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Understanding variant-specific differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics may 
explain differences in transmission efficiency and provide insights on pathogenesis and prevention. We evaluated SARS-CoV-2 
kinetics from nasal swabs across multiple variants (Alpha, Delta, Epsilon, Gamma) in placebo recipients of the ACTIV-2/A5401 
trial. Delta variant infection led to the highest maximum viral load and shortest time from symptom onset to viral load peak. 
There were no significant differences in time to viral clearance across the variants. Viral decline was biphasic with first- and 
second-phase decays having half-lives of 11 hours and 2.5 days, respectively, with differences among variants, especially in the 
second phase. These results suggest that while variant-specific differences in viral kinetics exist, post–peak viral load all variants 
appeared to be efficiently cleared by the host.
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The coronavirus disease 2019 (COVID-19) pandemic has 
been fueled by successive waves of new severe acute respira
tory syndrome coronavirus 2 (SARS-CoV-2) variants of con
cern (VOCs). Each new variant appears to have distinctive 
transmission and/or fitness advantages over the previous 
ones [1]. Understanding the underlying mechanism for this 
increased transmission efficiency is vital for predicting future 
variant waves and may provide insights on ways to prevent 
transmission. Prior studies have reported the impact of 
key mutations on SARS-CoV-2 viral fitness [2]. There are 
also reports that certain mutations increase the ability of 
SARS-CoV-2 variants to bind the human angiotensin- 
converting enzyme 2 (ACE2) receptor and mediate more 
rapid cellular entry [3]. However, it remains unclear to 
what extent differences in the levels or duration of viral shed
ding may be driving the increasing transmission efficiency. 
While there have been intriguing reports that VOCs may dif
fer in their viral kinetics during acute COVID-19 [4], other 

studies have not found a substantial difference in viral shed
ding among variants [5–8]. Thus, a more comprehensive 
analysis of viral dynamics across a broad range of 
SARS-CoV-2 variants is needed.

In this study, we evaluated the SARS-CoV-2 viral load peak 
and viral decay kinetics across a range of SARS-CoV-2 variants 
in outpatients with mild to moderate COVID-19 who enrolled 
in the ACTIV-2/A5401 multicenter phase 2/3 adaptive plat
form randomized controlled trial.

METHODS

Overview of Study Participants

The study participants included adults with documented acute 
SARS-CoV-2 infection enrolled in the ACTIV-2/A5401 plat
form trial of therapeutics for outpatients with mild to moderate 
COVID-19 (NCT04518410). This analysis was restricted to 
participants who were enrolled between January and July 
2021 in the placebo arms of the phase 2/3 evaluation of amubar
vimab plus romlusevimab monoclonal antibodies, and who had 
information on the infecting SARS-CoV-2 variant [Spike (S) 
gene sequencing], resulting in 299 participants. In 
Supplementary Figure 1, we present a flowchart of the number 
of individuals included in each step of the analyses. The proto
col was approved by a central institutional review board, 
Advarra (Pro00045266), for sites in the United States (US) 
and by local ethics committees for sites outside the US. All 
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participants provided written informed consent prior to study 
enrollment.

SARS-CoV-2 Viral Load Testing and Variant Sequencing

Anterior nasal (AN) swabs were self-collected by participants, per 
protocol, on enrollment (day 0) and daily through study day 14 
and at day 28 in phase 2 and on study days 0, 3, 7, 14, and 28 in 
phase 3. For each participant, we transformed “study days” to 
“days post–symptom onset” (DPO) using the day of symptom on
set for each participant. SARS-CoV-2 viral load from AN swabs 
were quantified as previously described, with a lower limit of quan
tification (LLoQ) imputed as 1.7 log10 copies/mL and a lower limit 
of detection (LLoD) imputed as 0.7 log10 copies/mL, as described 
before [9]. S gene sequencing was performed for all participants. In 
brief, viral RNA extraction was performed on 1 mL of swab eluted 
by TRIzol LSReagent (ThermoFisher). S gene amplification was 
performed using a nested polymerase chain reaction strategy 
with an in-house designed primer sets targeting codons 1-814 of 
S gene [10]. Sequencing was performed on the Illumina MiSeq 
platform and deep sequencing data analysis was carried out using 
the Stanford CoV-Resistance Database (RDB) platform [11]. 
SARS-CoV-2 variant determination was confirmed using 3 differ
ent variant-defining platforms, namely, CoV-RDB [11], Scorpio 
call version 1.2.123 [12], and Nextclade version 1.13.2 [13].

