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Abstract
Ultrasound features related to thyroid lesions structure, shape, volume, and margins are considered to determine cancer risk. 
Automatic segmentation of the thyroid lesion would allow the sonographic features to be estimated. On the basis of clinical 
ultrasonography B-mode scans, a multi-output CNN-based semantic segmentation is used to separate thyroid nodules' cystic 
& solid components. Semantic segmentation is an automatic technique that labels the ultrasound (US) pixels with an appro-
priate class or pixel category, i.e., belongs to a lesion or background. In the present study, encoder-decoder-based semantic 
segmentation models i.e. SegNet using VGG16, UNet, and Hybrid-UNet implemented for segmentation of thyroid US 
images. For this work, 820 thyroid US images are collected from the DDTI and ultrasoundcases.info (USC) datasets. These 
segmentation models were trained using a transfer learning approach with original and despeckled thyroid US images. The 
performance of segmentation models is evaluated by analyzing the overlap region between the true contour lesion marked 
by the radiologist and the lesion retrieved by the segmentation model. The mean intersection of union (mIoU), mean dice 
coefficient (mDC) metrics, TPR, TNR, FPR, and FNR metrics are used to measure performance. Based on the exhaustive 
experiments and performance evaluation parameters it is observed that the proposed Hybrid-UNet segmentation model seg-
ments thyroid nodules and cystic components effectively.

Keywords Thyroid ultrasound · Semantic segmentation · SegNet · U-Net · Hybrid-UNet

Introduction

The thyroid is located lower behind the front neck, a small 
gland in the shape of a butterfly. It regulates human metabo-
lism. It releases a secret hormone that controls human activi-
ties, including energy, heat, heart rate, temperature, and oxy-
gen [1, 2]. The human body is harmed when the release of 
hormones is improper due to the nodule's aberrant growth 

[1, 2]. Various imaging modalities like mammogram, Ultra-
sound (US), CT Scan, thermal images, and MRI have been 
widely used to detect thyroid nodules at an initial stage so 
that the patient's chance of survival can be increased [3–5]. 
The limitation of mammogram, MRI, CT, and thermal imag-
ing lie in ionizing, cost, and availability, which might be 
harmful or easy to use to the patient [3, 4, 6]. US imaging 
modality is most popular to identify thyroid nodules as an 
initial screening test over MRI, CT, and thermal imaging 
[7, 8]. Owing to the disadvantages of the other imaging 
modalities, the US is considered as a first-line treatment 
to identify thyroid nodules due to its cost, availability, and 
no harm to the patient [9]. Low contrast and speckle noise 
often degrade US images' visual quality, which affect the 
radiologists' interpretation [10, 11]. The presence of speckle-
noise reduces contrast resolution, making it more difficult 
to identify lesions during diagnosis [12, 13]. Over the past 
two decades, computer-based research of thyroid tumor US 
images has been extensively examined. The main objective 
of this work is to improve detectability during thyroid nodule 
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screening using computer-based algorithms to assist radiolo-
gists in abnormality diagnosis [14, 15].

Segmenting thyroid US images may be difficult due to 
the lack of contrast between different anatomies and the 
existence of speckle noise [16]. Researchers have proposed 
different thyroid nodule segmentation techniques to more 
precisely segment the thyroid nodules according to their 
size, shape, and location [17]. Most of the segmentation 
methods are referred to as manual masks to indicate the 
segmentation algorithms. These algorithms were not suit-
able for real-time application for diagnosing thyroid nodules. 
Deep learning (DL)-based algorithms improve the graph-
ics and do not require an initial mask. It is fully automated 
with an interaction time of just a few seconds and enables 
real-time implementation. DL-based segmentation algo-
rithms are separated into two categories, i.e., semantic and 
instance segmentation. Each image pixel belongs to a par-
ticular class in the semantic segmentation, while instance 
segmentation splits distinct objects that belong to the same 
class [18–21]. Semantic segmentation classifies each pixel 
with a corresponding class label, i.e., belonging to the back-
ground or lesion [19]. Semantic segmentation differs from 
object detection as it does not predict any bounding boxes 
around the lesion [22]. A common architecture for semantic 
segmentation is based on encoder–decoder. It contains of 
three structure blocks, i.e., convolutional, downsampling, 
and upsampling. The encoder is a pre-training convolution 
network, while a decoder consists of a deconvolution layer, 

