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Intensive care unit sinks are persistently colonized with 
multidrug resistant bacteria and mobilizable, resistance-
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ABSTRACT Contamination of hospital sinks with microbial pathogens presents a 
serious potential threat to patients, but our understanding of sink colonization dynamics 
is largely based on infection outbreaks. Here, we investigate the colonization patterns 
of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from 
two hospitals in the USA and Pakistan collected over 27 months of prospective 
sampling. Using culture-based methods, we recovered 822 bacterial isolates represent
ing 104 unique species and genomospecies. Genomic analyses revealed long-term 
colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. 
Nanopore sequencing uncovered examples of long-term persistence of resistance-con
ferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) 
in Pseudomonas spp. is maintained both by strain colonization and horizontal gene 
transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, 
independent of colonization. These results emphasize the importance of proactive, 
genomic-focused surveillance of built environments to mitigate MDRO spread.

IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant 
bacteria. Here, we used whole-genome sequencing to track the long-term colonization 
patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA 
and Pakistan collected over 27 months of prospective sampling. We analyzed 822 
bacterial genomes, representing over 100 different species. We identified long-term 
contamination by opportunistic pathogens, as well as transient appearance of other 
common pathogens. We found that bacteria recovered from the ICU had more antibiotic 
resistance genes (ARGs) in their genomes compared to matched community spaces. 
We also found that many of these ARGs are harbored on mobilizable plasmids, which 
were found shared in the genomes of unrelated bacteria. Overall, this study provides 
an in-depth view of contamination patterns for common nosocomial pathogens and 
identifies specific targets for surveillance.

KEYWORDS whole-genome sequencing, antimicrobial resistance, horizontal gene 
transfer, plasmid ecology, hospital surveillance, genomic epidemiology

T he spread of antibiotic resistance (AR) poses a global threat to the healthcare 
system, increasing morbidity and mortality associated with infectious diseases (1–

3). Globally, there were an estimated 4.95 million deaths associated with bacterial 
AR in 2019, and deaths attributable to AR in European Union have increased ~2.5-
fold between 2007 and 2015 (1, 4). Hospitalized patients are especially vulnerable to 
infections by multidrug-resistant organisms (MDROs) (5–9). One model of how hospi
tal-acquired infections (HAIs) occur is that shedding of pathogens by a patient or 
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healthcare worker seeds contamination of common surfaces and equipment, which 
can in turn seed infection of additional patients (5, 10–12). In fact, contaminated 
hospital surfaces have been clearly linked to specific outbreaks of infections caused by 
lineages of related MDROs, which colonize plumbing systems and spread on hospital 
surfaces (13–17). However, there are still key gaps in our understanding of the natural 
history of MDRO colonization dynamics in the hospital built environment. First, much 
of the prior work in this space has focused on retrospective sampling in the context 
of outbreaks, which provides an important yet incomplete picture of MDRO coloniza
tion dynamics in healthcare systems. Furthermore, although genomic surveillance of 
nosocomial pathogens is common, the choice of methodology has a large impact on 
discriminatory index. Specifically, methods that can differentiate between isolates that 
belong to a common endemic lineage versus those that result from a recent trans
mission are not commonly used, resulting in a course-grained picture of transmission 
dynamics (18). To identify recent transmission events, single-nucleotide polymorphisms 
(SNPs) tracking is required to discriminate between lineages that may be endemic to 
a region (19). Additionally, long-term contamination can lead to MDROs transferring 
genes conferring AR, heightened virulence, and environmental persistence to other 
species via horizontal gene transfer (HGT) (20). Transmission of mobile genetic elements 
(MGEs) has previously been shown to exacerbate nosocomial outbreaks (21–24) and 
mediate multidrug resistance across large phylogenetic distances (25–28). A higher-reso
lution understanding of the composition and genomic adaptations of the hospital built 
environment microbiome, and scope of HGT that occurs is needed to reduce the burden 
of HAIs.

