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Background. The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine 
antigens affect the magnitude and avidity of the polyclonal response.

Methods. We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and 
the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid 
immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave.

Results. We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to 
infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, 
but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT 
and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the 
antibody response and avidity correlated with neutralizing activity against WT virus.

Conclusions. The magnitude and quality of the antibody response increased with the number of antigenic exposures, including 
breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number 
of prior exposures.
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Infections with the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), responsible for the coronavirus disease 
2019, lead to a rapid induction of long-lasting antibodies, albeit 
at variable levels [1]. A large proportion of the antibody re-
sponse elicited during SARS-CoV-2 infections is directed to 

the spike surface glycoprotein, which mediates viral entry 
into the target cells and is expressed on the surface of infected 
cells [2]. Among the 3 major domains of the spike protein, 
which include the N-terminal domain, the S2 domain and 
the receptor-binding domain (RBD), the RBD represents the 
main target of the neutralizing antibody response because of 
the domain’s direct interaction with the cellular receptor 
angiotensin-converting enzyme 2 [3]. Importantly, levels of 
binding antibodies correlate well with virus neutralization ti-
ters [1, 4], and induction of neutralizing antibodies was initially 
reported to correlate with the severity of infection [4].

The introduction of vaccination (including booster doses), 
the emergence of diverse variants of interest and/or concern 
in the pre-Omicron era [5], and a large number of break-
through infections during the Omicron era have increased 
the complexity of individual exposure histories. It is expected 
that the magnitude as well as the affinity of antibodies will in-
crease with the number of exposures. Affinity maturation of 
neutralizing antibodies can alter their capacity to control 
SARS-CoV-2 variants and expand the breadth of neutralization 
to other sarbecoviruses [6]. For polyclonal antibodies, 
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assessment of antibody avidity provides a measure of the over-
all strength of bivalent or multivalent interactions between an-
tibodies and their epitopes [7]. Antibody avidity is influenced 
by the affinity of the individual antibody clones and by the va-
lency of the specific antibody isotype [8]. Avidity can be as-
sessed by an enzyme-linked immunosorbent assay (ELISA) 
incorporating a chaotropic agent after incubation of polyclonal 
serum samples with the antigen [9, 10]. Alternatively, the dis-
sociation rate (constant of dissociation [Kdis]) of polyclonal se-
rum measured using biolayer interferometry (BLI) or surface 
plasmon resonance can be used as a proxy for polyclonal avid-
ity [11, 12].

To investigate how different exposures to SARS-CoV-2 in-
fection or vaccination influence the polyclonal immune re-
sponse, we characterized the antibody responses and avidity 
of different antibody isotypes—immunoglobulin (Ig) G, IgM, 
and IgA—against the recombinant spike, RBD, and nucleopro-
tein (NP) of SARS-CoV-2. Given that avidity often correlates 
well with viral neutralization [13], we assessed the correlation 
between binding antibodies, neutralizing antibodies, and poly-
clonal antibody avidity. The use of samples from 3 distinct 
groups of study participants (eg, convalescent individuals, those 
who received 2 vaccine doses and a booster vaccine dose, and 
those with breakthrough infection) allowed us to identify specif-
ic signatures associated with the type of initial exposure or pre-
existing immunity at different time points after infection or 
vaccination. Moreover, we identified specific antibody signa-
tures in individuals who had experienced breakthrough infec-
tions with the antigenically distinct Omicron variant.

METHODS

Study Cohort and Serum Samples

Forty convalescents’ serum samples were obtained as residual, de-
identified samples from the chemistry laboratories at the 
Department of Pathology at the Icahn School of Medicine at 
Mount Sinai in the metropolitan area of New York during the first 
wave of SARS-CoV-2 infections. Individuals were tested for 
SARS-CoV-2 antibodies using a Mount Sinai Health System clin-
ical pathology laboratory assay certified by the Clinical Laboratory 
Improvement Amendments. Samples with variable levels (1:80, 
1:160, 1:320, 1:960, or ≥1:2880) were selected for this study. The 
“vaccination” group comprised 40 serum samples, including 20 
from participants who received 2 doses of the BNT162b2 vaccine 
and 20 from those receiving 3 doses. “Breakthrough infection” 
samples were collected from 25 individuals with Omicron 
(BA.1) breakthrough infections after vaccination. No comorbidi-
ties were reported by the participants.

