Table 6.
Results of LME model analysis of reaction times.
| Variables | Estimate | SE | df | t | pr (>|t|) |
|---|---|---|---|---|---|
| Intercept | 3.16 | 0.02 | 43.41 | 167.92*** | <0.001 |
| Familiarity | −0.06 | 0.01 | 45.44 | −6.20*** | <0.001 |
| English Vocabulary Proficiency | 0.00 | 0.02 | 29.01 | 0.23 | 0.816 |
| ContextY | −0.03 | 0.02 | 41.07 | −1.50 | 0.141 |
| English Vocabulary Proficiency: ContextY | 0.02 | 0.01 | 1108.40 | 2.00* | 0.046 |
*p < 0.05, ***p < 0.001.
Participants = 31. Items = 44. Total observation = 1181.
SE, standard error. df, degree of freedom.
The optimal model is lmer [logrt ~ Vocabulary Proficiency + Context + Familiarity + Vocabulary Proficiency: Familiarity + (1|item) + (1|participant), data = data, lmerControl optimizer = “bobyqa,” optCtrl = list (maxfun = 100000)].