Previously, we found that healthcare surfaces at a tertiary care hospital in Pakistan 
(PAK-ICU) carried a high burden of MDROs that were dominated by closely related 
lineages, and limited long-read sequencing suggested widespread HGT of the carbape
nemase blaNDM-1 (29). Although we recovered many common pathogens that could be 
attributed to shedding from fecal contamination, we also observed extensive contami
nation by opportunistic, soil- and water-associated pathogens, such as Pseudomonas 
stutzeri. This led us to hypothesize that water sources—which are difficult to decon
taminate due to the formation of biofilms—were acting as a significant reservoir for 
these environmental MDROs (30, 31). To study the patterns and persistence of MDROs 
and antibiotic resistance genes (ARGs) in hospital water systems, we conducted a new 
5-month-long longitudinal study at PAK-ICU, where endemic burden of ARGs is high 
(Fig. 1A) (1, 29, 32, 33). To determine if the hospital environment represented a different 
MDRO burden compared to the local environment, we also sampled two community 
environments: two private homes (PAK-HOME) and two office break rooms (PAK-WORK). 
As different ARGs have been found in genetically similar MDR Enterobacterales isolated 
from hospitals in Pakistan and the USA (32), we sampled matched sites in the USA 
(US-ICU, US-HOME, and US-WORK). Each sample was subjected to a suite of selective 
culturing designed to enrich for MDROs (see Materials and Methods), and isolates were 
characterized by whole-genome sequencing (WGS).

From our 28 months of sampling over these two studies, we show a high burden of 
common nosocomial pathogens on sink surfaces—including many Pseudomonadales 
and Enterobacterales—and strains that persist throughout PAK-ICU for as long as 2 years. 
We found that isolates recovered from ICUs have higher ARG abundance and diversity 
compared to those collected at HOME and WORK sites, and ARGs that confer resistance 
to antibiotics of last-resort are found in both common and opportunistic pathogens. 
Finally, we show cross-species sharing of plasmids that confer clinical resistance to all 
beta-lactams tested, including carbapenems. Altogether, this presents a concerning 
scenario where the PAK-ICU water system allows for persistence of MDROs through 
vertical transmission of related clones and transmission of resistance-conferring MGEs 
between taxa by HGT. These results demonstrate the importance of methodically 
characterizing hospital microbiomes in a surface-focused manner, to better understand 
how MDROs move through and persist in the healthcare environment.
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RESULTS

PAK and US sinks and water have a high burden of species of Pseudomonas, 
Acinetobacter, and Stenotrophomonas

In this study, we recovered 530 bacterial isolates from 360 samples taken from hospital, 
office, and home water and sink surfaces in Pakistan and the United States. To improve 
taxonomic resolution, resolve transmission dynamics, and analyze ARG content, we 
performed WGS on all isolates. In total, we analyzed 822 recovered isolates, including the 
292 isolates from PAK-ICU and US-ICU previously sequenced by D’Souza et al. (29). These 
isolates represented 67 different species and 37 genomospecies (Fig. 1B, Supplementary 
Data), revealing that our current water-focused survey sampled a distinct yet overlap
ping microbial ecosystem compared to our previous study. In contrast to D’Souza et al., 
where 28.0% (81/292) of the isolates were either Acinetobacter baumannii or Enterococ
cus faecium, in this study we recovered few A. baumannii (5) and no E. faecium. The 
most common species was Pseudomonas aeruginosa, which represented 10.4% (55/530) 
of all isolates in this study. Other common pathogens, such as Klebsiella pneumoniae 
(14) and Escherichia coli (5), were recovered less frequently. The majority of isolates 
were identified as common soil- and water-associated opportunistic pathogens, such 
as Stenotrophomonas maltophilia (34), Acinetobacter johnsonii (26), Aeromonas caviae 
(24), P. stutzeri (24), and Citrobacter freundii (23). Overall, 34% (181/530) of the isolates 
were identified as Pseudomonas, 12.1% (64/530) were Acinetobacter, and 11.9% (63/530) 
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FIG 1 Study overview. (A) Overview of collection scheme. Created with BioRender.com. (B) Most commonly recovered species from both this study and D’Souza 

et al., colored by order. (C) Number of isolates recovered per room, per time point. Faceted by environment and colored by country. Due to a local holiday, Month 

