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Significance

Identifying the genomic and 
molecular effects of disease-
associated genetic variants is a 
central challenge in translating 
signals from genetic association 
studies to insights into the 
causes of disease. Such effects 
can be defined by targeted 
functional studies, but these 
studies are difficult to scale 
across the thousands of 
candidate causal variants 
routinely identified by genetic 
association studies. To help solve 
this problem, we developed a 
method to predict the effects of 
genetic variation on enhancers. 
We apply this method to model 
pancreatic islet enhancers, 
demonstrate that the model is 
accurate, and show that the 
predicted effects of genetic 
variants on enhancers can help 
identify candidate causal variants 
for targeted functional studies.

Competing interest statement: S.C. is the co-founders 
of OncoBeat, LLC. and a consultant of Vesalius 
Therapeutics. The other authors declare no competing 
interest.

A complete list of the Diamante Consortium can be 
found in the SI Appendix.

Copyright © 2023 the Author(s). Published by PNAS.  
This open access article is distributed under Creative 
Commons Attribution License 4.0 (CC BY).
1S.H., D.L.T., W.S., and N.N. contributed equally to this 
work.
2To whom correspondence may be addressed. Email: 
mikee@mail.nih.gov, ovcharei@ncbi.nlm.nih.gov, or 
francis.collins@nih.gov.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2206612120/-/DCSupplemental.

Published August 21, 2023.

GENETICS
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Genetic association studies have identified hundreds of independent signals associated 
with type 2 diabetes (T2D) and related traits. Despite these successes, the identification 
of specific causal variants underlying a genetic association signal remains challenging. In 
this study, we describe a deep learning (DL) method to analyze the impact of sequence 
variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that 
our model learns islet-specific transcription factor (TF) regulatory patterns and can be 
used to prioritize candidate causal variants. At 101 genetic signals associated with T2D 
and related glycemic traits where multiple variants occur in linkage disequilibrium, our 
method nominates a single causal variant for each association signal, including three variants 
previously shown to alter reporter activity in islet-relevant cell types. For another signal 
associated with blood glucose levels, we biochemically test all candidate causal variants 
from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical 
evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future 
research, we publicly distribute our model and islet enhancer perturbation scores across 
~67 million genetic variants. We anticipate that DL methods like the one presented in this 
study will enhance the prioritization of candidate causal variants for functional studies.

deep learning | enhancer | pancreatic islets | type 2 diabetes | epigenomics

Over the past two decades, immense progress has been made toward unraveling the 
genetic basis of diseases and traits, with tens of thousands of genetic associations 
identified to date (1). These associations could guide advances toward effective treat-
ment and prevention of disease by shedding light on the underlying disease etiology 
and pinpointing specific genes, cell types, and molecular pathways that contribute to 
a disease. However, despite a few notable examples (2, 3), only modest progress has 
been made in translating genetic discoveries about common diseases into therapies.

This challenge of translation is driven in part by the difficulties in i) identifying 
which variants influence disease, since most disease-associated genetic signals are com-
posed of many candidate causal single nucleotide polymorphisms (SNPs) due to linkage 
disequilibrium (LD), and ii) establishing how these variants mechanistically function. 
To date, a variety of approaches (reviewed in ref. 4) have been developed to prioritize 
candidate causal SNPs by weighting SNPs according to their statistical evidence of 
association (statistical fine-mapping) and by the functional/epigenomic signals over-
lapping a SNP (functional fine-mapping). However, such methods often fail to nom-
inate a feasible number of SNP candidates to test in the laboratory due to i) limited 
statistical power to disentangle the effects of correlated SNPs even at large sample sizes 
and ii) no clear metric to weight epigenomic overlaps in the case of functional 
fine-mapping.

Type 2 diabetes (T2D) is an exemplary case of the challenges of identifying causal 
variants and effector genes. T2D is a disease characterized by pancreatic islet beta  
cell dysfunction and insulin resistance in peripheral tissues (5). In a recent fine-mapping 
analysis of 898,130 European-descent participants, 243 loci were associated with T2D. 
These loci contained 403 distinct association signals (multiple, independent signals 
per locus), of which 18 signals could be narrowed down to one SNP based on statistical 
fine-mapping (6). Given the strong enrichment of T2D genetic signals in regulatory 
regions (e.g., enhancers) active in islets (reviewed in ref. 7), the authors performed 
functional fine-mapping of these 403 signals using islet epigenomic information and 
refined this list to 23 signals with one SNP, leaving much room for improvement.

