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Summary
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung
disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both
drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular,
genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of
precision medicine have shown that “a one-size-fits-all approach” to the management of chronic lung diseases is no
longer appropriate. While precision medicine approaches have revolutionized the management of other diseases
such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet
need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker
candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and
highlight barriers to translate these research findings into clinical practice.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Idiopathic pulmonary fibrosis (IPF) is a chronic, debil-
itating lung disease with increasing prevalence, charac-
terized by a complex interplay of genetic, epigenetic,
immunologic and environmental factors.1,2 The disease
course is highly heterogeneous and unpredictable.
Three distinct patterns of disease progression have been
suggested including slowly progressive, rapidly pro-
gressive and relatively stable disease interposed by acute
exacerbations.3–5 The last years have seen the emergence
of use of two anti-fibrotic agents able to slow disease
progression,6,7 however, both drugs are administered
uniformly with minimal consideration of differences in
molecular subphenotypes associated with disease
progression.8,9

Research advances in our understanding of pulmo-
nary fibrosis pathogenesis and progression and the
emergence of precision medicine have shown that “a
one-size-fits-all approach” to the management of this
group of diseases is probably not appropriate.8 Tailored
therapies based on precision medicine can improve
treatment outcomes and concomitantly be cost-effective
through the avoidance of unnecessary exposure of pa-
tients to ineffective treatment regimens. In addition to
treatment response prediction, precision medicine
could also have a major role in the identification of in-
dividuals with disease susceptibility and pave the way
for early diagnosis. Importantly, precision medicine can
discriminate individuals at risk for progressive disease
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even before progression occurs, providing a window for
early intervention or alternative treatment regimens.

Precision medicine approaches have revolutionized
management of lung cancer due to the fact that prognosis
and treatment in lung cancer is largely based on patients’
molecular profile.10,11 Recently, a plethora of novel bio-
logic therapies have been approved for severe asthma,
such as anti-IL-5/anti-IL-5R and anti-IL4 for patients with
eosinophilic predominant severe asthma and anti-IgE for
allergic predominant severe asthma with increased IgE.12

Implementation of precision medicine in clinical practice
for patients with IPF remains an unmet need. This re-
view article aims to summarize current knowledge for
precision medicine in IPF and highlight barriers to
overcome for the implementation of these findings in
clinical practice (Fig. 1).
Disease susceptibility
Recent studies implicate that IPF is a highly polygenic
disease with multiple variants associated with disease
susceptibility.13,14 The variant showing the strongest as-
sociation with pulmonary fibrosis development and
pathogenesis is a polymorphism in the promoter region
of MUC5B (rs35705950), found using a genome-wide
linkage scan in a large-scale study.15–19 This variant leads
to higher MUC5B expression, deregulated mucosal host
defense and ultimately increased risk of IPF development
almost by 6-fold.16,17,20 Patients with theMUC5B risk allele
are less likely to present with telomere-gene mutations.21

Despite the fact that the variant rs35705950 is more
common in IPF [38% vs 9% in the general population16],
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Fig. 1: Schematic representation of personalized medicine approaches that could be implemented in future clinical practice for patients with IPF.
Early screening could lead to timely diagnosis, alter the nature course of the disease (red demarcation) and improve outcomes (blue demar-
cation). Implementation of the 52-gene signature could considerably improve the prognostic performance of GAP index. A plethora of other
biomarkers could have prognostic and/or theragnostic role.
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it is present in less than half of the cases. Recent data
implicated that MUC5AC may have a role in IPF sus-
ceptibility as well, further corroborating the role of mu-
cins in IPF.22 Variants in toll-interacting protein (TOLLIP)
leading to reduced expression and a variant of SPPL2C
have been also associated with IPF susceptibility in a
three-stage Genome-wide association study (GWAS)
study.23 On the contrary, another variant of TOLLIP,
rs5743890, seemed to be protective against the develop-
ment of pulmonary fibrosis.23,24