4 samples were not collected from PAK sites. (D) Number of isolates collected per room, per collection. Faceted by environment and colored by country.
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were Stenotrophomonas (Fig. S1A). Within our collection, some taxa were exclusive to 
a country: P. stutzeri was recovered only from PAK sites, and Acinetobacter ursingii was 
recovered only from US sites (Fig. S1C). Like D’Souza et al., more isolates were recovered 
from PAK-ICU compared to US-ICU (213 vs 31, respectively). The difference in microbial 
recovery for HOME and WORK sites between countries was smaller (n = 148 in PAK vs 
n = 138 in USA) (Fig. 1C). Across all environments, sink surfaces (sink basin, drain trap, 
and faucet) yielded the most isolates per collection compared to the water itself (Fig. 
1D). In US-ICU, nearly all isolates (28/31) were recovered from drains (Fig. 1D). Despite 
the diversity of individual species recovered, the most common taxa were collected at 
multiple time points, suggesting MDRO strains may persist in the sampled environments.

P. aeruginosa, P. stutzeri, and Serratia marcescens strains persist on PAK-ICU 
surfaces for more than 2 years

We  hypothesized  that  PAK-ICU  sink  surfaces  are  persistently  colonized  by  closely 
related  isolates.  To  identify  possible  transmission  events,  we  first  constructed  a 
core  genome  alignment  of  the  draft  genomes  for  the  most  common  species  and 
grouped  genomes  into  lineages  of  <500  core  genome  SNPs.  We  next  aligned 
reads  to  assemblies  within  each  group  in  an  all-vs-all  manner  to  select  an  internal 
reference  and  counted  whole  genome  single-nucleotide  variants  (SNVs)  against  that 
reference.  To  define  strain-level  groups  that  were  most  likely  the  result  of  a  recent 
transmission,  we  used  a  cutoff  of  ≥99.9995%  average  nucleotide  identity  (ANI) 
based  on  SNVs  to  an  in-group  reference  (see  Materials  and  Methods)  (18).  We 
found  that  many  of  the  frequently  recovered  isolates  were  members  of  closely 
related  strains,  some  appearing  transiently  and  other  persisting  for  at  least  2  years 
(Fig.  2).  P.  aeruginosa  genomes  were  commonly  found  in  strain  groups  (<36  SNVs), 
with  86.6%  (71/82)  belonging  to  1  of  13  strains  (Fig.  2;  Fig.  3A  and  B).  Similarly, 
85.7%  (30/35)  of  S.  maltophilia  genomes  belonged  to  one  of  three  strains  (<23 
SNVs),  with  a  single  strain  dominating  PAK  samples  (Fig.  S2A  and  B).  Individual 
isolates  of  S.  maltophilia  Strain  1  were  recovered  from  four  different  buildings 
in  Pakistan  (PAK-WORK  and  PAK-HOME),  both  on  sink  surfaces  and  in  the  water 
itself  (Fig.  S2A  and  B).  Interestingly,  no  S.  maltophilia  isolates  were  recovered  from 
PAK-ICU.  Many  P.  aeruginosa  strains  were  time-  and  space-restricted,  such  as  Strains 
10,  12,  and  13,  which  were  recovered  from  a  single  room  at  a  single  time  point 
(Fig.  3A  and  B).  However,  most  strains  were  recovered  over  longer  periods  of 
time,  such  as  Strain  2,  where  the  time  between  the  first  and  last  appearance 
was  27  months  (Fig.  3B).  Including  isolates  reported  by  D’Souza  et  al.  (which  did 
not  sample  exclusively  from  water-associated  surfaces),  we  found  Strain  2  isolates 
on  the  sink  handles,  alcohol  foam  dispenser,  and  nurse  call  button,  highlighting 
that  contamination  is  not  limited  to  sinks  (29).  Strain  2  isolates  were  recovered 
from  multiple  different  rooms  in  PAK-ICU,  suggesting  a  common,  local  source  of 
this  strain  in  this  environment.  This  pattern  of  P.  aeruginosa  colonization  was  not 
limited  to  PAK-ICU,  as  Strain  3  isolates  were  detected  in  three  different  US-ICU 
sinks  over  a  4-month  period  (Fig.  3B).