In this study (overview in Fig. 1), we report a deep learning (DL) method that models 
both shared and tissue-specific genomic and epigenomic signals to predict enhancers. 
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Using this method, we analyze the impact of mutational profiles 
on pancreatic islet enhancers within the context of their local, 
surrounding DNA sequence. We show that our model learns 
islet-specific transcription factor (TF) regulatory patterns and can 
be used to i) predict TF-binding sites and ii) refine fine-mapping 
results by prioritizing candidate causal SNPs. By applying our 
model to prioritize SNPs from statistical fine-mapping results for 
T2D and related traits, we nominate a single candidate SNP that 
likely affects pancreatic islet enhancers at 101 signals containing 
more than one 95/99% credible set SNP from statistical 
fine-mapping. For three signals, previous studies validate our SNP 
predictions by showing these SNPs induce allelic activity in 
reporter assays in islet-relevant cell types. For another signal asso-
ciated with blood glucose levels (near PSMA1), we biochemically 
demonstrate using a pancreatic islet beta cell line that the SNP 
prioritized by our model shows the greatest allelic effects on i) TF 
binding and ii) the regulation of luciferase reporter expression 
among all SNPs in the credible set. We believe models like the 
one presented in this study will aid in refining candidate causal 

SNPs from fine-mapping for further functional studies across a 
wide variety of diseases/traits.

Results

TREDNet: A DL Model for Enhancer Prediction. To predict enhancers 
based on DNA sequence, we developed TREDNet, a two-phase 
DL framework consisting of two consecutive convolutional neural 
networks (CNNs): the first to predict epigenomic signals across the 
genome and the second to predict enhancers, the primary aim of 
TREDNet (Materials and Methods and Fig. 1A).

For the phase one model, we trained a CNN that uses tiled DNA 
sequences of 2,000 base pairs (bp) to predict DNase I hypersensitive 
sites (DHSs), histone modifications (HMs), and TF-binding sites 
(TFBSs) across 127 human cell types and tissues (biospecimens) 
from the ENCODE (8) and NIH Roadmap (9) studies (1,924 fea-
tures in total). We excluded signals on chromosomes 8 and 9 from 
training and used them to test the model’s accuracy. We found that 
the phase one TREDNet model was highly accurate, achieving an 
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Fig. 1. Graphical overview of this study. (A) Overview of TREDNet. TREDNet consists of two convolutional neural networks (CNNs; mesh of gray lines and 
blue circles). The first CNN is trained on genomic regions in one-hot encoded representation to predict peaks of epigenomic features, including TFs, histone 
modifications (HMs), and DNase I hypersensitivity sites (DHSs). The second CNN is trained on the output from the first CNN to predict enhancer regions. Enhancer 
graphic created with BioRender.com. (B) Saturated mutagenesis analysis using TREDNet produces enhancer damage (ED) scores, which are used to predict TF-
binding sites (TFBSs), corresponding to peaks (enhancer damaging regions; EDRs) and dips (enhancer strengthening regions; ESRs) in ED scores. Bars depict ED 
scores of each genomic position (x axis). Blue bars show positions corresponding to known TFBSs. Red bars show TFBSs predicted by a CNN (mesh of gray lines 
and blue circles) using ED scores. (C) Allelic differences in TREDNet enhancer probability scores are used to calculate islet enhancer perturbation (IEP) scores for 
each SNP. (D) Schematic locus zoom example at a genetic signal where a candidate causal SNP is identified. Green boxes depict gene coding regions along the 
genome (x axis). Subsequent facets show different signals for each SNP (points): the −log10(P) of the genetic association, the posterior probability of association 
(PPA) from statistical fine-mapping, IEP scores, and ED scores. Funnel schematic describes the framework used to identify candidate causal SNPs. SNPs from 
95/99% credible sets are prioritized using IEP scores. Subsequently, SNPs are prioritized by EDR/ESR overlap.
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average area under the receiver operating characteristic (auROC) of 
0.93, 0.88, and 0.96 for DHSs, HMs, and TFBSs, respectively 
(SI Appendix, Fig. S1). We compared TREDNet’s phase one model 
to other methods that predict epigenomic signals from DNA 
sequences—ExPecto (10), DeepSEA (11), and Basset (12)—and 
found TREDNet performed similarly to these previous models 
(SI Appendix, Fig. S1).

Using the vectors of 1,924 epigenomic predictions generated 
by the phase one model for each 2,000 bp DNA sequence, we 
trained a second (phase two) CNN to predict pancreatic islet 
enhancers—defined using chromatin accessibility profiles (assay 
for transposase-accessible chromatin with sequencing [ATAC-seq] 
peaks) and H3K27ac histone marks (Materials and Methods). We 
trained two similar models to predict HepG2 and K562 enhancers 
(one for each cell line) to validate our approach using datasets avail-
able for these two cell lines only. The result of this two-phase learn-
ing framework is the enhancer probability of a 2,000 bp DNA 
sequence. We used enhancer coordinates from chromosomes 8 and 
9 withheld from training for validation and found that the phase 
two TREDNet model achieved an auROC of 0.92, 0.89, and 0.85 
for islets, HepG2, and K562, respectively (Fig. 2A). As a bench-
mark, we compared TREDNet to other models that predict 
enhancers: BiRen (13), Tan et al. (14), and SVM (15). We found 
that TREDNet outperformed the other models consistently 
(Fig. 2A).