Moreover, large GWAS have demonstrated 20
frequent single nucleotide polymorphisms (SNPs)
related to IPF with minor allele frequency above 5%,
highlighting the association between disease suscepti-
bility with impaired host defense, cell-to-cell adhesion,
signaling and telomere maintenance.13,14,18,23,25,26 In
particular, a recent study validated genome-wide sig-
nificant associations with disease susceptibility for 11
out of the 17 previously published SNPs (7q22.1,
AKAP13, ATP11A, DPP9, DSP, FAM13A, IVD,
KANSL1, MUC5B, TERC and TERT).18 The same study
identified and replicated three novel genome-wide sig-
nificant SNPs (with associated altered gene expression
of DEPTOR, KIF15 and MAD1L1) related to IPF sus-
ceptibility.18 DEPTOR inhibits mTOR kinase activity
being part of mTORC1 and mTORC2 protein com-
plexes, while TGFb-induced DEPTOR suppression
stimulated collagen synthesis.18 Thus, association of
decreased DEPTOR expression with increased IPF
susceptibility corroborates evidence supporting the car-
dinal role of mammalian target of rapamycin (mTOR)
signaling in pulmonary fibrosis.27 With regards to
MAD1L1, it is noteworthy that its homolog MAD1 in-
hibits TERT activity, which implies that MAD1L1 might
increase disease susceptibility via reduced telomerase
activity.28,29 Moreover, novel signals of KIF15, SPDL1
and MAD1L1 derived from this work and/or other
elegant studies might imply a potentially important role
of mitotic spindle-assembly genes in disease suscepti-
bility.18,30,31 An updated meta-analysis of the aforemen-
tioned work including five studies demonstrated five
robust novel signals (an intergenic variant in 10q25.1,
variants in introns of RTEL1, STMN3, KNL1 and
NPRL3) further implicating telomere maintenance,
mTOR signaling and spindle assembly genes in IPF
susceptibility.13 Finally, a large recent meta-analysis
including patients from 6 ancestries identified 7 novel
IPF loci (index variant gene: GPR157, DNAJB4-GIPC2,
RAPGEF2, FKBP5, RP11-286H14.4, PSKH1, FUT6)
with 4 of them being driven by non-European ancestry,
highlighting thus the differences in terms of genetic
background across the world.14

Polymorphisms in several other genes such as
transforming growth factor beta-1 (TGFB1), HLA
DRB1*1501, interleukin-1 receptor alpha (IL1RN) and
IL8 have been suggested as candidate genes for IPF
susceptibility; yet, further larger studies are needed to
determine their exact role in disease susceptibility.32–36
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Finally, except variants, polymorphisms and GWAS
signals, telomere length has a major role in disease
susceptibility. Short telomere length is a frequent
finding in patients with IPF compared to aged-matched
healthy individuals,37 while interstitial lung abnormal-
ities (ILAs) have been recently associated with decreased
mean telomere length.38

Genetic mutations in familial pulmonary fibrosis
While variants (altered genome that could contain one or
more mutations and presents with distinct characteris-
tics) have been implicated in sporadic IPF, some muta-
tions (single change in genome that could lead or not to
distinct characteristics) have been implicated in familial
pulmonary fibrosis. Telomerase complex mutations are
more common in familial forms of pulmonary fibrosis
and might not be necessarily specific to individual ILD
entities.37,39–41 Accordingly, surfactant protein (SP) muta-
tions including SP-A1, SP-A2 and SP-C42–44 have been
linked to development of Familial Pulmonary Fibrosis,
whereas these variants are rarely encountered in sporadic
IPF.45–47 Genome-wide analysis of six families from
Finland with Familial Pulmonary Fibrosis suggested
ELMOD2, a gene associated with cell migration and
phagocytosis of apoptotic cells, as a candidate gene for
IPF susceptibility. This gene was expressed in alveolar
epithelial cells II and alveolar macrophages. Mutations in
ELMOD2 led to reduced ELMOD2 mRNA expression in
the pulmonary parenchyma of patients with IPF
compared to healthy individuals.48

Taken together, testing for disease susceptibility
genes could help personalize the radiological follow-up
of individuals at risk for IPF and the treatment of pa-
tients with IPF or ILAs. For example, if patients with
ILAs have SNPs in the common genes associated with
IPF risk, these patients should have more frequent
radiologic follow-up compared to patients with ILAs and
no genetic variations in IPF susceptibility genes.
Further investigation toward this direction is needed.
Diagnosis
Establishing an accurate diagnosis in patients with inter-
stitial lung diseases (ILDs) is often challenging despite the
improved quality of High-Resolution Computed Tomog-
raphy, the advent of deep learning and the multidisci-
plinary discussion of clinical, laboratory and radiographic
data.49–51 An ideal diagnostic biomarker could reduce rates
of misdiagnosis following multidisciplinary discussion
and concomitantly provide mechanistic insights for the
origin of the disease. The potential of several molecular
biomarkers has been investigated in an effort to
discriminate patients with IPF from healthy individuals or
patients with other ILDs.47,52 Despite an exponential in-
crease in our knowledge regarding IPF pathogenesis, the
lack of diagnostic accuracy, disease specificity, applica-
bility and cost-effectiveness of individual biomarkers has
www.thelancet.com Vol 95 September, 2023
been insufficient to justify their incorporation into clinical
practice, especially in a setting with limited resources.51 In
addition, given the recent guidelines for IPF and Pro-
gressive Pulmonary Fibrosis (PPF) and the trend towards
lumping rather than splitting, diagnostic biomarkers
might be the least pressing need with regards to IPF.
However, ruling out other fibrotic ILDs in need of
immunosuppressive therapy is still of paramount
importance.

