De
mux, demuxmix, and hashedDrops performed comparably well in the 
batch1. 

In addition, we applied scDemultiplex and seven existing demulti
plexing approaches on the Barnyard and the PBMC8 datasets. Both 
datasets showed distinct singlet clusters, indicating their high quality 
(Supplementary Figs. S3-S6). Similar to the results from the batch1, 
most methods performed well when data quality is high. BFF_cluster 
achieved the highest ARI and F-score, followed by scDemultiplex in the 
Barnyard dataset (Supplementary Tables S5-S7), while scDemultiplex 
achieved the highest ARI and F-score, followed by BFF_raw and 

Table 2 
Adjusted rand index and F-score of eight demultiplex methods in the batch1 datasets.  

 ARI F-score 
  batch1_c1 batch1_c2 batch1_c1 batch1_c2 
scDemultiplex 0.806 0.76 0.934 0.922 
HTODemux 0.722 0.564 0.91 0.874 
MULTIseqDemux 0.488 0.468 0.805 0.792 
GMM_Demux 0.731 0.69 0.911 0.899 
BFF_raw 0.677 0.683 0.867 0.885 
BFF_cluster 0.857 0.806 0.944 0.926 
demuxmix 0.715 0.678 0.912 0.902 
hashedDrops 0.745 0.71 0.912 0.903 

Note: The highest ARI and F-score among the eight approaches is highlighted in red while the second highest ARI and F-score is highlighted in blue. 
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demuxmix in the PBMC8 dataset (Supplementary Tables S8-S10). In 
contrast, hashedDrops and MULTIseqDemux misrecognized many sin
glets as negatives, and HTODemux misclassified many singlets as mul
tiplets in the Barnyard dataset (Supplementary Fig. S4), resulting in poor 
performance with low ARI and F-scores (Supplementary Tables S5-S7). 
In the PBMC8 dataset, MULTIseqDemux also had the lowest ARI and F- 
score due to its misrecognizing many singlets as negatives (Supple
mentary Tables S8-S10). 

3.2. Application on the batch2 datasets with low-quality 

We applied the eight demultiplexing approaches on the batch2 
datasets with two captures (batch2_c1 and batch2_c2). We obtained 
similar results for the two captures within the batch2. The UMAP plots 
labeled with demultiplexing results from each method showed 

ambiguous patterns (Fig. 3 and Supplementary Fig. S7). Although most 
methods identified eight clusters, they were not that distinct from each 
other compared to the batch1. There was no clear separation between 
singlet-clusters, negatives, or multiplets, suggesting poor quality of the 
batch2. Notably, BFF_raw and BFF_cluster only identified five HTO 
clusters in the batch2_c1 and six in the batch2_c2. BFF_raw failed to 
recognize BAL-10 and BAL-14, while BFF_cluster missed BAL-15 and 
BAL-16 in both two captures (Supplementary Tables S11 and S12). 

We further investigated negatives and multiplets identified by each 
method (Fig. 4 and Supplementary Fig. S8). scDemultiplex obtained the 
most reasonable results, where most negatives either spread in the 
middle or at the edge of singlet-clusters, and most multiplets located 
between singlet-clusters or at the edge of singlet-clusters. In comparison, 
MULTIseqDemux, hashedDrops, and BFF_raw misclassified many sin
glets as negatives, while HTODemux, GMM_Demux, BFF_cluster, and 

Fig. 3. UMAP plots of the batch2_c1 dataset labeled with demultiplexing results from scDemultiplex, HTODemux, MULTIseqDemux, GMM-Demux, BFF_raw, 
BFF_cluster, demuxmix and hashedDrops. 
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Fig. 4. UMAP plots of the batch2_c1 dataset labeled with singlets, negatives, and multiplets classified by scDemultiplex, HTODemux, MULTIseqDemux, GMM- 
Demux, BFF_raw, BFF_cluster, demuxmix and hashedDrops. 
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demuxmix classified numerous cells as multiplets (Supplementary 
Tables S11 and S12). Those misclassified negatives and multiplets 
extended to the center of singlet-clusters or even dominated the single- 
cluster. 

Consistent with the UMAP visualization, scDemultiplex achieved the 
highest/second highest ARI and highest F-score (Table 3) (ARI=0.671 
and 0.633; F_score=0.842 and 0.836), demonstrating its high perfor
mance in the low-quality data (Supplementary Table S13 and S14). 
HTODemux, GMM_Demux, and demuxmix showed decent performance. 
Notably, compared to great performance in the high-quality batch1 
datasets, BFF_cluster had the lowest F-score in the batch2, especially for 
the BAL-15 and BAL-16 samples (Supplementary Table S13 and S14). 
This result is consistent with a recent benchmark study [8], reporting 
that methods that assume a bimodal count distribution perform poorly 
on low-quality data. 