Vaccination and breakthrough infection serum samples 
were obtained from the observational PARIS (Protection 
Associated with Rapid Immunity to SARS-CoV-2) study (ap-
proved by the Mount Sinai Hospital Institutional Review 

Board; IRB20-03374). All PARIS study participants signed 
written consent forms before sample and data collection. 
Detailed demographic characteristics and vaccination informa-
tion for the individuals from the different groups are shown in 
Supplementary Tables 1 and 2.

Cells and Viruses

African green monkey Vero. E6 cells expressing transmem-
brane protease serine 2 were cultured at 37°C with 5% carbon 
dioxide in Dulbecco’s modified Eagle medium (Thermo 
Fisher Scientific) supplemented with 10% fetal bovine serum, 
1× non-essential amino acids, 100 U/mL penicillin, 100 μg/ 
mL streptomycin, 3 μg/mL puromycin (InvivoGen) and 
100 µg/mL Normocin (InvivoGen). The SARS-CoV-2 isolate 
USA-WA1/2020 was used as the wild-type reference (BEI 
Resources; NR-52281).

Recombinant Proteins

Recombinant soluble SARS-CoV-2 proteins were expressed us-
ing a mammalian cell protein expression system, as described 
elsewhere [14] (details in Supplementary Methods).

ELISAs and Other Assays

SARS-CoV-2 antibody titers were measured with a research- 
grade in-house ELISA using recombinant RBD, spike, and NP 
antigens from the original Wuhan-Hu-1 SARS-CoV-2 isolate 
(wild type) and Omicron (BA.1) SARS-CoV-2 strains, according 
to manufacturer’s instructions and as described elsewhere [15, 
16]. The binding of IgG, IgM, and IgA antibody isotypes was as-
sessed. Antibody titers in serum samples from convalescent indi-
viduals were measured using another ELISA, the commercial 
COVID-SeroKlir Kantaro Semi-Quantitative SARS-CoV-2 IgG 
Antibody Kit (Kantaro Biosciences), according to the manufac-
turer’s instructions and as described elsewhere [17]

Serum samples were screened for neutralizing antibodies 
against ancestral SARS-CoV-2 (USA-WA1/2020), using our 
standard microneutralization assay, as described elsewhere 
[15, 18]. Finally, the binding avidity of polyclonal serum sam-
ples was measured using BLI performed with an Octet Red96 
instrument (ForteBio), as described elsewhere [12]. For all as-
says, see the Supplementary Methods for details.

Statistical Analysis

A Pearson correlation coefficient was used to assess correla-
tions between binding area under the curve (AUC), avidity in-
dex (AI), neutralization titers, and Kdis. We used a 
Mann-Whitney U test to compare differences in binding 
AUC and AI between different subgroups of the “convalescent” 
and vaccination groups,. For the breakthrough infection group, 
we performed statistical analyses using a parametric paired t 
test and assuming a normal distribution. In this group, normal-
ity could not be assessed uniformly owing to the small sample 
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size in some groups. Differences were considered statistically 
significant at P < .03 with a 95% confidence interval. 
Statistical analyses were performed using Prism 9 software 
(GraphPad).

RESULTS

Binding, Avidity and Neutralization of Serum Antibodies from 
Convalescent Individuals

Initially, we characterized serum samples from convalescent in-
dividuals (Figure 1). Antibodies induced after SARS-CoV-2 in-
fection typically display low avidity against the spike and 
against internal proteins of the virus [19, 20]. To analyze in de-
tail the antibody levels and avidity induced after infection using 
serum samples from the convalescent group, we stratified sam-
ples based on their initial IgG anti-spike antibody response 
measured before the current study in a Mount Sinai’s Clinical 
Laboratory Improvement Amendments–certified laboratory, 
as described elsewhere [1]. Titers of 1:80 and 1:160 were cate-
gorized as low (+), 1:320 as moderate (++), and 1:960 and 
≥1:2880 as high (+++).