A study investigating a panel of 35 extracellular
matrix (ECM), ECM-related and lung-specific analytes in
plasma showed that matrix metalloproteinase (MMP)-
7 > 1.75 ng/ml, SP-D >31 ng/ml and osteopontin >6 ng/
ml were able to discriminate patients with IPF from
patients with alternative idiopathic interstitial pneumo-
nias, both if used individually and as a combined in-
dex.53 However, the same index could not distinguish
patients with IPF from patients with rheumatoid
arthritis-ILD.53 Data analysis from the IPF-PRO registry
showed that patients with IPF have significantly
different levels in 551 proteins compared to controls.54

The glycoproteins thrombospondin 1, von Willebrand
factor, as well as C–C motif chemokine ligand 17 and
bactericidal permeability-increasing protein were among
the proteins with the more pronounced difference be-
tween IPF and controls54 suggesting coagulation as an
important mechanism required for IPF pathogenesis. A
targeted proteomic approach in a study with acceptable
sample size resulted in a protein signature that included
IGFBP-1, MMP-1, MMP-7, MMP-8 and TNFRSA1F and
was able to discriminate patients with IPF from control
subjects with a sensitivity of 98.6% and a specificity of
98.1%.55 Such approaches with combined indexes in-
crease considerably the diagnostic accuracy of all the
above biomarkers compared to results yielded when
these biomarkers were investigated individually.53,56–59

Other biomarkers related to epithelial cells, innate
immunity and aging have been investigated mainly on
individual basis and not as part of multidimensional
indexes. MicroRNAs have also been largely studied as
biomarkers for IPF diagnosis. Circulating caspase-
cleaved cytokeratin-18, an alveolar epithelial cell
apoptosis biomarker, was increased in IPF compared to
control subjects.60 The epithelium derived glycoprotein
Krebs von den Lungen-6 (KL6)/mucin 1 (MUC1) has
been reportedly increased in serum and BAL of patients
with IPF47,61,62; yet, high quality studies adjusting for age,
smoking and comparing patients with IPF and non-IPF
ILDs are still needed. Other studies focusing on the
diagnostic potential of epithelium derived proteins
demonstrated that SP-A and C-pro-SP-B serum levels
were increased in patients with IPF compared to non-
IPF ILDs and other pulmonary diseases, respec-
tively.63,64 Investigations of immune deregulation in IPF
led to the report that BAL levels of toll-like receptor 7
were higher in IPF compared to controls.24,65 A recent
study focusing on biomarkers of aging reported that
3
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increased plasma concentration of growth differentia-
tion factor 15 (GDF15), IL-6, tumor necrosis factor α
receptor II and C-reactive protein was linked to presence
of ILAs.66 Results for GDF15 were validated in a
different cohort.66 With regards to miRNAs, miR-29 and
let-7d were among the most downregulated, while miR-
21 and miR-154 were upregulated in patients with IPF
compared to controls.67–71 Finally, the diagnostic poten-
tial of several other biomarkers including secreted
phosphoprotein 1 (SPP1), FK506-binding protein 11 and
chitinase-3-like protein 1 (YKL-40) has been
investigated.72–75 None of the biomarkers described in
this paragraph are currently used in clinical practice but
they may have potential for such use with further
refinement and development.