Analyses of Viral Load Data

We analyzed differences in baseline (study entry) participant 
characteristics by variant using general linear models for con
tinuous variables, namely, age, days post–symptom onset 
(DPO) to entry into the study, and baseline viral load, and χ2 

tests or Fisher exact tests (if any expected count was <1 or 
>20% of expected counts <5) for categorical variables (sex, 
race, study phase).

Maximum viral load post–symptom onset was defined as the 
highest viral load recorded in each participant. The time to viral 
load maximum is then the time from symptom onset to the 
time of the maximum observed viral load. The duration of viral 
shedding since symptom onset was defined as the time from 
symptom onset until the first time of viral load below the limit 
of quantification, and no subsequent larger viral load. We ex
cluded 26 participants because they had all viral load measure
ments above the LLoQ (Supplementary Figure 1). The 
maximum viral load, time to viral load maximum, and duration 
of viral shedding were compared across variants using general 
linear models, adjusting for potential baseline confounders, 
namely, age, sex, race, study phase, and time since symptom 
onset at study entry.

We defined viral rebound after >10 DPO as ≥1 log10 increase 
from the preceding viral load measurement, and a viral load 
reaching at least 3 log10. As an alternative definition we also an
alyzed similar cases but with an increase of ≥0.5 log10.

Analyses of Viral Decay Rate Postpeak

We quantified the rate of viral decline after the maximum ob
served viral load, assuming an exponential decay in the viral 
load. This assumption is consistent with visual inspection of 
the data. The model we fit is a biexponential (ie, biphasic) decay 
given by:

V = V0(Ae−λ1t + (1 − A)e−λ2t), 

where V is the viral load, V0 is its maximum value, A is the frac
tion of V that decays in the first phase at rate λ1, and (1 – A) is 
the fraction that decays in the second phase at rate λ2. We tested 
if a biphasic or a single-phase decay is better by setting A = 1 in 
the expression above, which then causes V to decay as a single 
exponential, and λ2 is not estimated. The selection of the best 
model was based on the corrected Bayesian information crite
rion (cBIC), where a smaller value signifies a statistically pre
ferred fit.

We fitted this model using nonlinear mixed effects, imple
mented in Monolix 2021R1 (lixoft.com/products/monolix/), 
to participants with at least 2 viral load measurements above 
the LLoQ during the decay phase (ie, decrease from maximum 
viral load) (n = 204). Each estimated parameter was assumed to 
follow a given distribution in the population (V0 is lognormal, 
A is logit normal, and λ1 and λ2 are lognormal), and the param
eter value for an individual i can be expressed (if lognormal) as 
θi = θeηi where θ is the median value of the population distri
bution and ηi is the individual random effect, assumed to be 
normally distributed as N(0, ω2), accounting for variability be
tween individuals. Data below the LLoQ and below the LLoD 
were handled as censored data.

We then tested whether the estimated model parameters dif
fered by variant using general linear models to adjust for base
line confounders, as above, and analyzed correlation between 
parameters using Pearson correlation.

RESULTS

Of 299 participants included in this study, 83 (28%) were in
fected with the SARS-CoV-2 Delta variant, 53 (18%) with 
Gamma, 42 (14%) with Alpha, 28 (9%) with Epsilon, and 93 
(31%) with “other” variants (these included Wuhan, 
non-VOCs, and <12 each of Beta, Iota, Lambda, and Mu vari
ants). Demographics and baseline characteristics are described 
in Supplementary Table 1.

We found evidence that the maximum observed viral load 
differed among the variants (P = .03, Figure 1A, 
Supplementary Figure 2A). The maximal viral load for Delta in
fection (median, 5.69 log10 SARS-CoV-2 RNA copies/mL) was 
the highest compared to the other variants, including Alpha 
(4.96 log10 copies/mL), Epsilon (4.76 log10 copies/mL), 
Gamma (4.31 log10 copies/mL), and other (5.36 log10 copies/ 
mL). This difference among variants remained significant 
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(P = .013) even in a model adjusting for baseline confounders, 
including age, sex, race, study phase, and time since symptom 
onset at study entry. With this model, we also found that max
imum viral load increased by 0.016 log10 copies/mL per year of 
age (P = .01). We then analyzed the time from symptom onset 
to maximum viral load, which in 19% of individuals occurred at 
a timepoint after baseline. We found that the time to maximum 
viral load was significantly different between variants (P  
< .0001, adjusted for baseline confounders) with Delta demon
strating the shortest period (Figure 1B, Supplementary 
Figure 2B). Of note, 1 of the potential confounders that we ad
justed for in this multivariate model was the time post-onset of 
symptoms at study entry, which was positively correlated with 
time to maximum viral load. Even after taking into consider
ation the timing of symptoms, there was still a significant effect 
of variants on time to maximum viral load (P < .0001).