To further validate TREDNet’s enhancer probability scores, we 
used massively parallel reporter assay (MPRA) experiments in 
HepG2, K562, and MIN6, a mouse beta cell line (16–18). For 
each experimentally tested sequence, we compared the in vitro 
gene expression MPRA results to the enhancer probability pre-
dictions generated by TREDNet and the other enhancer predic-
tion methods (Materials and Methods). We observed a strong, 
positive correlation between TREDNet’s predictions and the 
measured MPRA effects (minimum rho = 0.23, P < 1.77 × 10−8 
across all datasets, Spearman’s rank-order correlation; Fig. 2B). 
Across these datasets, TREDNet either outperformed or exhibited 
near equal performance to other methods as quantified by 
Spearman’s rank-order correlation (Fig. 2B) and root mean squared 
error (SI Appendix, Fig. S4). We note that in the case of BiRen 
and Tan et al., we were not able to refit the model using the 
enhancer definitions from TREDNet and used the pretrained 
model distributed by the authors (Materials and Methods). For 
tissue/cell types poorly represented in the training data, like islet 
beta cells, the architecture may perform better if retrained.

In Silico Saturated Mutagenesis of Enhancers Reveals TF 
Regulatory Patterns. In order to probe the regulatory structure 
of enhancers, we performed an in silico saturated mutagenesis 
experiment across the DNA sequences of all islet, HepG2, and 
K562 enhancers, predicting the effects of nucleotide mutations 

HepG2 K562 MIN6
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Fig. 2. Characterization of TREDNet, TREDNet ED scores, and EDRs/ESRs. (A) Phase two TREDNet enhancer prediction accuracy across biospecimens (x axis) 
compared to other models (colors) using auROC (Left) and area under the precision recall curve (auPRC; Right) metrics (y axis). Dashed horizontal lines show 
the performance of a random classifier: auROC = 0.5 and auPRC = 0.09. (B) Correlation (Spearman’s rho; y axis) between predictions of computational methods 
(colors) and MPRA signals from different experiments (x axis; coded using PubMed Central identifiers) across biospecimens (facets). (C) Distribution of TREDNet 
ED scores (y axis) in TFBSs, TFBS flanking regions, and random genomic regions outside of TFBSs (colors) across biospecimens (x axis). (D) Enrichment (y axis) 
of active SNPs from HepG2 and K562 MPRA experiments (point shape and linetype) in EDRs/ESRs (colors), enhancers, and DHSs (x axis). EDRs/ESRs are binned 
into five groups by their average ED scores.
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on the overall enhancer probability of the surrounding 2,000 
bp region (Materials and Methods). For every DNA sequence 
position within an enhancer, we calculated TREDNet enhancer 
damage (ED) scores, defined as the average difference in the 
enhancer probability of the reference nucleotide (GRCh37) 
and the enhancer probabilities of all other possible nucleotides. 
A positive ED score indicates a negative change in enhancer 
probability (enhancer damaging), while a negative ED score 
indicates a positive change in enhancer probability (enhancer 
strengthening).

Next, we asked if ED scores mark TFBSs, as has been suggested 
by previous studies that used similar metrics (reviewed in ref. 19). 
Using TFBSs from HepG2 ChIP-seq experiments (8), K562 
ChIP-seq experiments (8), and islet ATAC-seq footprints (20) 
(since islets do not have as comprehensive of TF ChIP-seq profiles 
like HepG2 and K562), we compared the absolute value of ED 
scores within TFBSs to 20 bp regions immediately flanking each 
TFBS as well as randomly sampled enhancer regions (Materials 
and Methods). We found that the absolute value of ED scores of 
regions within TFBSs were much greater than flanking regions 
(average sevenfold increase; P < 1 × 10−100, Wilcoxon rank sum 
test) or randomly sampled regions (average 35-fold increase;  
P < 1 × 10−100, Wilcoxon rank sum test; Fig. 2C)—confirming 
that elevated ED scores differentiate TFBSs.