To this end, the potential for clinical applicability of
most of the aforementioned biomarkers is limited,
especially if used individually. Thus, the last years have
seen an extensive research effort to investigate the IPF
lung tissue, where the disease is identified. Tran-
scriptomic analysis of lung tissue from patients with IPF
and Hypersensitivity Pneumonitis showed that genes
associated with epithelial development and collagen
catabolism were upregulated in both diseases, while
immune-response related genes were specifically upre-
gulated in patients with Hypersensitivity Pneumonitis.76

Genomic analysis of lung tissue from transbronchial
biopsies resulted in a commercially available biomarker,
denominated Envisia Genomic Classifier, with sus-
tained accuracy and high reproducibility for the detec-
tion of histopathologic features of usual interstitial
pneumonia (UIP).77–79 Envisia Genomic Classifier might
be helpful as a surrogate of histopathology that could
improve the diagnostic accuracy in IPF without the need
of surgical lung biopsy, if used in a multidisciplinary
setting.79 Of course, a major limitation is that identifi-
cation of UIP through the Envisia Genomic classifier
does not necessarily mean IPF. Association of genomic
UIP with PPF might substantially increase the clinical
applicability of this biomarker: yet, to this end, genomic
UIP has not been associated with progression free sur-
vival or longitudinal FVC decline.80
Disease severity, risk stratification & outcome
prediction
Estimation of disease severity and risk stratification in
IPF is still based almost exclusively on functional and
physiological indices such as Forced vital capacity
(FVC), diffusion capacity for carbon monoxide (DLCO)
and 6-min walking test (6MWT) given that computed
tomographic biomarkers (deep learning algorithms, e-
Lung) are in their infancy.81–87 Composite physiologic
index (CPI) and GAP (Gender, Age and Physiology)
index represent two of the most widely used indexes for
risk-stratification.88,89 Significant caveats of these indices
including the effect of emphysema on FVC, technical
variabilities affecting DLCO and the impact of heart-
related, myoskeletal disorders on 6MWD highlight the
pressing need for disease specific biomarkers.83,90–92

Gene variations, microRNAs and telomere short-
ening have all been shown to predict IPF mortality
(Table 1). With regards to gene variations, the same
MUC5B polymorphism (rs35705950) that led to IPF
susceptibility, was paradoxically associated with
decreased mortality in IPF.15,131 However, a recent report
showed that this finding might be a source of index
event bias, a phenomenon observed if subjects are
selected based on disease status without accounting for
other common causes of incidence and prognosis.132 In
terms of other gene variations, the presence of a func-
tional variant of TOLLIP, rs5743890, was associated
with reduced survival in IPF.23,133 Similarly, the identi-
fication of a TLR3 functional variant (Leu412Phe, TLR3
L412F) in patients with IPF has also been suggested as a
marker of progressive disease.125 A recent staged
genome-wide association study identified a novel
variant, named PCSK6, that reached genome-wide sig-
nificance.118 PCSK6 which encodes a calcium-dependent
serine endoprotease and is mainly expressed in airway
epithelial cells, lymphatic endothelial cells and adventi-
tial fibroblasts was associated with increased mortal-
ity.118 Another recently identified variant found in an
antisense RNA gene of the Rho and Rac effector protein,
named protein kinase N2, PKN2, (rs115982800)
demonstrated genome-wide significant association with
rapid FVC decline119 in IPF. In addition to gene varia-
tions, five microRNAs (miR-185, miR-210, miR-302c,
miR-376c and miR-423-5p) were increased in IPF lung
tissue of rapid compared to slow progressors.111 In terms
of peripheral blood, reduced miR-29 expression in
serum and plasma was associated with increased mor-
tality in two cohorts of patients with IPF.110 Regarding
telomere shortening, shorter telomere length was asso-
ciated with increased risk of mortality in patients with
IPF in independent patient cohorts.122 Additionally,
mutations in genes related to telomere maintenance
(TERT, TERC, PARN and RTEL1) can be indicative of
the PPF phenotype and reduced survival.123

In addition to genetics and epigenetic variations,
changes in gene expression, particularly in peripheral
blood, have also been shown to predict IPF mortality. In
particular, one of the studies that provided a significant
advance in precision medicine in ILD was the identifi-
cation of a 52-gene signature in peripheral blood able to
predict mortality in IPF in six independent cohorts.9,130 A
genomic risk scoring system denominated Scoring Al-
gorithm for Molecular Subphenotypes (SAMS) based on
this 52-gene signature was able to discriminate IPF
patients into high and low-risk mortality subgroups after
adjusting for clinical covariates. The combination of the
52-gene signature risk profiles and GAP index,
improved substantially the prognostic accuracy of the
GAP index.9 Interestingly, this signature also predicted
www.thelancet.com Vol 95 September, 2023
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Biomarker Disease susceptibility Diagnosis Prognosis Treatment response/theragnostic References