P. stutzeri showed similar persistence patterns as P. aeruginosa, where some strains 
were transient, while one (Strain 3) was detected over a period of about 26 months in 
multiple rooms (Fig. S2E and F). Serratia marcescens was also persistent over a period of 
about 24 months, but dominated by a single strain that was detected in seven PAK-ICU 
rooms (Fig. S2C and D). Although not as extensive in time scale, Enterobacterales such as 
Klebsiella, Escherichia, and Citrobacter were found in strain groups at multiple times 
during the study (Fig. S2G through M). By contrast, A. johnsonii and A. junii strains were 
exclusively found in the same room at the same time point, despite being commonly 
found on sink surfaces (Fig. 3C through E). This suggests that strain persistence is either 
not as common or persisting strains exist at a lower density compared to other taxa.
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Isolates recovered from ICU rooms were enriched in ARG abundance and 
diversity compared to HOME and WORK rooms

Isolates recovered from ICUs had a higher abundance of ARGs compared to isolates 
from HOME or WORK rooms, in both PAK and US sites (P < 2.22e−16 and P = 4.4e–
07, Wilcoxon rank-sum test) (Fig. 4A). We also found that isolates recovered from ICUs 
possessed ARGs that were predicted to have activity against more drug classes, in both 
PAK and US sites (P < 2.22e−16 and P = 2.5e–05, Wilcoxon rank-sum test) (Fig. 4B). 
As taxa were differentially recovered from different environments, we compared the 
ARG abundance within each genus. Genera that were exclusively recovered from ICUs, 
such as Escherichia and Serratia, had a higher burden of ARGs compared to genera that 
were exclusively recovered from HOME or WORK rooms, such as Agrobacterium (Fig. 4C 
and D). But even within genera recovered from both environments, isolates that were 
recovered from ICUs had significantly higher abundance and diversity of ARGs (P < 0.05, 
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pairwise Wilcoxon test with Benjamini-Hochberg adjustment) (Fig. 4C and D). This can 
be partially explained by the different species found in each environment, such as the 
various Pseudomonas genomospecies that were recovered exclusively from PAK-ICU (Fig. 
S1), but even common species like P. stutzeri and A. johnsonii were enriched in ARGs 
when comparing PAK-ICU and PAK-HOME or WORK isolates (Fig. S3). This result could 
be explained by the long-term persistence of drug-resistant strains. To support this 
explanation, we observed that P. stutzeri Strain 3 isolates (which had <11 SNVs between 
them) persisted in PAK-ICUs and harbored 9–10 ARGs, including the beta-lactamases 
blaVIM-2 and blaOXA (Fig. S4). However, A. johnsonii strains (for which ICU isolates were 
also shown to be enriched in ARGs) appeared only transiently in our sampling, even 
though a similar number of isolates were recovered from PAK sites. These results suggest 
that while persistence of dominant strains is an important mechanism for maintenance 
of MDROs in this environment for certain taxa, it is not the only one.

Enterobacterales, Aeromonadales, and Alteromonadales possess a similar 
repertoire of ARGs

To identify ARGs that were most prevalent across different taxa (and potentially acquired 
horizontally), we calculated the average frequency of each ARG per genome in each 
genus (Fig. 4E). We observed that similar ARGs frequently appeared in the genomes of 
different genera. Concerningly, we found the extended-spectrum β-lactamases (ESBLs) 
and carbapenemases blaCTX-M-15, blaNDM-1, and blaOXA-23 among the most frequent 
ARGs in this cohort (Fig. 4E). On average, blaCTX-M-15 appeared 0.13× to 1× per Enter
obacterales genome (2/15 Escherichia and 16/16 Serratia isolates, respectively). The 
metallo-β-lactamase (MBL) blaNDM-1 appeared 0.8× for each Shewanella genome (4/5), 
0.69× for each Aeromonas genome (18/26), and 0.52× for every Citrobacter genome 
(15/29) (Fig. 4E). These ARGs, along with the genes sul1, sul2, ble, aph(3″)-Ib, and aph 
(6)-Id appeared to co-occur in the genomes of Enterobacterales (Fig. 4E), suggesting that 
HGT may play a role in persistence of ARGs in this environment.