Next, we analyzed the duration of viral shedding from 
symptom onset to below LLoQ and found that this was not sig
nificantly different among the variants (P = .1) (median dura
tion: Alpha = 15 days, Delta = 16 days, Epsilon = 13 days, 
Gamma = 16 days, and other = 13 days; Figure 2 and 
Supplementary Figure 3). In a multivariable model (n = 273, 
see Supplementary Figure 1), adjusting for baseline confound
ers, the duration of shedding was still not significantly different 
by variant (P = .12), but it was 2.3 days longer in males 
(P = .014).

We analyzed cases of viral rebound using a stringent defini
tion (see “Analyses of Viral Load Data” in Methods) and found 
that 18 (of 299) individuals showed a rebound of at least 1 log10 

in viral load after >10 DPO (Supplementary Figure 4A). If we 
define rebound as at least a 0.5-log10 increase, we find 21 indi
viduals with a rebound (Supplementary Figure 4B) [14].

Finally, we modeled the viral decline after the observed max
imum viral load. We could only fit the model to participants 
with sufficient data (n = 204). We verified that the distribution 
of variants across these 204 participants was similar to distribu
tion in the full dataset (P = .99). A biphasic decay fitted the data 
better than a single exponential decay model (cBIC: 2999 vs 
3098, respectively). There was no significant difference in the 
fraction of virus that decays in the first phase among the vari
ants (P = .22). The overall estimates of the first- and second- 
phase viral decay half-lives (t1/2) were 11.0 hours (95% confi
dence interval [CI], 10.2–11.9 hours) and 2.5 days (95% CI, 
1.5–3.4 days), respectively (Figure 3). There was a significant 
difference in the first phase of decay among the variants with 
Delta and Gamma variants showing the longest half-lives 
(P = .016; median t1/2: Alpha = 10.9 hours, Delta = 11.4 hours, 
Epsilon = 10.3 hours, Gamma = 11.4 hours, and other =  
9.9 hours), although these small differences are of unclear clin
ical significance. In the second phase there was also a significant 
difference (P = .002), with Alpha (median t1/2 = 36 hours) and 
Delta (median t1/2 = 34 hours) variants having shorter second- 
phase half-lives than the other variants (median t1/2: Epsilon =  
76 hours, Gamma = 63 hours, and other = 72 hours). This dif
ference is clearly visible in Figure 3. Interestingly, we found a 
strong correlation (r = 0.90, P < .001) between the second- 
phase decay rate and the initial viral load at the start of decay 
(V0 in the model).

DISCUSSION

In this study, we performed a modeling analysis of longitudinal 
SARS-CoV-2 viral kinetics across a range of variants in untreat
ed outpatients with mild to moderate COVID-19. The results 

Figure 1. A, Maximum viral load during study follow-up by variant. B, Days post–symptom onset to maximum viral load by variant. The boxplots represent the 25th and 75th 
percentiles (bottom and top edge of the box), the circle in the box represents the median, and whiskers extending from the edges of the box represent the smallest (bottom) or 
largest (top) value no further than 1.5 times the interquartile range. Outliers are represented as open circles. The P values shown correspond to analyses after adjusting for 
baseline covariates. Abbreviations: ANOVA, analysis of variance; DPO, days post–symptom onset.
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demonstrate significant variant-specific differences in both the 
maximal observed viral loads and timing of the viral load max
imum from AN swabs, with the Delta variant reaching a higher 
viral load and at an earlier time compared to prior variants. On 
the other hand, the duration of viral shedding (days to below 
LLoQ from symptom onset) was not different across variants. 
Our findings suggest that viral decay was better fit by a biphasic 
model than a simple exponential decay, as reported before in 
the context of a different protocol [9]. Our results estimated a 
first-phase decay t1/2 of 11 hours and a second-phase decay 
t1/2 of 60 hours. Understanding viral kinetics using mathemat
ical modeling of SARS-CoV-2 infection is important for under
standing SARS-CoV-2 transmission and to better inform 
public health responses to these outbreaks [15, 16].