interpolation, and upsampling layer [19, 23] 24. The purpose 
of downsampling is to capture semantic or context informa-
tion, while upsampling is to recover spatial resolution. The 
encoder network extracts the feature map, while the decoder 
network is used to recover channels' resolution. An encoder-
decoder structure of segmentation algorithms is widely used 
to define boundaries between the images. From the execu-
tive review of literature, it is observed that semantic seg-
mentation models have been widely used for US images of 
organs like heart [8, 10], kidney [25–27], breast [28–31], 
liver [32–34]. In the present work, an ideal despeckling 
algorithm is used to smoothen the image's homogenous area 
while preserving the edges of the lesion boundary. Semantic 
segmentation-based Hybrid-UNet model is proposed to seg-
ment the thyroid lesion from the original and pre-processed 
thyroid US images.

This paper is further arranged as: in Sect. 2 related work 
and significant findings represented, Sect. 3 elaborates mate-
rials and methods, in Sect. 4 result and discussions are pre-
sented and in Sect. 5 conclusion of the study is presented.

Related work and significant findings

A brief review of literature for thyroid nodules segmentation 
using encoder-decoder-based semantic segmentation models 
is summarized in Table 1.

Table 1  A brief literature review of thyroid nodules segmentation using semantic segmentation

Note - HE - histogram equalization, MF - median filter, AMF - adaptive median filter, DCS/DC - dice coefficient, IoU - Intersection of Union, 
DR - Dice ratio, mAP - mean average precision

Investigator(s) No. of image(s) Pre-processing algorithm Segmentation algorithm Evaluation metric(s)

W. Song et al. (2015) [35] 4309 – VGG16 mAP—98.2%
H. Ravishankar et al. (2016) [36] 140 – Hybrid-CNN DC—0.9
J. Ma et al. (2017) [37] 22,123 – Self-Design DR—0.92
Jinlian Ma et al. (2018) [38] 22,123 – Self-Design DR—0.95
Xuewei Li et al. (2018) [39] 300 – FCN-TN IoU—91%
J. Wang et al. (2018) [40] 3459 – VGG16 IoU—0.75
S. Zhou et al. (2018) [41] 893 – MG-UNet DSC—0.94
X. Ying et al. (2018) [42] 1000 – SegNet (VGG19) IoU—87%
P. Poude et al. (2019) [43] 675 and 1600 – U-Net DSC—0.87 & 0.86
J. Ding et al. (2019) [44] 1936 – ReAgU-Net mIoU—0.78

DSC—0.86
V. Kumar et al. (2020) [45] 914 – MPCNN DSC—0.62
Webb, Jeremy M. (2020) [46] 120Patients – DeepLabv3 + IoU—0.73
Prabal Poude et al. (2018) [47] 1416 HE & MF U-Net DC—0.87
Jianguo Sun et al. (2018) [48] 173 AMF & HE FCN-AlexNet IoU- 0.81
M. Buda et al. (2019) [49] 1278 Contrast

stretching
U-Net DCS- 0.93

Zihao Guo et al. (2020)[50] 1400 HE DeepLabv3 + DSC—94.08%
Gomes Ataide (2021)[51] 6066 Resizing and cropping ResUNet DC—0.85 & IoU—0.767
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From the literature it is observed that different detection 
methods such as SSD, R-CNN, and YOLO[52–61] are com-
monly used to detect the bounding box around the lesion 
(height, width, and position) in thyroid US images. So, it 
is concluded that thyroid nodules instance detection does 
not help in the further analysis to design a CAD (computer-
based diagnosis system) for characterization of thyroid 
nodules.

Table 1 shows that several segmentation methods based 
on self-design, FCN, SegNet and U-Net are used for origi-
nal thyroid US images. It is observed that Zhou et al. [41] 
achieved the highest dice coefficient (0.94) using MG-UNet-
based algorithm. In literature, very few pre-processing algo-
rithms (only Contrast stretching, adaptive median, median 
filters, and Histogram equalization) used before the segmen-
tation algorithms for pre-processing of thyroid US images. 
Most researchers used U-Net (DAG) architecture using 
simple convolution to segment thyroid nodules using pre-
processed thyroid US images. Further it is also observed that 
limited work is available in the literature on pre-processing 
thyroid US images for segmentation of thyroid nodule. So, 
in this work efficient despeckling filters used for enhancing 
the performance of the segmentation model [62, 63].

