Skip to main content
. 2022 Oct 4;26(3):673–685. doi: 10.1007/s40477-022-00726-8

Table 5.

Comparison of the proposed methodology (Hybrid-UNet segmentation model with other existing techniques for thyroid tumor segmentation

Investigator (s) Number of images Technique used for pre-processing Segmentation model(s) Evaluation metrics
Case 1: Using Original TTUS Images
S. Zhou et al. [41] 893 MG-U-Net Dice Coefficient -0.9
J. Ma et al. [37] 10,357 Self-design Dice ratio- 0.9
Proposed method (Hybrid_UNet) 820 Hybrid-UNet mIoU—83.1 ± 7.8 and mDC = 90.1 ± 2.9
Case 2: Using pre-processed TTUS Images
Prabal Poude et al. [47] 416 Median Filter and Histogram Equalization UNet Dice Coefficient = 0.876
J. Sun et al. [48] 173 Adaptive Median Filter and Histogram Equalization FCN-AlexNet mIoU = 0.81
M. Buda et al. (2019) [49] 1278 Contrast stretching U-Net Dice Coefficient = 0.93
Zihao Guo et al. (2020)[50] 1400 Histogram Equalization DeepLabv3 +  Dice Coefficient = 0.94
Gomes Ataide et al. (2021)[51] 6066 Resizing and cropping ResUNet mDC—0.857 & mIoU—0.767
Proposed method (Hybrid_UNet) 820 DsF_EPSF Hybrid-UNet mIoU—86.6 ± 9.8 and mDC = 93.2 ± 3.1