Alpha defensins + 56

CA 19-9 + 59

CA-125 + + 59

CCL18 + 93

cCK18 + 60

CXCL13 + 94

ECM neoepitopes + 95

eNose + + 96–98

Envisia Genomic Classifier + 77–79

Genome-wide signals (altered gene expression of
DEPTOR, KIF15, MAD1L1 etc)

+ 18

KL-6/MUC1 + + + 47,99–105

LOXL2 + 106

MMP7 + + 53,59,107,108

Microbiome + 109

miR-21, miR-154, let-7d + 67–71

miR-29 + + 110

miR-185, miR-210, miR-302c, miR-376c and miR-423-5p + 111

Mitochondrial DNA + + 112

Monocyte count + 113–115

MUC5B + + 15–19

N-terminal propeptide of type VI collagen + 116

Osteopontin + + 53,117

PCSK6 + + + 118

PKN2 + 119

S100A12 + 120,121

Surfactant proteins + + + + 45–47,53,59

Telomere length/telomerase + + 37,39,122,123

Thyroid hormone + 124

TLR3 + 125

TOLLIP + + 23,24,126

Tregs + 127,128

3D pulmospheres + 129

52-gene signature + + 9,130

Abbreviations: cCK18, caspase-cleaved; CCL18, chemokine ligand 18; CXCL13, CXC-motif ligand 13; ECM, extracellular matrix; KL-6, Krebs von den Lungen-6; LOXL2, lysyl
oxidase like-protein-2; MUC, mucin; PKN2, protein kinase 2; SP, surfactant protein; TLR, toll-like receptor; TOLLIP, toll-interacting protein.

Table 1: Most important biomarkers studied in IPF and their potential clinical utility.

Review
mortality in COVID-19 suggesting the presence of a
profibrotic subphenotype of COVID-19 patients with
severe disease.134 Cellular deconvolution of gene
expression data not only demonstrated that monocytes
are the cellular source of the high-risk profile based on
the 52-gene signature but also contributed to the iden-
tification of a high monocyte count as predictor of
mortality in IPF and other fibrotic disorders.113,134 Large-
scale studies have shown that increased monocyte count
was linked to increased risk of disease progression,
hospitalization, and mortality in IPF.113–115

Besides monocytes, other peripheral blood and BAL
immune cells and biomarkers have been associated with
IPF progression and mortality. For example, higher
serum levels of chemokine (C-X-C motif) ligand 13 and
chemokine ligand 18 (CCL18) were shown to predict
disease progression in IPF.93,130,135 Lower CD4 T cell
www.thelancet.com Vol 95 September, 2023
counts and low expression of T-cell co-stimulatory genes
are associated with decreased IPF survival.9,130 In terms
of regulatory T cells, while BAL Treg proliferative
response and IL-4 release were negatively correlated
with lung function, Semaphorin 7a+CD4+CD25+FoxP3+

Tregs were increased in the circulation of patients with
progressive disease127,128 suggesting immune dysregula-
tion as a mechanism associated with IPF progression.
Altered microbiome has been proposed as responsible
for immune dysregulation in multiple diseases and
could be responsible for the changes seen in IPF.136 For
example, increased bacterial burden and specific path-
ogens in BAL of patients with IPF are predictive
of functional decline and death in IPF.109 This could
also explain increased expression of the cationic anti-
microbial peptides alpha defensins that are mainly
expressed in alveolar type II cells and form an essential
5
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element of innate immunity, which have been sug-
gested as a marker of acute exacerbation in patients with
IPF.56 This finding further highlighted that factors
associated with immune deregulation and alveolar
epithelial cell injury can be both relevant to IPF patho-
genesis and provide prognostic information.