Importantly, IgM and IgA antibody isotypes were correlat-
ed well with IgG titers (Figure 2A) and this was consistent 
with binding assessed using the SeroKlir commercial 
RBD-Spike ELISA from Kantaro Biosciences, as reported 
elsewhere [17] (Figure 2B). However, neutralization titers 
against USA-WA1/2020 SARS-CoV-2, indicated by the in-
hibitory dilution 50% (ID50), were low in most serum samples 
(ID50, <100) and moderate (ID50, 100–200) in those with the 
highest binding titers (Figure 2C). Of note, the IgG antibody 
levels measured with the SeroKlir assay and neutralization ti-
ters showed a good correlation with IgG measured using our 
SARS-CoV-2 spike-binding IgG in-house ELISA (Figure 2A– 
2C) and were moderately correlated with IgM and IgA 
(Supplementary Figure 1).

To study the avidity of antibodies contained in polyclonal se-
rum samples from our study participants, we first used an estab-
lished ELISA that uses urea as chaotropic agent. Urea-treated 
versus nontreated samples were analyzed, and an AI was calcu-
lated as reported elsewhere [21]. IgG, IgM, and IgA avidity was 
evaluated against the spike, the RBD, and the NP from Wuhan-1 
SARS-CoV-2. The AI (calculated as urea-treated sample AUC/ 
nontreated sample AUC × 100) used here ranges from 0–100, 
where 0–30 indicates low avidity, 30–50, intermediate avidity, 
and 50–100, high avidity. Only the AIs of serum samples with 
an AUC >50 (under no urea treatment) were included in the 
analysis owing to a limitation in calculating with high accuracy 
the AIs in samples with low antibody levels, but all antibody ti-
ters are shown in Supplementary Figures 2, 5, and 6. Overall, the 
avidity of the different antibody isotypes—IgG, IgM, and IgA— 
was low against the Wuhan-1 spike, RBD, and NP (Figure 2D
and Supplementary Figure 2).

Correlation of Neutralizing Activity of Infection-Derived Antibodies With 
Binding and Avidity

To assess the association between binding antibodies, neutralizing 
antibodies, and antibody avidity, we assessed the correlation be-
tween virus neutralization, measured by the ID50, and 
spike-specific IgG, measured using our in-house ELISA 
(Figure 3A) or the SeroKlir commercial RBD-spike ELISA 
(Figure 3B). In both cases, we detected a strong correlation between 
binding and neutralizing antibodies (r = 0.8845 and r = 0.9486, re-
spectively; both P < .001). Given the limitation in calculating with 
high accuracy the AI in samples with low antibody levels, we as-
sessed the correlation of IgG avidity—given by the AI—with virus 
neutralization in samples with high antibody titers (+++; 1:960 or 
≥1:2880 titer) (Figure 3C). We found that these individuals had low 
IgG avidity, regardless of the neutralization titer. These results are 
in line with previous reports indicating that people displayed low 
antibody avidity after initial SARS-CoV-2 infection [21].

We then analyzed whether avidity would correlate with neu-
tralization by means of other, perhaps more sensitive methods. 
Biolayer interferometry (BLI) is typically used to assess the af-
finity of monoclonal antibodies, and the dissociation rate has 
been used as surrogate for the avidity of polyclonal serum sam-
ples using BLI [22]. We standardized the conditions for mea-
suring this response in polyclonal serum samples using 
Niquel2+-nitriloacetic acid sensors that capture the recombi-
nant RBD or spike by binding to their hexa-histidine tag. We 
assessed the correlation between antibody dissociation from 
the Wuhan-1 spike—as measured by the constant of dissocia-
tion or Kdis (lower values indicate higher avidity)—and neutral-
ization of USA-WA1/2020 SARS-CoV-2 (Figure 3D).