Materials and methods

Here, extensive experiments conducted by combining the 
two publicly accessible benchmark datasets, i.e., DDTI 
[64] and ultrasoundcases.info (USC) [65]. Out of these 
two datasets 820 thyroid tumor images selected for experi-
ment purpose. Best despeckle filtering algorithm is selected 
from a wide range of 64 despeckling algorithms based on 
diagnostically important features like structure, edge, and 
margin preservation. The best performing filter is selected 
objectively from these despeckling filters. The semantic seg-
mentation networks are considered from a void variety of 
segmentation models, including SegNet (VGG16), U-Net, 
and proposed Hybrid-UNet. The mean intersection of union 
(mIoU), mean dice coefficient (mDC), TPR, TNR, FPR, 
and FNR metrics [66–68] used extensively for the objective 
assessment of segmentation models.

Workflow adopted for the segmentation of thyroid US is 
presented in Fig. 1. The description of phases used in this 
work is given below:

Phase I: dataset preparation module

Following steps involved in dataset preparation module—(a) 
Benchmark dataset for thyroid US images (b) Image resiz-
ing module for resizing of thyroid US image (c) True mask 

generation using createMask function and (d) Data/image 
augmentation.

Benchmark dataset for thyroid US images

820 thyroid US images selected from benchmark datasets 
of DDTI and ultrasoundcases.info (USC). out of these 820 
images 620 images used for training. In 620 training images 
36 benign thyroid tumor US images (TTUS) and 322 malig-
nant TTUS images taken from DDTI dataset and 64 benign 
TTUS and 198 malignant TTUS images taken from USC 
dataset. For testing purpose 200 images selected from both 
the datasets. In 200 testing images, 30 benign TTUS and 60 
malignant TTUS images taken from DDTI dataset and 70 
benign TTUS and 40 malignant TTUS images taken from 
USC dataset.

Image resizing module

In this module, the unwanted information is removed from 
the thyroid US images and the resulting US images are 
resized. The size of the images selected is of 256 × 256 
pixels. It is clinically significant to resize the images while 
maintaining the aspect ratio. Xiaofeng Qi et al. [69] sug-
gested that direct resizing of the images without considering 
the tumor's shape or lesions and aspect ratio changes is not 
desirable. In order to preserve the tumor shape by maintain-
ing the aspect ratio, adequate attention is used during resiz-
ing the thyroid US images in this work.

True mask generation

In this module, A binary mask defines image pixels belong-
ing to the tumor or background region. The mask’s pixel 
values outside the lesion is set to 0, and pixel values inside 
the lesion is set to 1. The binary mask size is the same as that 
of the input image. The createMask (h) MATLAB function 
generates a binary mask where h defines the tumor region 
(ROI object) in this study. There are four different ROI 
objects available to create the mask h function, i.e. ellipse, 
point, poly, and rectangle. In the present work, the Poly 
object is used for generating a binary mask by expanding 
the interactive polygon to match the shape and size of the 
tumor region.

Data/image augmentation

Data/image augmentation is a technique that enlarges the 
dataset by applying certain transformations. 820 thyroid 
ultrasound images are inadequate to train a DL-based 
semantic segmentation network. In the present work, rota-
tion (90° and 180°), translation, horizontal and vertical 
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Fig. 1  The workflow adopted for the segmentation of thyroid tumor US images
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flip, and rotation of flipped images done to enlarge the 620 
TTUS images which are selected for training purpose. By 
applying augmentation methods, 620 TTUS images con-
verted into 11,176 images for training purpose as shown 
in Fig. 1.

Phase II: Despeckle filtering module

Low-contrast and speckle noise differential diagnosis 
between these characteristics are complex even for an expe-
rienced radiologist [9, 12]. Therefore, controlled despeck-
ling is preferred to preserve the diagnosis information in the 
images, and controlled despeckling is allowed by eliminat-
ing speckle noise from homogenous areas of the region and 
preserving the edges of the lesion boundary. As proven in 
the authors' previous study DsF_FBiF and DsF_EPSF filters 
outperformed to reduce the speckle noise from thyroid US 
images by preserving edges, structure, and margin[9, 70]. So 
DsF_FBIF and DsF_EPSF filters used here for despeckling 
purpose.