Clustering of shared sequences identifies widespread sharing of ARG-encod
ing regions

To identify potential HGT events, we developed a computational pipeline for identifying 
horizontally transferred sequences in our entire data set using a BLASTn-based clustering 
method to identify families of common plasmidic sequences (25, 35). To reduce the 
likelihood of hits resulting from nearly identical, vertically acquired sequences, we first 
selected contigs originating from plasmids using Platon on all genomes (34). We then 
performed an all-vs-all alignment of the selected contigs using BLAST and filtered 
alignments at ≥99% identity, ≥95% coverage, and ≥5 kb in length (36). We first com
pared the total amount of shared genomic space between isolates to taxonomy of 
isolates and found that genomes within the orders Enterobacterales, Aeromonadales, 
and Alteromonadales appear to engage in extensive cross-species sharing of plasmidic 
DNA (Fig. 5A). Curiously, Pseudomonadales (Pseudomonas and Acinetobacter spp.) did 
not appear to have as widespread sharing of DNA, despite representing a larger portion 
of the data set (Fig. 5A). We then annotated the ARGs encoded on shared sequences, 
and found that many ESBLs and carbapenemases were frequently encoded on contigs 
shared between different taxa (Fig. 5C). The most widespread ARG sharing occurred 
with contigs encoding ble, sul1, and blaNDM-1, which were shared between >21 unique 
combinations of species. Moreover, blaNDM-1 was shared between unique combinations 

FIG 4 (Continued)

represent genera found more in HOME/WORK rooms. Each bar is annotated with heatmaps showing the mean number of ARGs (red/orange) and ARG classes 

(green/blue) in each genus. *** = P < 0.001, ** = P < 0.01, * = P < 0.05 by pairwise Wilcoxon tests with Benjamini-Hochberg adjustment. Individual group sizes 

and ARG counts are noted in Supplementary Data. (E) Balloon plot showing the average number of times each ARG appears in a genome from each genus 

(num_ARG_appearances/num_genomes), colored by ARG class. For visibility, only the top 35 ARGs found in the data set are shown. ARG, antibiotic resistance 

gene; ICU, intensive care unit.
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FIG 5 HGT events within the sink environment. (A) Phylogenetic cladogram of all 822 genomes in this study, generated using GTDB-Tk and RAxML. The outer 

ring is colored by taxonomic order, and the lines connecting each node represent shared genomic space between those two genomes by BLAST alignment (>5 

kbp in length, >99% identity, and >95% coverage). Lines are colors blue if the two genomes are the same species, yellow if they are different species, and pink 

if they are different species and the shared genomic spaces encodes an ESBL or carbapenemase. (B) Network showing the 11 clusters of plasmid sequences 

identified using nanopore sequencing and sequence alignment. Each node represents a single contig, colored by genus. An edge connecting two

(Continued on next page)
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of 14 genera, 6 families, and 6 orders (Fig. 5C). Looking closer at these results, much of 
this diversity was driven by sharing between Shewanella and various Enterobacterales. 
Other ARGs known to confer high levels of resistance were found on shared sequences, 
including blaTEM-1, blaCTX-M-15, blaNDM-5, and blaCMY-4, but these were not limited to 
beta-lactamases. We found sharing of nine different classes of ARGs between many taxa 
(Fig. 5C). These observations suggest the possibility of HGT allowing for dissemination of 
clinically relevant ARGs within the hospital environment.