A modest negative correlation was detected, indicating that anti-
bodies with the highest neutralization titers display higher avidity. 
Likewise, we detected negative correlations between dissociation 
from spike/RBD and neutralization levels and between dissociation 
from spike/RBD and binding IgG to the spike and RBD 
(Supplementary Figure 3A and 3B). A similar pattern was observed 
with BLI sensors preloaded with an anti-IgG, in which antibodies are 
first captured from the serum samples and the recombinant spike is 
added afterward (Supplementary Figure 3C). Overall, these data in-
dicate that, although serum samples from convalescent individuals 
have variable levels of antibodies that correlate well with neutraliza-
tion, the majority of individuals display low antibody avidity, which 
can be evidenced by more sensitive methods, such as BLI.

Diversification of the Antibody Responses to SARS-CoV-2 Is Highly 
Dependent on Infection and Vaccination Histories

Next, we assessed the binding and avidity of antibodies in the vac-
cination and breakthrough infection groups. Overall, serum sam-
ples from study participants with different immune histories 
displayed responses with variable magnitudes but with specific 
signatures. We found low levels of IgM against most antigens 
and low levels of IgA against the spike and RBD antigens 
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(Figure 4A [vaccination group] and 4B [breakthrough infec-
tion group]), while NP levels were undetectable for these iso-
types (data not shown). Moreover, we found that most 
individuals with hybrid immunity showed the highest levels of 
IgA (Figure 4A and 4B ). Interestingly, IgA levels were boosted 
by breakthrough infections in individuals with only 2 vaccine 
doses, and several individuals in this group had high IgM induc-
tion following breakthrough infection, suggestive of potential de 
novo responses to the variant spike antigen (Figure 4B).

Most individuals in the vaccination and breakthrough infection 
groups displayed medium to high IgG levels against the spike and 
RBD of Wuhan-1 SARS-CoV-2 and Omicron BA.1 (assessed only 
in the breakthrough infection group). In the vaccination group, in-
dividuals who had received 3 doses of the BNT162b2 messenger 
RNA (mRNA), vaccine with or without prior SARS-CoV-2 infec-
tion, showed the highest IgG levels (Figure 4A). Interestingly, in 
the breakthrough infection group, double-vaccinated individuals 
without prior infection presented the highest antibody induction 
against all of the Wuhan-1 and Omicron BA.1 antigens (spike and 
RBD) (Figure 4B and Figure 5) after breakthrough infection, while 
double-vaccinated individuals with prior infection had higher an-
tibody induction against Omicron BA.1 spike/RBD compared 
with Wuhan-1 antigens (Figure 5).

We next measured antibodies against the NP from Wuhan-1 
SARS-CoV-2 in serum samples from study participants with or 
without a documented SARS-CoV-2 infection. Overall, and as 
expected, low to undetectable levels of IgM and IgA NP anti-
bodies were seen in individuals who had not been infected pre-
viously with SARS-CoV-2 (Figure 4A and 4B). In the 
vaccination group, anti-NP levels were detected in several indi-
viduals who had had a prior infection (Figure 4A). In those who 
had experienced infection followed by 3 vaccine doses, the IgG 
NP titers were lower than in double-vaccinated individuals, 
likely a function of waning of NP antibodies, since the time 
of infection would have been longer for this group. In the 
breakthrough infection group, the highest IgG reactivity 
against NP was detected after the breakthrough infection in in-
dividuals with prior SARS-CoV-2 infection (Figure 4B), likely 
owing to a recall response since these individuals had already 
seen the NP antigen once.