Several studies have looked at the identification of
peripheral blood biomarkers reflective of alveolar
epithelial cell injury. The PROFILE study, a large pro-
spective study of treatment-naive patients with IPF,
focused on epithelium-derived proteins and identified
four serum biomarkers (CA19-9, CA-125, MMP-7, SP-
D) that had considerable prognostic potential and were
suitable for replication.59 Baseline values of SP-D and
CA19-9 were higher in patients with the progressive
phenotype compared to patients with stability. Increased
concentrations of CA-125 over three months were pre-
dictive of mortality.59 Increased concentrations of MMP7
were associated with worse survival.59 The aforemen-
tioned results were in line with other studies showing
the negative prognostic of higher SP-D, SP-A, MMP-7
and other metalloproteinases in IPF.59,137–140 Higher
levels of osteopontin, another protein mainly expressed
in alveolar epithelial cells, might be a marker of acute
exacerbations in patients with IPF.56,117 ELISA obtained
values of osteopontin, MMP-7, periostin and ICAM1 led
also to a progression index able to discriminate patients
with stable and progressive disease.141 Increased KL-6,
which is also a protein reflecting injury of alveolar
epithelial cells type II, has been suggested as a marker of
disease progression and mortality47,99; yet, results were
not reproducible in other studies.47,100,142 Serial mea-
surements of KL-6 might be the key for the optimization
of the prognostic value of this biomarker.101,102 Most
recently, increased KL-6 was demonstrated as a prog-
nosticator of acute exacerbations.100,103,104

Investigations related with the metabolic state of
alveolar epithelial cells yielded also important findings.
The evidence that hypothyroidism predicted mortality in
patients with IPF coupled with experimental data
showing that thyroid hormone improved epithelial
mitochondrial function.124,143 Further research effort to
obtain prognostic information through studying meta-
bolic derangements showed that increased mitochondrial
DNA correlated with poor survival in two cohorts of pa-
tients with IPF.112 Studies focusing on biomarkers rele-
vant to collagen demonstrated also interesting results.
Another report analyzing data from the PROFILE study
investigated longitudinal change in collagen degradation
biomarkers and showed that extracellular matrix neo-
epitopes were associated with disease progression.95

Higher serum levels of lysyl oxidase-like 2, a protein
promoting collagen accumulation, have been associated
with IPF progression106; yet, findings require validation.
Several other non-disease specific biomarkers, including
periostin, YKL-40, S100A12, ανβ6 integrin and anti-heat
shock protein 70 have been suggested as prognostic
markers in IPF3,47,52,62,120,121,133,144–148 (Table 1). Further
studies focusing on the implementation of these prog-
nostic biomarkers are required to monitor disease pro-
gression, timing for lung transplant referrals and
treatment decisions.
Prediction of treatment response—
theragnostic biomarkers
There is still a pressing need of biomarkers able to
predict and measure treatment response in IPF
(Table 2). One of the first studies demonstrating the
applicability of theragnostic biomarkers in IPF showed
that TOLLIP CC genotype and TT genotype were asso-
ciated with worst and better N-Acetylcysteine (NAC)
response, respectively.126 The main limitations of this
study are 1) that genetic data were available for a small
number of patients in this study and 2) that NAC is not
currently FDA approved to be used as a treatment for
patients with IPF. Results from the PRECISIONS trial
which seeks to address whether NAC has a differential
effect on lung fibrosis progression depending on
TOLLIP gene variants are greatly anticipated.154

Currently, only two drugs, nintedanib and pirfenidone
are FDA approved to slow lung function decline in IPF.

In terms of theragnostic biomarkers able to measure
treatment response to nintedanib and pirfenidone in
IPF, the N-terminal propeptide of type VI collagen and
SP-D may be adequate theragnostic biomarkers given
that nintedanib significantly reduced levels of both
biomarkers as early as week 4.116 CA-125 holds potential
as a marker of response to nintedanib and further data
are greatly anticipated.59 Serum SP-D might be a
biomarker for pirfenidone effectiveness as well152 as a
potential pharmacodynamic biomarker, especially when
measured serially.153 Change in mitochondrial DNA
following 3 months of treatment correlated with pirfe-
nidone response after 1 year.112 Finally, KL-6 and CCL18
were able to predict disease progression and mortality in
IPF; yet, more studies are needed to address if KL-6 can
be used as a theragnostic biomarker, while CCL-18
failed to predict treatment response.105,147,155,156

Other studies have investigated the theragnostic po-
tential of certain biomarkers in IPF. For example, a
study limited by sample size suggested that SP-A might
have theragnostic potential both for nintedanib and
pirfenidone.151 Analysis of the INMARK trial with
regards to the change of biomarkers following treatment
with nintedanib, showed that ECM turnover biomarkers
such as collagen 1 degraded by MMP (C1M), collagen 6
degraded by MMP-2/9 (C6M), collagen 5 degraded by
MMP-2/9 (C5M) and C reactive protein degraded by
MMP-1/8 (CRPM) might be theragnostic biomarkers;
yet, further investigation is needed.150 Importantly, a
novel study suggested a novel way to simulate lung
microenvironment through 3D pulmospheres, which
are spheroids consisting of cells from primary lung
www.thelancet.com Vol 95 September, 2023
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Biomarker Compounds Exact role References