While there have been conflicting results of how viral kinet
ics differ among variants [17–19], our results suggest that dif
ferences in viral kinetics could contribute to enhanced 
transmission. Specifically, faster increases in viral loads and 
higher maximal peak viral loads are likely to have contributed 
to Delta’s rapid spread and replacement of prior variants. 
Starting with the introduction of the D614G mutation, it be
came clear that changes in spike protein could lead to increased 
viral fitness [20]. Mutations within the spike protein of the 
Delta variant, including L452R, T478K, and P681R, have 
been associated with increased viral infectivity, pathogenesis, 
and transmission [21, 22]. The combination of L452R and 
T478K appears to have synergistic interactions, resulting in en
hanced ACE2 binding [23]. In vitro studies have shown that the 
Delta variant demonstrated a fitness advantage and increased 
infectiousness compared with the prior Alpha variant across 

physiologically relevant systems, including human alveolar ep
ithelial and 3-dimensional airway organoid systems. This rep
lication advantage was linked to differences in the Delta spike 
protein conformation, with a higher proportion of Spike found 
in a cleaved state compared to Alpha spike. This led to highly 
efficient cellular entry that was more resistant to neutralizing 
antibody inhibition compared to wild-type spike. The lack of 
significant differences in the time from symptom onset to viral 
clearance among the variants, despite differences in the maxi
mum viral load, suggests that the effectiveness of the immune 
responses is not different across variants. We did find that 
the second-phase clearance rate was faster in participants 
with higher maximum viral load. This would explain why de
spite differences in maximum viral loads across variants, there 
was no difference in the time to reach viral loads below the limit 
of quantification. However, it is also possible that participants 
with larger maximal viral loads allowed better quantification 
of the second-phase decay rate.

Another interesting observation is that the duration of shed
ding was significantly longer in males than females. This finding 
was not linked to higher maximum viral loads in men but is con
sistent with our previous report in an overlapping population 
[24]. The underlying etiology for sex-based differences in viral 
shedding kinetics remains unclear but could be mediated in 
part by differential anti-coronavirus immune responses, related 
to both SARS-CoV-2 [25] and seasonal coronaviruses [26].

One limitation of our study is that time of symptom onset is 
self-reported, and enrollment occurred a median of 5 days after 
symptom onset (Supplementary Table 1), which means that we 
may have missed the true viral load peak in many participants. 

Figure 2. Kaplan-Meier plot of duration of viral shedding by variant (N = 299). The y-axis denotes the probability of continuing to shed virus at different times and the x-axis 
denotes time post–symptom onset. The vertical tick marks correspond to 26 individuals lost to follow-up.
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Thus, our analyses refer to the maximum observed viral load, as 
defined in the Methods. However, fitting a dynamic model to 
compare the kinetics of viral load across variants makes effi
cient use of all of the data and reduces biases that may arise 
from missing the peak viral load, which is not needed to esti
mate the decay. Another issue is that we are studying a largely 
unvaccinated population infected with pre-Omicron variants. 
Nevertheless, Delta and Omicron variants have been reported 
to have similar shedding kinetics [27], and vaccination also 
does not seem to substantially alter viral decay kinetics in 
breakthrough Delta infection after vaccination [6, 27, 28], al
though time since vaccination can be an important modulator 
of viral load levels [29]. When evaluating viral infectivity, there 
are also factors outside of viral load kinetics that may affect 
transmission potential, including escape from host immune 
pressure [28]. One of the strengths of this study is the uniform 
and frequent sampling of AN swabs that was performed within 
a rigorous randomized controlled trial setting, as well as the use 
of a validated quantitative SARS-CoV-2 viral load assay to as
sess levels of viral shedding [30]. However, even more frequent 
viral sampling and larger group sizes for individuals infected 
with the different variants would provide more power to detect 
dynamic differences among variants and allow more precise es
timates of viral shedding.

In summary, we demonstrate that Delta variant infection led 
to, on average, the highest maximum viral load and shortest 

time from symptom onset to maximum viral load. We also 
found no significant differences for time to viral clearance 
among variants, with the first- and second-phase viral decays 
having overall half-lives of 11 hours and 2.5 days, respectively. 
These results suggest that while variant-specific differences in 
viral kinetics exist, all variants appeared to be cleared efficiently 
by the host.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy
edited and are the sole responsibility of the authors, so ques
tions or comments should be addressed to the corresponding 
author.
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