Diversity of Immunity Acquired Through SARS-CoV-2 Infection or 
Vaccination Affects the Avidity of the Polyclonal Antibody Response

We found that individuals in the vaccination group who had re-
ceived 3 doses of the BNT162b2 mRNA vaccine without prior 
SARS-CoV-2 infection developed the highest IgG and IgA 
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Figure 1. Schematic representation of the groups with different exposure histories used in the study. Viral particles depicted in the left side indicate prior infection (by 
ancestral severe acute respiratory syndrome coronavirus 2 strains); those depicted in the right side, breakthrough infection (by Omicron BA.1). The number and sequence of 
vaccinations are indicated by syringes; the serum collection time points, by blood tubes. The intervals (days) between vaccination or breakthrough infection and sample 
collection are given as mean (range) ± standard deviation. Further details are provided in Supplementary Table 1. Abbreviations: 2× and 3×, 2 or 3 vaccine doses; NA, 
not available.
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avidity against the RBD and spike (Figure 6A). Similarly, in the 
breakthrough infection group, serum samples from individuals 
with 3 vaccine doses without prior infection had the highest 
avidity against the RBD/spike proteins of Wuhan-1 
(Figure 6B) or Omicron BA.1 (Figure 7) after a breakthrough 
infection. In general, most individuals from the breakthrough 
infection group had increased antibody avidity after infection. 
Some individuals from both groups displayed detectable IgG 
levels against NP; however, the avidity of these antibodies 
was very low (Figure 6B). Supplementary Figures 4–6 show 
AUC values for all antigens in the presence or absence of 
urea, in both vaccination and breakthrough infection groups.

Finally, we evaluated the correlation between the AI and viral 
neutralization using serum samples from the breakthrough in-
fection group. We detected a moderate correlation between 

neutralization as measured by inhibitory dilution 50% (ID50) 
and IgG AI against the ancestral spike; however, the correlation 
between virus neutralization and IgA AI against the ancestral 
RBD or the spike was weaker (Supplementary Figure 7). 
Three samples displayed low neutralization titers (ID50, 
<100) but high RBD IgG antibody avidity (AI, >50), which 
suggests the presence—in some individuals—of high-affinity 
nonneutralizing antibodies. Importantly, most of the strongly 
neutralizing samples displayed IgG AIs of >50 against RBD 
and the spike, indicating that these individuals have 
spike-reactive neutralizing antibodies with high avidity. 
Overall, our results indicate that the magnitude and antigen 
specificity of the IgG responses against the spike and the 
RBD induced after SARS-CoV-2 infection—with exception of 
NP antibodies—correlates well with antibody avidity and that 
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Figure 2. Binding, neutralization, and avidity profiles of antibodies from individuals in the “convalescent” group. A, Analysis of different antibody isotypes (immunoglobulin 
[Ig] G, IgM, and IgA) against wild-type (WT) spike measured using our in-house enzyme-linked immunosorbent assay (ELISA; n = 40). Abbreviation: AUC, area under the curve. 
B, IgG levels measured using the SeroKlir commercial ELISA from Kantaro Biosciences (n = 40). Abbreviation: AU, arbitrary units. C, Neutralization titers against USA-WA1/ 
2020 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), expressed as the inhibitory dilution 50% (ID50; n = 40). D, Antibody avidity, expressed as avidity index 
(AI), against the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) (n = 40). In D, samples with AIs <35, indicated by the dotted lines, are considered to 
have low avidity. WT refers to the sequence of the original Wuhan-Hu-1 SARS-CoV-2 isolate. Samples were stratified based on their initial IgG anti-spike antibody response 
measured in a Mount Sinai Clinical Laboratory Improvement Amendments–certified laboratory and categorized as low (+; titer, 1:80 or 1:160), moderate (++; titer, 1:320), or high (++ 
+; titer, 1:960 or ≥1:2880). Each symbol represents a single participant. A Mann-Whitney U test for comparisons among different groups was performed. In A–C, the limit of 
detection is indicated by the horizontal dotted line. *P < .03; **P < .002; ***P < .001. Bars represent geometric means; error bars, geometric standard deviations.

568 • JID 2023:228 (1 September) • Singh et al

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiad116#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiad116#supplementary-data


vaccination increases neutralizing antibodies that display high 
avidity.

DISCUSSION

In the current work, we evaluated the binding and avidity pro-
files of different antibody isotypes in individuals with variable 
histories of preexisting immunity, including some who had 
an Omicron BA.1 infection despite having received 3 mRNA 
vaccine doses. We characterized the antibody responses against 
the RBD, spike, and NP from the ancestral SARS-CoV-2 strain 
and against the RBD and spike from the BA.1 Omicron subli-
neage. Overall, our data agree with previous reports indicating 
that levels of IgM and IgA antibodies are lower than those for 
IgG after infection or vaccination [23, 24].