CA-125 Nintedanib CA-125 may be a biomarker of response to nintedanib
Adjusted mean CA-125 levels decreased with nintedanib vs placebo from week 4

59,149

ECM turnover biomarkers Nintedanib Potential as theragnostic biomarkers 150

eNose Both antifibrotics eNose technology may predict treatment response 96

KL-6/MUC1 Pirfenidone Levels might correlate with pirfenidone response; further studies are needed 105

Mitochondrial DNA Pirfenidone Change following 3 months of treatment correlated with pirfenidone response after 1 year 112

N-terminal propeptide of type VI collagen Nintedanib Nintedanib reduced levels as early as week 4 116

SP-A Both antifibrotics Decrease baseline to 3months and 6months predicted outcomes at 6months; larger studies are needed 151

SP-D Both antifibrotics Nintedanib reduced levels as early as week 4; may be a pharmacodynamic biomarker of pirfenidone 116,152,153

TOLLIP TT genotype NAC Better response in NAC 126

3D pulmospheres Both antifibrotics Invasiveness predicted antifibrotic responsiveness 129

52-gene signature Both antifibrotics Genomic risk profiles shifted their trends over time following antifibrotic treatment 9,130

Abbreviations: cCK18, caspase-cleaved; CCL18, chemokine ligand 18; CXCL13, CXC-motif ligand 13; ECM, extracellular matrix; KL-6, Krebs von den Lungen-6; LOXL2, lysyl oxidase like-protein-2; MUC,
mucin; PKN2, protein kinase 2; SP, surfactant protein; TLR, toll-like receptor; TOLLIP, toll-interacting protein.

Table 2: Biomarkers able to predict or measure treatment response in pulmonary fibrosis.

Review
biopsy. Quantification of 3D pulmospheres invasive-
ness, defined as the zone of invasion percentage, was a
reliable way to assess responsiveness in antifibrotics and
thus this approach holds promise for the guidance of
treatment decision toward the antifibrotic that is more
likely to confer benefit to each individual. A major caveat
hampering the clinical applicability of that work is that
pulmospheres were obtained via video-assisted thoracic
surgery.129 Forming 3D pulmospheres with tissue
derived from less invasive methods such as cryobiopsy
might be the key to implement such personalized
medicine approaches in the future clinical practice.
Recent data showed that eNose technology may predict
treatment response to antifibrotics before treatment
initiation.96–98 A clinical molecular signature of CA-125,
CXCL13, MMP-7, OPN and YKL-40 that predicted dif-
ferential transplant free survival in untreated patients
with IPF, was able to retain its prognostic accuracy (but
at higher thresholds) in patients receiving antifibrotics.94

Finally, the 52-gene signature that was predictive of
mortality in the peripheral blood in IPF, showed also
potential as a biomarker of treatment response, given
that genomic risk profiles shifted their trends over time
after initiation of antifibrotic therapy (Fig. 2).
Future perspectives and concluding remarks
During the last decade, we have witnessed a scientific
explosion leading to several biomarkers and two anti-
fibrotic compounds able to slow IPF progression
(Tables 1, 2, and 3, Fig. 1). The new challenge is the
translation of biomarkers that have acceptable cost and
are able to provide actionable information to clinicians.
A really important biomarker should alter clinicians’
decision i.e. by leading to early diagnosis, providing
information regarding disease activity or the need
for treatment modification. This could be achieved
through single biomarkers, multidimensional indexes
www.thelancet.com Vol 95 September, 2023
or polygenic risk scores (scores that identify individual’s
risk based on the combination of different gene abnor-
malities associated to pulmonary fibrosis) like the one
recently presented in the form of an abstract.157