To explore if the TFBSs identified by ED scores are relevant to 
a tissue/cell type, we focused on islets and ranked each TF foot-
print by the ratio of the average ED score within the TF footprint 
motif to the flanking region (SI Appendix, Table S1). The top five 
TFs were all known to play an important regulatory role in islets: 
TCF7L2 (21), the FOX family of TFs (22, 23), the C/EBP family 
of TFs (24), the HNF family of TFs (25), and DBP (26). Moreover, 
across all islet TFBSs, we found that the ED scores were strongly 
correlated with the per-nucleotide information content of each 
TFBS motif (average Spearman’s rho=0.45)—much more than the 
evolutionary sequence conservation (average Spearman’s rho = 
0.20; P = 1.8 × 10−14, Wilcoxon rank sum test; SI Appendix, 
Fig. S5; Materials and Methods). These trends held true for both 
HepG2 and K562 (SI Appendix, Fig. S5B). Combined, these 
results strongly suggest that TFBSs with the largest ED scores 
demarcate TFBSs important to a cell type and thereby allow one 
to predict regions within enhancers with the greatest effect when 
altered in the relevant cell type.

Given the observed link between ED scores and TFBSs, we 
designed another DL model to predict TFBSs directly from ED 
score profiles (Materials and Methods). For each biospecimen, we 
trained two separate models to predict TFBSs from either 
ChIP-seq experiments (HepG2 and K562) or ATAC-seq foot-
prints (islets) as short stretches (≥3 bp; average length 13.7 bp) of 
either enhancer damaging regions (EDRs) or enhancer strength-
ening regions (ESRs; SI Appendix, Fig. S6). The resulting models 
were highly accurate at predicting TFBSs on chromosomes 8 and 
9 (excluded from training), achieving an average auROC of 0.92 
for EDRs and 0.84 for ESRs (SI Appendix, Fig. S7). We compared 
the ED score TFBS prediction model to a model that predicts 
TFBSs based on DNA sequence alone (Materials and Methods) 
and found that the ED score models were more accurate (P < 0.05, 
Wilcoxon rank sum test; SI Appendix, Fig. S8). To further validate 
the EDR/ESR predictions, we calculated the enrichment of SNPs 
shown to have regulatory activity in HepG2 and K562 MPRA 
experiments (27) across DHSs, enhancer regions, and EDRs/ESRs 
defined in the relevant cell line (Materials and Methods). We 
observed a striking increase in the enrichment of regulatory SNPs 
overlapping EDRs or ESRs, especially those in the top 2% of 
EDRs/ESRs ranked by their average ED scores (Fig. 2D), 

suggesting that EDRs and ESRs capture meaningful regulatory 
information.

In total, we identified 420,689 EDRs and 290,532 ESRs across 
islets, HepG2, and K562 (SI Appendix, Fig. S9), with 37% and 
23% of EDR and ESR regions located within enhancers active in 
all three cell lines residing at the same enhancer position, reflecting 
a partial similarity in the TF regulatory landscape of these cell lines. 
The identified EDRs were on average 16.5 bp long with an average 
ED score of 4. The ESRs were 12.4 bp long with an average delta 
of −2.7. Focusing on islets, within the 9,918 islet enhancers, we 
identified 74,073 EDRs with an average length of 19.5 bp (average 
delta of 2.8) and 67,142 ESRs with an average length of 12.2 bp 
(average delta of −2.3), which we used to aid in the interpretation 
of candidate causal SNPs of signals associated with T2D and gly-
cemic traits.

Prediction of the Impact of SNPs on Islet Enhancers. Having 
determined that TREDNet captures meaningful regulatory 
patterns across several biospecimens, we applied TREDNet to 
predict the effect of 67,226,155 SNPs from the genome aggregation 
database (28) on islet enhancers by calculating an islet enhancer 
perturbation score (IEP score; Materials and Methods) to guide the 
identification of candidate causal SNPs at T2D-associated genetic 
signals. This score weights each SNP based on the probability 
that the surrounding genomic region is an islet enhancer and the 
predicted effect of each allele on the islet enhancer probability.

To validate the IEP scores, we collected SNPs known to affect 
various islet features including gene expression (expression quan-
titative trait loci; eQTLs), exon expression (exonQTLs), chroma-
tin accessibility (caQTLs), and MPRA signals from MIN6 beta 
cells (Materials and Methods). We note that of these validation 
data, all of the MPRA signals are at SNP level resolution while 
for the other datasets from population genetic studies, the truly 
causal SNP(s) is not known in many cases due to LD. Next, using 
progressively strict IEP score percentile cutoffs to select groups of 
SNPs, we calculated the enrichment of SNPs among the islet 
features, controlling for the distance of a SNP to the nearest gene 
and the number of SNPs in LD (Materials and Methods). We 
found a strong and progressive enrichment in SNPs shown to 
activate transcription in MIN6 MPRA experiments and islet chro-
matin accessibility (caQTLs; Fig. 3A), but not in eQTL or exon-
QTL signals. These results suggest the IEP score captures 
meaningful biological effects of SNPs on enhancers and are con-
sistent with studies that report gene expression genetic associations 
are more strongly enriched in promoter regions than in distal 
enhancer regions (20, 29).