Notwithstanding, we identified distinct antibody signatures. 
First, individuals in the convalescent group and those with lower 

levels of preexisting immunity, displayed the highest levels of 
IgM, likely owing to a de novo response given by the first en-
counter to SARS-CoV-2 antigens [25]. Second, in both the vac-
cination and breakthrough infection groups, levels of spike- and 
RBD-reactive IgA, mostly against the ancestral virus, were re-
markably higher in individuals exposed to the virus, by a either 
primary or a breakthrough infection. Although data related to 
the boosting effect of IgA antibodies are scarce, a few reports sug-
gest that there is antibody boost during SARS-CoV-2 vaccination 
[26, 27], as has been described for other vaccine antigens [28]. 
Importantly, serum IgA has been shown to appear early during 
a primary infection and displays potent neutralizing activity [24]. 
Hence, the serum IgA detected after breakthrough infections 
might represent a significant arm of immunity to tackle the virus 
and prevent severe disease.

Interestingly, individuals from the breakthrough infection 
group who received 2 doses of an mRNA vaccine without prior 
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Figure 4. Binding profile of antibodies against Wuhan-1 antigens from individuals in the “vaccination” and “breakthrough infection” groups. Immunoglobulin (Ig) G, IgM, 
and IgA antibody levels against wild-type (WT) spike, WT receptor-binding domain (RBD), and WT nucleoprotein (NP) antigens, expressed as the area under the curve (AUC), 
are shown for the vaccination (n = 40) (A) and breakthrough infection (n = 25) (B) groups. The limit of detection is indicated by the horizontal dotted lines. WT refers to the 
sequence of the original Wuhan-Hu-1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate. Analyses were performed using a Mann-Whitney U test for 
comparisons among different groups (A), and a parametric paired t test for comparing prebreakthrough (Pre) and postbreakthrough (Post) infection responses (B). The average 
fold change occurring with breakthrough infection is indicated for each Pre-Post pair, represented by dots. *P < .03; **P < .002; ***P < .001. Each symbol represents a single 
participant; bars, geometric means; and error bars, geometric standard deviations.
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SARS-CoV-2 infections presented the highest induction of IgG 
against the Wuhan-1 and Omicron BA.1 spikes and RBDs after 
breakthrough infection. We hypothesize that a less 
antigen-experienced repertoire of B cells engages conserved 
epitopes between ancestral SARS-CoV-2 strains and Omicron 
variants and is responsible for the majority of the response ob-
served. In addition, a very small fraction of naive B cells would 
be able to engage unique epitopes on the Omicron BA.1 spike. 
However, elucidation of these mechanisms would require the 
study of B cells at the monoclonal level, and the analysis of 
the evolution of these responses by the sequences of the rear-
ranged variable-domain genes [29, 30].

In general, antibody avidity was correlated with the number 
of exposures to SARS-CoV-2 infection or vaccination. In par-
ticular, avidity increased after breakthrough infection for the 
majority of the antigens tested. Interestingly, similar to the 
magnitude of the antibody response, antibody avidity was 

higher after breakthrough infection in individuals without pri-
or infection, and this increased avidity was detected against the 
spike and RBD proteins from both Wuhan-1 and Omicron 
BA.1. Again, this suggests that the affinity maturation of anti-
bodies against broadly conserved epitopes can be shaped by 
the number and nature of the exposures over time.