Biomarkers that correlate with disease activity could
be a major tool to identify the time to intervene. These
biomarkers could have a major role for patients ILAs
and mild functional impairment, given that in these
cases antifibrotic treatment is sometimes delayed.
Moreover, biomarkers that can lead to identification of
specific endotypes will be important.15,122,158,159 Classi-
fying pulmonary fibrosis as high-risk genomic PF,
MUC5B-PF or telomeropathy-PF instead of using the
word “idiopathic” might be a better approach. The use
of precision medicine and endotyping could pave the
way to pharmacogenetic approaches and guide treat-
ment decisions. Treating endotypes with targeted ther-
apies based on the expression of specific biomarkers
could maximize effectiveness of future therapies and
concomitantly spare adverse events. Current examples
of this are 1) the clinical trial testing the synthetic
androgen danazol for patients with short telomeres
based on previous reports that androgens can restore
telomerase activity in IPF and 2) the PRECISIONS trial
for NAC based on TOLLIP gene variants.160–162 Moving
from a uniform approach to a patient-centered approach
is critical.163,164 Trials of theragnostic biomarkers along
with weight-based dosage of antifibrotics or trials of
lower doses in patients with ILAs might confer benefit
and concomitantly spare the adverse events that lead to
treatment discontinuation. Studies aiming to manage
symptoms, in a personalized fashion, should be strongly
encouraged. For example, the extended-release form of
nalbuphine, a dual-acting k opioid receptor agonist/μ
opioid receptor antagonist holds promise as a compound
able to reduce chronic cough in patients with IPF.165

Taken together, considerable progress has been made
in the area of precision medicine in IPF. Nonetheless,
7
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Fig. 2: 52-gene signature trends in high-risk patients with IPF shift after anti-fibrotic therapy initiation. Panel A and B show up and down scores
derived from SAMS respectively. Scores shift their trends over time in high (continuous red line) vs low (continuous black line) risk groups after
antifibrotic initiation. Panel C shows FVC trends of treated patients. A simultaneous reduction in up score and increase in down score is shown
with black line, while other score changes are shown with red lines. (Modified from the article of Herazo-Maya et al, Lancet Respiratory Medicine
2017 with permission.)

Mechanistic pathway

Alveolar epithelial dysfun

Immune dysregulation

Extracellular matrix remo

Epigenetic markers

Metabolism

Abbreviations: ECM, extracel

Table 3: Main mechanisti
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there is a need for high-quality, implementation research
to bring these biomarkers into daily clinical practice. Of
course, only a substantial minority of the aforementioned
biomarkers will ultimately be applied in the clinical
practice. Probably these biomarkers will be cost-effective
and able to provide actionable information. Future
Biomarkers

ction Alpha defensins, CA19-9, CA-125, CK18, KL-6/MU

Alpha defensins, CXCL13, CCL18, HSP70, microbio

deling Collagen degradation biomarkers, ECM neoepitope

miR-29, let-7d, miR-21, miR-154, miR-302c, miR-4

Thyroid hormone, mitochondrial DNA

lular matrix; KL-6, Krebs von den Lungen-6; MUC, mucin; SP, surfactant protein; TOLLIP,

c pathways related to biomarkers in IPF.
clinical trials for new compounds should focus on disease
endotypes and pharmacogenetics. They should also
include disease severity and theragnostic biomarkers.
Such approaches will require significant investment but
will lead to improvement in quality of life and better
patient outcomes.
C1, MUC5B, PCSK6, osteopontin, SP-A, SP-C, SP-D, telomeres, telomerase

me, monocyte count, S100A12, TLR3, TOLLIP, Tregs, 52-gene signature

s, LOXL2, MMP7, PCSK6

23, miR-210, miR-376c, miR-185

toll-interacting protein.
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Outstanding questions

1. Should we classify fibrotic ILDs based on their endotype
using terms such as MUC5B-PF or telomeropathy-PF
instead of using the word “idiopathic”?

2. Could biomarker-based clinical trials lead to the approval
of novel compounds for specific subpopulations?

3. Should we treat ILAs with lower doses of antifibrotics in
order to slow disease progression and reduce the
likelihood of adverse events?

Search strategy and selection criteria

Data for this Review were identified by searches of
MEDLINE, PubMed and references from relevant articles
using the search terms “precision medicine in IPF”,
“personalized medicine in IPF”, “pathogenesis of pulmonary
fibrosis”, “biomarkers in pulmonary fibrosis”, “epithelial cells
in pulmonary fibrosis”, “extracellular matrix”, “metabolism
in pulmonary fibrosis”, “genetics and epigenetics in
pulmonary fibrosis”, “immunity in pulmonary fibrosis”,
“diagnostic biomarkers in pulmonary fibrosis”, “prognostic
biomarkers in pulmonary fibrosis” and “theragnostic
biomarkers in pulmonary fibrosis”. Abstracts and reports
from meetings were included only when they related
directly to previously published work. Only articles
published in English between 2000 and 2023 were
included.
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