We sought to evaluate the islet specificity of IEP scores and 
compared the enrichment of SNPs in islet MPRA data to K562 
and HepG2 MPRA data (Materials and Methods and Fig. 3B). We 
observed a substantial and progressive enrichment of SNPs in all 
MPRA data and a stronger enrichment in islet MPRA signals than 
in K562 or HepG2 (P < 0.05, z-test). Together, these results sug-
gest that IEP scores capture a broad range of effects, from 
islet-specific regulatory programs to regulatory programs common 
across these biospecimens.

Candidate Causal SNPs at Genetic Signals Associated with T2D 
and Glycemic Traits. As an application of TREDNet, we used 
TREDNet IEP scores to refine credible sets SNPs for 1,243 
non-coding genetic signals associated with T2D (99% credible 
set; (30)), blood glucose levels (95% credible set; (31)), blood 
glucose levels after fasting (99% credible set; (32)), and glycated 
hemoglobin (HbA1c, 95% credible set; (31)). First, we verified 
that TREDNet IEP scores could distinguish credible set SNPs 
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from SNPs in LD (Materials and Methods). We compared IEP 
scores of credible set SNPs to SNPs in LD with credible set SNPs 
and found credible set SNPs tended to have larger IEP scores 
(SI  Appendix, Fig.  S10A). Next, we applied two methods to 
calculate the enrichment of credible set SNPs and LD SNPs i) at 
increasing IEP score thresholds and ii) using IEP score ranks (i.e., 
avoiding thresholds and considering all credible set SNPs and LD 
SNPs at once; Materials and Methods). Both techniques showed 
that larger IEP scores were enriched for credible set SNPs, with no 
enrichment for SNPs in LD with credible set SNPs (SI Appendix, 
Fig. S10 B and C). Combined, these results suggest that IEP scores 
can be used to prioritize candidate causal SNPs for T2D and 
related glycemic traits.

Having verified that larger TREDNet IEP scores are enriched 
for credible sets SNPs for T2D and related glycemic traits, we 
focused on identifying credible set signals for functional studies 
where a single candidate causal SNP stood out with an IEP score 
much larger than all other SNPs in the credible set (i.e., pinpoint-
ing association signals that showed evidence of a single candidate 
causal SNP). To identify such signals, we used T2D credible sets 
from two studies to empirically derive a IEP score cutoff to pri-
oritize candidate causal SNPs: a European ancestry study (6) and 
a transancestry study (30). We calculated the ratio of the highest 
IEP score and the second highest IEP score (IEP ratio1:2) across 
all SNPs in the 99% credible set. Because transancestry credible 
sets have greater power to identify candidate causal SNPs due to 
different LD patterns, we selected association signals with only 
one SNP in the credible set from the transancestry analysis. We 
calculated how many times the IEP ratio1:2 correctly nominated 
the transancestry candidate causal SNP among the multiple SNPs 
in the credible set identified using the less powered European 
ancestry study at increasingly stringent IEP ratio1:2 thresholds 
(Materials and Methods). At an IEP ratio1:2 of >24, we found 
statistical enrichment (P < 0.05, hypergeometric test) of IEP 
ratio1:2 refined SNPs from European T2D signals in candidate 
causal SNPs from the transancestry fine-mapping analysis 
(SI Appendix, Fig. S11).

We applied the IEP ratio1:2 threshold of >24 to the credible sets 
for 1,243 noncoding signals associated with T2D (transancestry) 
and glycemic traits with >1 SNP in the credible set (Fig. 4A). For 
101 disease/trait signals spanning 94 total SNPs (i.e., some SNPs 
were associated with more than one phenotype), the IEP ratio1:2 
was >24, indicating that only one SNP in the credible set had a 

large IEP score (Fig. 4 B and C and SI Appendix, Table S2). To 
further validate these predictions, we compared the allelic imbal-
ance of the 94 SNPs prioritized by our method to all other SNPs 
in the 95/99% credible set using islet chromatin accessibility data 
(Materials and Methods). We found the candidate causal SNPs 
exhibited greater allele-specific accessibility (P = 0.0011, Wilcoxon 
rank sum test; SI Appendix, Fig. S12), as would be expected if 
these SNPs perturbed the binding of islet regulatory factors. 
Although no individual SNP exhibited allelic imbalance after 
multiple hypothesis correction (likely due to the small number of 
ATAC-seq samples), several of these SNPs have been shown to 
exhibit allelic activity in reporter assays conducted in MIN6 beta 
cells: rs7732130 at the 5:76435004 (ZBED3/PDE8B; GRCh37 
coordinates) T2D signal (33), rs7933438 at the 11:128040810 
(ETS1) T2D signal (34), and rs4237150 at the 9:4290085 
(GLIS3) T2D signal (35). We calculated the overlap of the 94 
candidate causal SNPs with predicted TFBSs (based on motifs; 
SI Appendix, Table S3 and Materials and Methods) and found these 
SNPs were enriched (false discovery rate [FDR] < 5%) in RFX 
family-binding sites, consistent with previous studies that report 
RFX6 as an important islet TF for T2D genetic risk (20, 36). In 
addition, 73 of the 94 candidate SNPs (79%) overlapped an EDR/
ESR, a 16.8-fold enrichment compared to random SNPs (P = 1.6 
× 10−22, binomial test), providing an additional level of evidence 
at these signals.