Phase III: segmentation module

The main goal of segmentation is to divide an image into 
several distinct, non-overlapping sections that fully char-
acterize the test object in the image [71–74]. A key task 
in the care of the subject being examined is the blueprint 
or dividing of a thyroid nodule from the background [73, 
75, 76]. Generally, low SNR in ultrasound images in the 
form of speckle-noise degrades the margin detection or 
region obtained from the appropriate method [71]. The 
segmentation model's performance might be enhanced by 
despeckling US images. In the case of thyroid ultrasound, 
several studies have reported using conventional-based 
segmentation methods [44, 54, 64]. It is observed from 
the literature that the conventional approach becomes a 
semi-automatic approach for initializing the mask. Thus, 
an automatic approach is required. Here, in this study 
Hybrid-UNet semantic segmentation technique is pro-
posed for automatic mask initialization. Hybrid-UNet is 
created using SegNet and UNet based semantic segmenta-
tion architecture.

Semantic segmentation

The objective of semantic image segmentation is to assign a 
class to each pixel in an image that corresponds to the object 

being represented [84–86]. The architecture of semantic seg-
mentation based on encoder-decoder where trainable engine 
is called an encoder network, and pixel-wise classification is 
called a decoder network [41, 47, 87].

The SegNet architecture is a deep encoder-decoder 
model developed by a computer vision research community 
at Cambridge University for pixel-wise segmentation [19, 
88]. It uses VGG16 pre-trained model with a convolution 
filter of the size of 3 × 3, batch normalization, activation-
ReLU (non-linear), 2 × 2 max-pooling, and subsampling on 
the encoder side. The SegNet architecture is the pre-trained 
end-to-end network that preserves high-frequency compo-
nents and decreases the trainable parameters on the decoder 
side [23, 24, 89].

The U-Net architecture was designed by Ronneberger, 
Fischer, and Bronx [90]. The U-Net architecture has two 
paths (a) contraction/encoder and (b) expansion/decoder 
path [87]. The contraction path followed by the expansion 
path delivers a U-shaped network. The convolution and the 
max-pooling layers reduce the spatial information while pre-
serving the feature map [87, 90].

Semantic segmentation is based on FCN or classical 
architecture like SegNet and U-Net is trendy segmenta-
tion method for medical images. A general U-Net archi-
tecture consisting of a complete path follows a convolu-
tion network with the max-pooling operation and continued 
down sample feature map. As encoder in U-net, we used 
a relatively similar CNN architecture of SegNet (VGG-
16) that consists 16 sequential layers. The entire pooling 
layer feature map is transferred between the encoder and 
decoder sides but with  two convolution layers at each 
stage and then concatenated to perform the convolution 
operation. The first convolution has 8 channels, then dou-
bles after each max pooling operation until it reaches 512. 
Here, Hybrid-UNet design is proposed for segmentation by 
using a combination of U-Net and SegNet(VGG16) [20]. 
The architecture of Hybrid-UNet applied in this study is 
presented in Fig. 2.

The SegNet, U-Net and Hybrid-UNet models are trained 
via Adam optimizer with 32 mini-batch sizes and learn-
ing rates ϵ {10–3,  10–4,  10–5,  10–6}. The mini-batch size 
and learning rates are carefully selected so that number of 
images split in training so that the complete training data-
set is passed in the models during training epochs and data 
cannot be discarded. Segmentation models trained for 30 
epochs, and overfitting is avoided using early stopping 
criteria. These segmentation models (SegNet, U-Net, and 
Hybrid-UNet) are implemented on NVIDIA 1070Ti GPU 
with 2,432 CUDA cores.
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Phase IV: Performance evaluation of proposed 
segmentation module

For the performance evaluation of the semantic segmenta-
tion methods researchers used different evaluation metrics 

like accuracy [37, 91], Precision [92, 93], Dice coefficient 
[73, 94], Jaccard index [95, 96], TPR [97], TNR [97], FPR 
[98], FNR [97], F-measure [99], Hausdorff distance [73], 
average distance [100], Mahalanobis distance [101] mutual 
information and variation of information [102]. Here the 

Fig. 2  Hybrid-UNet architecture
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performance of SegNet, UNet and Hybrid-UNet segmenta-
tion models is calculated using the overlay region between 
the lesion marked by experienced participating radiologists 
and the lesion obtained from the segmentation model [68].