Plasmids harboring diverse and clinically important ARGs are disseminated 
across multiple genera and detected over 19 months apart

Epidemiological and genomic evidence suggested the possibility that numerous ARGs 
were shared among spatially linked pathogens species through plasmids. To identify 
such events, we used an iterative approach, where we clustered the BLAST alignment 
data using Cytoscape (37) and performed Oxford Nanopore Technology (ONT) long-read 
sequencing on representative isolates from each cluster to circularize plasmid sequences. 
Clusters containing multiple species and isolates annotated with ESBLs and carbapene
mases were given preference. After hybrid assembly, the all-vs-all BLAST alignment was 
repeated, and clusters were re-analyzed. In total, we performed nanopore sequencing 
on 60 isolates, which we combined with the 10 hybrid assemblies that were previously 
reported in D’Souza et al. (29). To identify families of shared plasmids, we further filtered 
the alignment results using the following criteria: (i) at least one aligned contig was 
circularized and (ii) the aligned contigs differed by no more than 10% in length. Overall, 
we identified 11 clusters (Table 1 and Fig. 5B) of highly similar plasmid families. To 
identify plasmid sharing within each family, we employed an SNV-based analysis used for 
tracking plasmid spread within healthcare-associated bacteria (35). Within each family, 
a reference sequence was chosen based on the first appearance of that plasmid, and 
Illumina reads from each sample within that family were aligned to that reference to 
quantify SNVs. A threshold of 99.985% (<15 SNVs per 100 kbp) was chosen to determine 
if the shared sequences were likely due to HGT (35).

This analysis identified a pair of nearly identical plasmids (4 SNVs over ~300 
kbp) carrying the tetracycline destructase tet (X3), the beta-lactamases blaNDM-1 and 
blaOXA-58, and numerous aminoglycoside ARGs shared between two A. junii and A. 
johnsonii isolates collected in months 6 and 25, respectively (Fig. 5D). MOB-suite 
identified MOBP relaxases on this plasmid, and annotated it as mobilizable (Table S1), 
providing additional evidence that this plasmid is able to cross genetic barriers through 
HGT. A separate cluster of similar plasmids (Cluster 11) was also identified, which differed 
by a segment encoding blaOXA-58 was found shared between two unrelated A. johnsonii 
isolates (16 plasmid SNVs vs >73,000 whole genome SNVs) from month 23 in two 
different rooms in PAK-ICU. This suggests that large conjugative MOBP plasmids are 
possibly endemic in this environment and enable ARG persistence through HGT among 
Acinetobacter spp. We also observed a pair of near-identical plasmids (0 SNVs over ~85 
kb, >95% coverage) carrying the carbapenemase blaIMP-1 shared between two unrelated 
P. stutzeri isolates (>43,000 SNVs across the entire genome) collected 24 months apart 
(Fig. 5D). This plasmid was annotated as “non-mobilizable” by MOB-suite, but the gene 
annotations revealed sequences with homology to the replication initiator protein RepA 
and Type IV conjugal transfer proteins (TraD, TIGR03759-family protein, TIGR03752-family 
protein). It is possible that sequence databases are not adequate to fully annotate the 

FIG 5 (Continued)

nodes represents a significant BLAST alignment between those two contigs (>5 kbp in length, >99% identity, and >95% coverage, <10% difference in contig 

size, at least one contig is circularized). (C) Balloon plot showing the most commonly shared ARGs different taxonomic levels. For each ARG encoded on a 

shared genomic space, the number of unique taxa combinations sharing that ARG was counted at different taxonomic levels. For visibility, only the most 

commonly-shared ARGs are shown. (D) Nucleotide alignment of plasmid Clusters 10, 7, and 2. Gray blocks show BLAST matches of >99% ID and >5 kb, with 