To demonstrate the strength of our approach, we i) highlight three 
of these signals with extensive evidence from previous studies sup-
porting the predicted candidate causal SNP and ii) describe the 
results of experimental assays that we performed for all 95% credible 
set SNPs at one glucose-associated genetic signal near PSMA1.

The 9:4290085 locus near GLIS3 is associated with T2D, 
HbA1c, and glucose. Within the 99% T2D credible set, there are 
two SNPs: rs4237150 and rs1574285 (SI Appendix, Fig. S13). 
Our model identifies the rs4237150 SNP, with the largest T2D 
posterior probability of association (PPA = 0.96), as being the 
likely causal SNP, where the C allele increases the enhancer prob-
ability of the region. rs4237150 overlaps an islet ESR, disrupts 
NR3C1 and ZNF528 binding motifs (SI Appendix, Table S3), 
and lies in an islet stretch/super enhancer (35). The T2D risk allele 
(C) exhibits increased allele-specific imbalance in islet ChIP-seq 
and ATAC-seq data (35). Consistent with the TREDNet predic-
tions, the C allele of rs4237150 exhibits increased luciferase 
reporter activity in MIN6 beta cells (35).

A B

Fig. 3. Validation of IEP SNP scores. (A) Enrichment and SE (y axis) of SNPs grouped by IEP percentile (x axis) in islet/beta cell validation data (color). (B) Enrichment 
and SE (y axis) of SNPs grouped by IEP percentile (x axis) in MPRA signals from MIN6 beta cells, K562, and HepG2 (color).
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Near DLK1, there are genetic associations with T2D, HbA1c, 
and glucose. Within the HbA1c 95% credible set at 14:91785258, 
there are two SNPs, rs73347525 and rs8004581 (SI Appendix, 
Fig. S14). Our model predicts rs73347525 to be the candidate 
causal SNP for the HbA1c signal, with the A allele increasing the 
enhancer probability of the region. rs73347525 is the only SNP 
in the T2D 99% credible set at this signal, while for glucose it is 
one of 32 SNPs, among which our model could not make a con-
fident prediction (there are several SNPs in the region with high 
IEP scores). The T2D risk allele (A) is associated with increased 
glucose and HbA1c levels, overlaps a beta cell–specific ATAC-seq 
peak (37), and is associated with increased expression of DLK1 in 
islets (29). DLK1 expression patterns are highly specific for islets 
(29), particularly beta cells (38, 39), and DLK1 exhibits increased 
expression in T2D beta cells compared to non-T2D (38). We 
analyzed the EDR/ESR predictions and found rs73347525 over-
laps an islet-specific EDR region and most strongly perturbs a 
motif for ZNF415 (SI Appendix, Table S3), where the risk allele 
(A) results in decreased binding—suggesting that rs73347525 may 
perturb ZNF415 binding, resulting in increased DLK1 expression 
and increased T2D risk.

In addition, near ZBED3/PDE8B, there is a strong association 
with T2D, HbA1c, and glucose. For all three associations, there are 
three, identical candidate causal SNPs in the 95/99% credible set 
(SI Appendix, Fig. S15). Our model predicts rs7732130 to be the 
causal SNP, where the G allele is predicted to increase the probability 
that the region is an enhancer compared to the alternative allele (A). 
The G allele is associated with increased T2D risk, increased HbA1c, 
and increased glucose levels. This SNP intersects an islet EDR and 
the T2D risk allele (G) is predicted to increase ZNF143 and RFX7 
binding affinity (SI Appendix, Table S3). Consistent with these find-
ings, the T2D risk allele (G) has been shown to increase both in vivo 
chromatin accessibility in human islets and luciferase reporter activity 
in MIN6 beta cells (33). Moreover, in human islets, the risk allele 
(G) is strongly associated with both increased expression of 
PDE8B—a gene with islet-specific expression patterns (20)—and 
ZBED3 (29). CRISPR activation and inhibition experiments of the 
rs7732130 enhancer in human EndoC-βH3 cells, a human pancre-
atic beta cell line, also show effects of this enhancer region on PDE8B, 
ZBED3, and other transcripts within the region (40). Thus, while 
the effector gene(s) at this locus is unclear, these data cumulatively 
support rs7732130 as the most likely causal SNP at this locus.