In this work, the area of interaction between ground 
truth (SR) and predicted mask (SA) calculated using the 
mIoU, mDC, TPR, FPR, TNR, and FNR [69–70]. The per-
formance evaluation parameters used for the assessment of 
proposed segmentation algorithms are given as:

(1)IoU =
TP

TP + FP + FN
or

SA ∩ SR

SA ∪ SR

,

(2)DC =
2TP

2TP + FP + FN
or

2||SA ∩ SR
|
|

|
|SA

|
| +

|
|SR

|
|

,

(3)TPR =
TP

TP + FN
,

(4)TNR =
TN

TN + FP
,

Fig. 3  Sample confusion matrix

Table 2  Experiments conducted for the assessment of segmentation 
models

Experiment 1 Objective assessment of segmentation models 
using original thyroid US images

Experiment 2 Objective assessment of segmentation models 
using pre-processed thyroid US images using 
DsF_FBiF

Experiment 3 Objective assessment of segmentation models 
using pre-processed thyroid US images using 
DsF_EPSF
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The sample confusion matrix obtained from the proposed 
Hybrid-UNet segmentation method is shown in Fig. 3.

Result and discussions

The experiments utilized to evaluate the segmentation mod-
els are listed below in Table 2.

The performance of SegNet, UNet and proposed Hybrid-
UNet segmentation models using original and despeckled 
thyroid US Images by DsF_FBiF and DsF_EPSF filters is 
tabulated in Table 3, and the best outcome is marked in 
grey.

In Table 3 the performance of semantic segmentation 
models (i.e. SegNet, U-Net and Hybrid-UNet using original 
and despeckled thyroid US images is presented in terms of 
mIoU, mDC, TPR, TNR, FPR, and FNR. It is noticed that 
proposed Hybrid-UNet segmentation model perform better 
segmentation, with the highest values of mIoU (86.6%) & 
mDC (93.2%) for thyroid US images filtered by DsF_EPSF 
while separately in case of benign tumor images 88.8% 
mIoU 93.9% mDC and for malignant tumor images 85.6% 
mIoU & 92.8% mDC noticed. As shown in Table 4, the 
impact of the despeckling algorithm on the performance 
of the proposed Hybrid-UNet segmentation model is also 
examined.

(5)FPR = 1 − TNR,

(6)FNR = 1 − TPR.

Fig. 4  a1 Original Thyroid Tumor Ultrasound (TTUS) image, b1 
despeckled TTUS image by DsF_FBiF, c1 Despeckled TTUS image 
by DsF_EPSF filter, a2–c2 original TTUS images with tumor marked 
by radiologist, a3–c3 True TTUS masked images, a4–a6 predicted 
masks (applied on Original TTUS) images using SegNet, UNet and 
Hybrid-UNet, b4–b6 predicted masked (applied on despeckled TTUS 
by DsF_FBiF filter) images using SegNet, UNet and Hybrid-UNet, 
c4–c6 predicted masked (applied on despeckled TTUS by DsF_EPSF 
filter) images using SegNet, UNet and Hybrid-UNet, a7–a9 predicted 
lesions (applied on Original TTUS) images using SegNet, UNet and 
Hybrid-UNet,  b7–b9 predicted lesions (applied on despeckled TTUS 
by DsF_FBiF filter) images using SegNet, UNet and Hybrid-UNet, 
c7–c9 predicted lesions (applied on despeckled TTUS by DsF_EPSF 
filter) images using SegNet, UNet and Hybrid-UNet, a10–a12 over-
lay diagram between true TTUS lesion and predicted TTUS lesion 
(applied on Original TTUS) images using SegNet, UNet and Hybrid-
UNet, b10–b12 overlay diagram between true TTUS lesion and pre-
dicted TTUS lesion (applied on despeckled TTUS by DsF_FBiF 
filter) images using SegNet, UNet and Hybrid-UNet, c10–c12 over-
lay diagram between true TTUS lesion and predicted TTUS lesion 
(applied on despeckled TTUS by DsF_EPSF filter) images using Seg-
Net, UNet and Hybrid-UNet

▸
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In Fig.  4, the sample thyroid tumor US original 
image(a1), despeckled image by DsF_FBiF(b1) and DsF_
EPSF(c1), and corresponding tumor marked by radiologist, 
true mask, predicted mask, predicted lesion and overlay 
diagram between true TTUS lesion and predicted TTUS 
lesion using SegNet, UNet and Hybrid-UNet models are 
presented.