3.3. Application on the batch3 datasets with low-quality 

We applied the eight demultiplexing approaches on the batch3 
datasets with two captures (batch3_c1 and batch3_c2). We obtained 
similar results for the two captures within the batch3. Similar to the 
results in the batch2, the UMAP plots labeled with demultiplexing re
sults from each method showed ambiguous patterns (Fig. 5 and Sup
plementary Fig. S9). Although most methods identified eight clusters, 
they were not that distinct from each other. Different singlet-clusters 
were fused into each other, suggesting even worse quality of the 
batch3 than the batch2. Notably, BFF_raw and BFF_cluster failed to 
recognize several HTO clusters in both two captures (Supplementary 
Tables S15 and S16). 

We further investigated negatives and multiplets identified by each 
method (Fig. 6 and Supplementary Fig. S10). scDemultiplex obtained 
the most reasonable results, where most negatives either spread in the 
middle or at the edge of singlet-clusters, and most multiplets located 
between singlet-clusters or at the edge of singlet-clusters. In comparison, 
MULTIseqDemux, hashedDrops, and BFF_raw misclassified many sin
glets as negatives, while HTODemux, GMM_Demux, BFF_cluster, and 
demuxmix classified numerous cells as multiplets (Supplementary 
Tables S15 and S16). Those misclassified negatives and multiplets 
extended to the center of singlet-clusters or even dominated singlet- 
clusters. 

Consistently, scDemultiplex achieved the highest ARI and F-score 
(Table 4) (ARI=0.483 and 0.535; F-score=0.767 and 0.791), demon
strating its high performance in low-quality data. Similar to the results 
in the batch2, BFF_cluster performed poorly in the low-quality data, 
while HTODemux, GMM_Demux, and demuxmix had acceptable per
formance (Table 4 and Supplementary Tables 17 and 18). 

In summary, scDemultiplex performs consistently well in both high- 

quality and low-quality data. In the high-quality data (batch1, Barnyard, 
and PBMC8), most approaches performed well and scDemultiplex 
ranked either the best or the second-best. In the low-quality data (batch2 
and batch3), performance of demultiplexing approaches differed a lot. 
Notably, scDemultiplex achieved the highest performance when data 
quality was poor, demonstrating its power and consistency. 

3.4. Integration with other approaches 

scDemultiplex uses a two-step strategy, where the first step is to find 
a starting point and the second step is to fit the beta-binomial model 
based on the starting point and to refine the model. The two-step 
strategy makes it very easy to combine other approaches with scDe
multiplex by using their results as the starting point. 

We found combining approaches with scDemultiplex achieved better 
performance than using those approaches alone. In all the five datasets, 
the integrative approaches obtained higher ARI (Table 5) and F-scores 
(Table 6) except BFF_cluster in the batch1, GMM_Demux in the 
batch2_c2. We did not combine BFF_cluster and BFF_raw with scDe
multiplex in the batch2 and batch3 since they failed to recognize several 
HTO clusters completely. The improved performance demonstrated that 
scDemultiplex was able to refine the result from each individual 
approach, indicating beta-binomial distribution is helpful to model raw 
HTO counts accurately. 

4. Discussion 

The experimental design of pooling single cells from multiple sam
ples together with computational demultiplexing is not only cost- 
effective but also beneficial to the downstream analysis with mini
mized batch effects. Here, we present scDemultiplex, a novel barcoded- 
based demultiplexing method. Compared to most methods using 
Gaussian distribution to model log-transformed count, scDemultiplex 
directly models raw count by beta-binomial distribution, which fits the 
nature of the data better. Sample classification based on beta-binomial 
distribution calculates the probability of cells being from one sample 
not only by HTO-specific but also HTO-nonspecific counts, which is 
better than using HTO-specific counts alone. In addition, scDemultiplex 
uses an iterative strategy to further refine the model and the classifica
tion. We evaluated the performance of scDemultiplex by visual inspec
tion, ARI, and F-score based on the “ground truth” obtained from other 
studies. scDemultiplex not only had great performance in high-quality 
data, but also performed the best in low-quality data. Since low- 
quality data is critical to distinguish performance of demultiplexing 
methods, the best achievement in those challenging datasets demon
strated the power and ability of scDemultiplex. 

scDemultiplex uses CLR to normalize the HTO counts. The selection 

Table 3 
Adjusted rand index and F-score of eight demultiplex methods in the batch2 datasets.  