The 11:7117503 locus near PSMA1 is associated with HbA1c 
and glucose. For both traits, among all of the 95% credible sets 
SNPs, our method prioritized rs75336838 as the likely functional 
variant (Fig. 5A), where the T allele increases the enhancer prob-
ability of the region and overlaps an islet ESR region matching 
several TF-binding motifs (SI Appendix, Table S3). To test this 
prediction biochemically, we assessed the effects of the three SNPs 
in the glucose 95% credible set on human beta cell nuclear/TF 
binding using an EMSA (Electrophoretic mobility shift assay) 
with EndoC-βH3 nuclear extracts. Among the SNPs tested, the 
candidate causal SNP prioritized by our model, rs75336838, 
showed the most striking allelic differences in the binding of TFs/
complexes contained in human EndoC-βH3 nuclear extracts, 
where the T allele (associated with increased glucose levels) exhib-
ited a different pattern of binding than the C allele (Fig. 5B). To 
confirm that this variant affected the transcriptional apparatus, 
we performed an EMSA competition assay focusing on 
rs75336838. With the T allele probe labeled, we noted two bands 
showed specific competition by the cold T allele probe (Fig. 5C, 
red arrows). Finally, we tested all three glucose credible set SNPs 
for luciferase activity in the EndoC-βH1 human pancreatic beta 
cell line. Only the candidate causal SNP, rs75336838, showed 
allele-specific activity, with the T allele associated with threefold 
increased expression, consistent with the EMSA experiments and 
TREDNet prediction (Fig. 5D). While additional work is needed 
to complete our molecular understanding at this signal, the nom-
ination of a biochemically validated likely causal variant should 
aid future studies in dissecting the mechanism of action.

Discussion

DL methods have been applied to the problems of genomics exten-
sively. One of the first DL genomics studies implemented a frame-
work, DeepSEA (11), to learn multiple tissue-specific epigenomic 
signals (e.g., HMs, TFBSs, DHSs) using CNNs in a multitask 
learning fashion. The authors later extended the DeepSEA model 
through the ExPecto (10) model, which doubled the number of 
epigenomic features and increased the depth and breadth of the 
CNN. Another method, Basset (12), was trained in similar fashion 
but on DHS regions only. All of these models used an additional 
layer to predict molecular effects of mutations in DNA regions; 
however, these effects were calculated across all learned epigenomic 

A B

C

Fig. 4. Results of IEP ratio1:2 prioritization of credible set SNPs. (A) Total number of independent signals (y axis) for each disease/trait considered (x axis). (B) 
Number of signals with one SNP (y axis) in the 95/99% credible set before (green) and after applying the IEP ratio1:2 SNP prioritization method (orange) for each 
disease/trait considered (x axis). PPA stands for posterior probability of association. (C) Fraction of signals with one SNP (y axis) in the 95/99% credible set before 
(green) and after applying the IEP ratio1:2 SNP prioritization method (orange) for each disease/trait considered (x axis).
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features simultaneously and not tailored to detect altered tissue-
specific enhancer activity.

Indeed, to date, few studies have applied DL methods to predict 
enhancers and prioritize candidate causal variants. For instance, 
Tan et al. trained an ensemble of recurrent neural networks to 
predict enhancers using features from physicochemical properties 
of dinucleotides in enhancer regions (14). Yan et al. developed 
another method, BiRen, that predicts epigenomic signals from 
DNA sequences using DeepSEA, and combines these predictions 
with conservation scores of the input sequence to predict enhancers 
(13). However, neither of these studies performed extensive post 
hoc analyses such as in silico mutation analysis or candidate causal 
variant prioritization. To date, such post hoc analyses have been 
performed primarily using methods that predict epigenomic fea-
tures directly (10–12, 41) or non-DL enhancer prediction meth-
ods, like SVM (15, 42).

In this study, we developed TREDNet, a model that utilizes 
epigenomic signal predictions from DNA sequence to model 
enhancers. Compared to other enhancer prediction methods 
(13–15), TREDNet consistently improves enhancer detection 
(Fig. 2A). We found that TREDNet’s enhanced enhancer mode-
ling translates directly to more accurate modeling of signals from 
in vitro MPRA experiments of enhancer regions, compared to 
previous methods (Fig. 2B and SI Appendix, Fig. S4). We applied 
TREDNet to i) better understand the overall epigenomic regula-
tory structure of islet enhancers and ii) refine credible sets from 
genetic association studies.