Similar to other groups [31, 32], we detected a good correla-
tion between binding of different antibody isotypes to the spike 
or the RBD and virus neutralization, with the highest correla-
tion detected for IgG. We found that individuals with high vi-
rus neutralization titers display high IgG avidity; however, few 
individuals with these characteristics were present in the con-
valescent group, comprising SARS-CoV-2 infected individuals 
without prior vaccination. This is in line with incomplete avid-
ity maturation after a primary SARS-CoV-2 infection versus 
vaccination [33]. We detected 3 individuals with high IgG avid-
ity and low IgG neutralization titers (ID50, <100), suggesting 
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Figure 5. Binding profile of antibodies from individuals of the “breakthrough infection” group against Omicron BA.1 antigens. Immunoglobulin (Ig) G, IgM, and IgA antibody 
levels against BA.1 spike and BA.1 receptor-binding domain (RBD) antigens of Omicron BA.1, expressed as area under the curve (AUC) (n = 24). BA.1 refers to the sequence of 
the first isolate of the Omicron lineage. The limit of detection is indicated by the horizontal dotted line. A parametric paired t test was performed to compare prebreakthrough 
(Pre) and postbreakthrough (Post) infection responses. The average fold change occurring with breakthrough infection is indicated for each Pre-Post pair, represented by dots. 
*P < .03; **P < .002. Each symbol represents a single participant; bars, geometric mean; and error bars, geometric standard deviations.
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Figure 6. Avidity profile of antibodies from individuals of the “vaccination” and “breakthrough infection” groups against Wuhan-1 antigens. Immunoglobulin (Ig) G, IgM, 
and IgA avidity against wild-type (WT) spike or WT receptor-binding domain (RBD) antigens is shown for the vaccination (n = 40) (A) and breakthrough infection (n = 25) (B) 
groups, expressed as the avidity index (AI). WT refers to the sequence of the original Wuhan-Hu-1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate. 
Analyses were performed using Mann-Whitney U test for comparisons among different groups (A) and a parametric paired t test for comparing prebreakthrough and post-
breakthrough infection responses (B). *P < .03; **P < .002; ***P < .001. The average fold change in AI occurring with breakthrough infection is indicated for each Pre-Post 
pair, represented by dots. Each symbol represents a single participant; bars, geometric mean; and error bars, geometric standard deviations. Samples with an AI <35, in-
dicated by the dotted line, are considered to have low avidity.
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the presence of nonneutralizing antibodies with high-affinity 
maturation that result in increased avidity at the polyclonal 
level.

In contrast to the antibody responses elicited against the 
spike protein during SARS-CoV-2 infection, which are of 
high magnitude and long-lasting, the levels of antibodies 
against NP are typically lower in magnitude, and the rate of an-
tibody decay over time seems to be significantly lower [17]. In 
the current study, we looked at NP antibody levels in convales-
cent individuals from a few weeks up to 3 months after a prima-
ry infection and after breakthrough infections. As expected, NP 
reactivity was detectable and relatively high after a primary in-
fection; however, the avidity of the antibodies induced was very 
low. Importantly, we found that the magnitude of the anti-NP 
antibody response increased after breakthrough infection, but 
the boosted anti-NP antibodies displayed low avidity.

In summary, we tested the binding and avidity profiles of se-
rum antibodies of different isotypes against distinct antigens of 
SARS-CoV-2, including the spike, RBD, and NP. Our analyses 
allowed us to identify distinct antibody signatures based on the 
infection and/or vaccination exposure histories.

Our study had some limitations. First, the timing from infec-
tion to the first vaccine dose is not available for all participants 
included in the study. Second, we lack samples collected before 
the first SARS-CoV-2 infection to assess the serostatus of the 
participants. Third, the size is limited for some groups, espe-
cially in the breakthrough infection group. Although statistical 
analyses were performed assuming a normal distribution— 
given by the larger groups—normality could not be assessed 
in the smaller groups (ie, n = 3). Fourth, the timing of sample 
collection was not identical among the different groups, partic-
ularly among the breakthrough infection groups, in which the 
average timing of sample collection after breakthrough infec-
tion ranged from 15 to 30 days. Owing to the relatively low 

sample size in each of the stratified groups, we did not adjust 
for age or days since last exposure. Unfortunately, these factors 
are not in our control, given that we worked with samples avail-
able in our cohorts. Studies with larger sample sizes focused on 
selected populations would be ideal to explore the outcomes of 
this work.
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