 ARI F-score 
  batch2_c1 batch2_c2 batch2_c1 batch2_c2 
scDemultiplex 0.671 0.633 0.842 0.836 
HTODemux 0.519 0.437 0.799 0.787 
MULTIseqDemux 0.367 0.312 0.576 0.591 
GMM_Demux 0.449 0.445 0.759 0.78 
BFF_raw 0.477 0.487 0.504 0.568 
BFF_cluster 0.633 0.638 0.121 0.116 
demuxmix 0.553 0.52 0.833 0.832 
hashedDrops 0.427 0.408 0.607 0.619 

Note: The highest ARI and F-score among the eight approaches is highlighted in red while the second highest ARI and F-score is highlighted in blue. 
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of different normalization methods would affect demultiplexing per
formance. For example, we found the log-transformed library size 
normalization worsened the performance of scDemultiplex in most cases 
(Supplementary Table S19), which is possibly because its assumption 
that each cell has the same number of total HTO counts might not hold 
true. 

scDemultiplex uses an iterative strategy to refine the model. The 
maximum number of iterations is a tunable parameter to balance be
tween the performance and speed (default=10). The accuracy over the 
iteration showed a substantial improvement in the first several iterations 
and slight increase or no change after that in both high-quality and low- 
quality datasets (Supplementary Fig. S11-S18), which suggested the 
default 10 times is appropriate. The procedure even stopped earlier since 
there were no reassignments or multiple misclassifications during one 

iteration in all the evaluation datasets. 
Generally demultiplexing approaches performed comparably on 

good quality data with a clear bimodal distribution [3]. When the data 
quality is low and bimodal distribution is ambiguous, demultiplexing 
approaches have difficulty in determine the thresholds for classifying 
negatives, singlets, and multiplets and fitting the model. For example, 
although BFF_cluster achieved the best performance in the high-quality 
data, it even misrecognized several groups of singlets as multiplets in the 
low-quality data due to the failure to determine the thresholds when 
counts did not follow bimodal distribution. With the two-step strategy, 
scDemultiplex allows users to choose a start point manually, which is 
very useful for analyzing poor-quality data. Users can start with a 
stringent cutoff and then fit and refine the model in the second step. 
Additionally, users can use demultiplexing results of other methods as 

Fig. 5. UMAP plots of the batch3_c1 dataset labeled with demultiplexing results from scDemultiplex, HTODemux, MULTIseqDemux, GMM-Demux, BFF_raw, 
BFF_cluster, demuxmix and hashedDrops. 
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Fig. 6. UMAP plots of the batch3_c1 dataset labeled with singlets, negatives, and multiplets classified by scDemultiplex, HTODemux, MULTIseqDemux, GMM- 
Demux, BFF_raw, BFF_cluster, demuxmix and hashedDrops. 

Table 4 
Adjusted rand index and F-score of eight demultiplex methods in the batch3 datasets.  

ARI F-score
batch3_c1 batch3_c2 batch3_c1 batch3_c2

scDemultiplex 0.483 0.535 0.767 0.791
HTODemux 0.397 0.412 0.73 0.753
MULTIseqDemux 0.246 0.228 0.604 0.605
GMM_Demux 0.263 0.476 0.644 0.765
BFF_raw 0.249 0.315 0.427 0.541
BFF_cluster 0.338 0.479 0.374 0.011
demuxmix 0.426 0.46 0.761 0.788
hashedDrops 0.221 0.265 0.55 0.594

Note: The highest ARI and F-score among the eight approaches is highlighted in red while the second highest ARI and F-score is highlighted in blue. 
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the starting point and then followed by scDemultiplex for refinement, 
which has been demonstrated to gain improved performance. 

Besides barcoded-based demultiplexing, a number of SNP-based 
tools have been developed to separate samples with different genetic 
signatures, such as Demuxlet [10], souporcell [7], Vireo [9], and scSplit 
[27]. In this study, we used SNP-based demultiplexing as the ground 
truth, which would not be “gold standard” since SNP-based tools have 
their own limitations, such as high recall and low precision and reduced 
performance in high proportions of ambient RNA [24]. Those methods 
would not work when pooled samples have the same genetic back
ground, but they are very useful in the cross-donor or cross-species 
design. If samples from different genetic background are barcoded and 
pooled together, an approach to combine scDemultiplex with other 
SNP-based tools holds great promise to improve the demultiplexing 
accuracy. 
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