By computing the effects of all possible mutations in islet 
enhancers, we found that we could accurately predict TFBSs 
from ChIP-seq experiments and TF footprints derived from 
ATAC-seq data (SI Appendix, Fig. S7) as short genomic regions 
(average length 13.7 bp) that greatly alter the overall enhancer 
probability of a 2 kb genomic region, termed EDRs and ESRs. 
Previous DL methods for TFBS prediction, such as BPNet (43), 
have used saliency maps to detect TF motifs [e.g., DeepLIFT 

(44), TF-MoDISco (45)] and applied the detected motifs to 
predict TF binding. However, to predict binding sites of a spe-
cific TF, such methods require experimental data of the specific 
TF in question to train the model. By contrast, TREDNet’s 
peak/dip detection module enables the detection of putative 
TFBSs of arbitrary TFs throughout the genome that may impact 
the enhancer function of the surrounding genomic regions. For 
example, of the 141,215 EDRs/ESRs detected in islets, 28,081 
(20%) do not overlap a known TFBS. We hypothesize that these 
sites correspond to unmeasured TFBSs or to TFBSs that become 
bound and active in response to specific stimuli (e.g., glucose 
stimulation, stressors like inflammation) and thus are not 
detected in studies that identify TF binding under baseline con-
ditions. Future studies will be required to test this hypothesis.

Importantly, we used TREDNet predictions to nominate candi-
date causal mutations at several signals associated with T2D and 
glycemic traits. By design our IEP ratio1:2 technique implicitly pri-
oritizes signals where a single candidate causal variant stands out 
from among all other variants. To facilitate other prioritization 
schemes, we distribute precomputed enhancer probability and IEP 
scores for 67,226,155 SNPs along with the underlying TREDNet 
models (SI Appendix, Supplementary Materials and Methods). By 
applying the IEP ratio1:2 technique, we were able to prioritize a single 
candidate causal variant in the 95/99% credible set from statistical 
fine-mapping at 101 signals (94 unique SNPs; SI Appendix, 
Table S2). These predictions include multiple SNPs for which func-
tional allelic effects have been detected previously in vitro in islet 
beta cells (33–35) and one for which we provide biochemical vali-
dation. We anticipate that further validation experiments of candi-
date causal variants nominated in this study will lead to additional 
insights into the molecular genetic basis of T2D and T2D-related 
traits. In addition, extending the computational techniques pre-
sented in this study to inform fine-mapping of genetic associations 
for islet-relevant diseases or traits by using IEP scores as priors rep-
resents a promising area of further research with the potential to 

Fig. 5. PSMA1 locus. (A) Locus zoom around the 11:7117503 glucose association [Glucose −log10(P) facet] near PSMA1. Top facet shows islet enhancers, called 
from islet H3K27ac ChIP-seq and ATAC-seq data. rs75336838 (blue) is one of three SNPs in the 95% glucose credible set (PPA facet), has a large IEP score (IEP 
facet), and occurs in an ESR region (green; EDR regions shown in orange), defined by ED scores from in silico saturated mutagenesis (ED score facet). Dashed 
box indicates the ESR containing the candidate SNP (blue line). (B) Electrophoretic mobility shift assay (EMSA) for all SNPs in the 95% credible set. (C) Competition 
EMSA for rs75336838. Red arrows indicate bands of interest. (D) Average luciferase activity across replicates for both alleles of candidate SNPs. Error bars 
correspond to SE. *** indicates Wilcoxon rank sum test P < 0.001.
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further refine candidate causal variants. Finally, we note that, in 
addition to common variants, using TREDNet and similar tech-
niques to model and prioritize rare variants in the context of T2D 
and other diseases will be an important avenue for future studies.

Materials and Methods

A detailed description of computational and experimental analyses is provided 
in the SI Appendix, Supplementary Materials and Methods. Briefly, we developed 
a model, TREDNet, to predict enhancers in a two-phase process, implemented 
in keras v2.1.2. We trained phase one to predict DHSs, TF ChIP-seq peaks, and 
histone mark ChIP-seq peaks using data from the ENCODE (8) and NIH Roadmap 
(9) studies. We trained phase two to predict pancreatic islet, HepG2, and K562 
enhancers, defined as 2 kb regions centered on overlaps between H3K27ac ChIP-
seq peaks and chromatin accessibility peaks in each tissue/cell line. We applied 
TREDNet to i) perform in silico saturated mutagenesis experiments, ii) predict 
TFBSs from saturated mutagenesis profiles, and iii) predict the effects of SNPs 
on islet enhancers. Using these data, we prioritized candidate causal SNPs in 
statistical fine-mapping results for T2D (30), blood glucose levels (31), blood 
glucose levels after fasting (32), and glycated hemoglobin (31). At one signal 
associated with blood glucose levels (near PSMA1), we performed EMSAs and 
luciferase assays in pancreatic beta cell lines to confirm the predicted allelic effects 
among all SNPs in the 95% credible set.

Data, Materials, and Software Availability. Genomic data have been depos-
ited in zenodo (https://doi.org/10.5281/zenodo.8161621) (46).
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