From Table 4, it is observed that the values of performance 
evaluation parameters are improved using despeckled thyroid 
US images. The result obtained from the objective assessment 
of segmentation models using original and despeckled thy-
roid US images indicates that the DsF_EPSF filter yield bet-
ter segmentation results in terms of mIoU, mDC, TPR, TNR, 
FPR, and FNR by using proposed Hybrid-UNet segmentation 
model.

A comparison of the proposed methodology Hybrid-UNet 
segmentation model with other existing techniques for thyroid 
tumor segmentation is tabulated in Table 5.

From Table 5 it is concluded that, Hybrid-UNet performs 
better in comparison to other techniques when pre-processed 
TTUS images using DsF_EPSF are used as input to the pro-
posed Hybrid-UNet segmentation model.

Conclusion

In this study, extensive experiments performed to seg-
ment the thyroid tumor US images using SegNet, UNet 
and Hybrid-UNet using original and despeckled thyroid 
tumor US images using DsF_EPSF and DsF_FBiF filters. 
The performance of Hybrid-UNet segmentation model is 
compared with existing segmentation models (i.e. SegNet 
and UNet) in terms of mIoU, mDC, TPR, TNR, FPR, and 
FNR metrics. From the Tables 3 and 4 it is noticed that 
the Hybrid-UNet segmentation method yields better seg-
mentation in terms of shape, margin, composition, and 
echogenic characteristics exhibited by lesions. In case of 
segmentation of original thyroid US images using pro-
posed segmentation model 83.1% mIoU and 90.1% mDC 
achieved while 86.6% mIoU and 93.2% mDC achieved 
when despeckled TTUS images by DsF_EPSF filter are 
given as input to the proposed method.

The proposed model can be used to make things simpler 
i.e. extracting the thyroid organ with region of interest and 
transform the thyroid US images into meaningful subject. 

Table 4  Effect of despeckling algorithm on the performance of proposed Hybrid-UNet segmentation model

Type of Images Assessment Metric for 
Despeckle filter (SEPI)

Overall mIoU (%) Overall mDC (%) TPR (%) FNR (%) TNR (%) FPR (%)

Original – 83.1 ± 7.8 90.1 ± 2.9 88.2 ± 4.9 11.8 ± 2.8 90.8 ± 3.2 09.2 ± 2.3
DsF_FBiF 0.98 ± 0.02 85.2 ± 6.2 90.6 ± 2.8 89.7 ± 4.1 10.3 ± 2.7 90.8 ± 3.2 09.2 ± 2.1
DsF_EPSF 0.99 ± 0.01 86.6 ± 9.8 93.2 ± 3.1 90.5 ± 3.1 9.5 ± 2.6 94.9 ± 2.7 05.1 ± 2.0

Table 5  Comparison of the proposed methodology (Hybrid-UNet segmentation model with other existing techniques for thyroid tumor segmen-
tation

Investigator (s) Number of images Technique used for pre-pro-
cessing

Segmentation model(s) Evaluation metrics

Case 1: Using Original TTUS Images
S. Zhou et al. [41] 893 – MG-U-Net Dice Coefficient -0.9
J. Ma et al. [37] 10,357 – Self-design Dice ratio- 0.9
Proposed method (Hybrid_

UNet)
820 – Hybrid-UNet mIoU—83.1 ± 7.8 and 

mDC = 90.1 ± 2.9
Case 2: Using pre-processed TTUS Images
Prabal Poude et al. [47] 416 Median Filter and Histogram 

Equalization
UNet Dice Coefficient = 0.876

J. Sun et al. [48] 173 Adaptive Median Filter and 
Histogram Equalization

FCN-AlexNet mIoU = 0.81

M. Buda et al. (2019) [49] 1278 Contrast stretching U-Net Dice Coefficient = 0.93
Zihao Guo et al. (2020)[50] 1400 Histogram Equalization DeepLabv3 + Dice Coefficient = 0.94
Gomes Ataide et al. (2021)[51] 6066 Resizing and cropping ResUNet mDC—0.857 & mIoU—0.767
Proposed method (Hybrid_

UNet)
820 DsF_EPSF Hybrid-UNet mIoU—86.6 ± 9.8 and 

mDC = 93.2 ± 3.1
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An efficient CAD tool for analysis and classification of thy-
roid US Images can be designed to take as a second opinion 
during the clinical treatment. It is concluded that Hybrid-
UNet segmentation using DsF_EPSF filtered images, yields 
more clinically acceptable enhanced segmented diagnostic 
information concerning the proper shape, size, and margins 
of thyroid tumor.
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