SNV counts on the left, and the ANI (based on SNVs) noted on the right. ORFs are colored by function (pink = ARG, orange = MGE, teal = other). ANI, average 

nucleotide identity; ARG, antibiotic resistance gene; ESBL, extended-spectrum β-lactamase; HGT, horizontal gene transfer; SNV, single-nucleotide variant.
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type IV secretion system (T4SS) proteins in Pseudomonadales, or the T4SS machinery is 
incomplete in this plasmid and requires a helper plasmid for conjugation (38). The host 
isolate of this plasmid was not found to contain other plasmid sequences, however. 
Finally, another pair of nearly identical plasmid (one SNV over 6,141bp) carrying the 
blaOXA-232 carbapenemase and a MOBP-family relaxase was found in two distantly 
related K. pneumoniae isolates (2,134 SNVs over the entire genome) collected over 23 
months apart (Fig. 5D). On shorter time scales, we also observed extensive sharing of 
near-identical plasmid sequences (Table 1, Supplementary Data). Our analysis suggests 
that these plasmids are disseminated widely in this environment, can persist for up to 2 
years, and can mobilize to unrelated hosts.

Persistent plasmids confer a resistance phenotype

To investigate the phenotypic consequences of harboring some of these plasmids, 
we identified strains with multiple isolates that differed in the presence or absence 
of an identified plasmid. We performed Antibiotic Susceptibility Testing (AST) using 
Kirby-Bauer disk diffusion assays in accordance with Clinical and Laboratory Standards 
Institute (CLSI) guidelines (Supplementary Data) (39). When we tested K. michiganensis 
Strain 1 isolates, we observed that all except for one (PK1-MO2-ICU-B4) was pan-resistant 
to all beta-lactams tested, including the carbapenems imipenem and meropenem (Fig. 
S5B). WGS showed that all resistant isolates harbored the beta-lactamases blaTEM-1 and 
blaNDM-5, which PK1-MO2-ICU-B4 lacked (Fig. S5B). Nanopore sequencing of another 
K. michiganensis Strain 1 isolate collected from the same room at the same time 
(PK1-MO2-ICU-D4) was able to circularize the Cluster 1 plasmid harboring these ARGs 
(Fig. 5E Fig. S5A). This same plasmid was found in the genomes of five other Enter
obacterales isolates, varying by at most one SNV: two unrelated C. freundii, an unre
lated K. michiganensis, a K. penumoniae, and an E. hormaechei isolate. AST testing 
showed that those isolates were also not-susceptible to all beta-lactams tested, with 
the exception of the other K. michiganensis (PK3-MO2-ICU-F5) showing susceptibly to 
Cefotetan (Supplementary Data). This cluster of plasmids was annotated by MOB-suite as 
an IncN plasmid about ~67 kbp in length, and encoding a MOBF relaxase that suggests 
that it is a conjugative plasmid. These data provide strong evidence that presence of 
this ARG-harboring plasmid, which was found in numerous Enterobacterales genera and 
encodes conjugation machinery, is sufficient for conferring clinically relevant resistance 
to multiple classes of beta-lactamases.

DISCUSSION

The colonization of hospital sink surfaces by MDROs leading to disease is well documen
ted, but the transmission dynamics that enable these surfaces to act as reservoirs is 
not well understood (18, 40). Here, we present a multiyear, genomic investigation of 
bacterial colonization in matched clinical and non-clinical spaces in Pakistan and the 
USA. This resulted in the recovery of 530 new bacterial isolates, for a total of 822 isolates 
across both sampling sites. Using comparative genomics, we identified 104 species in 
total, including 37 genomospecies. Across all sites, we find a similar microbial ecology, 
dominated by Pseudomonas, Acinetobacter, and Stenotrophomonas. This is concordant 
with other observations (29, 41, 42), although we find a unique and diverse microbiome 
of taxa that are not currently represented in databases. We recovered many isolates 
from both clinical and non-clinical environments, but we found a pattern of increased 
ARG abundance and diversity in ICU sites. To our knowledge, this is the first compara
tive geonomic comparison of MDRO colonization in geographically matched ICU and 
community built environments. We identified variable colonization patterns, where some 
species demonstrated strain persistence on ICU sinks for over 2 years in the same 
building, while other species appear more transiently. Focusing on isolates that harbored 
beta-lactamases, we found examples of strain persistence allowing ICU sinks to act as a 
reservoir for ARGs. We found similar patterns of ARG content among Enterobacterales 
which led us to perform additional nanopore long-read sequencing on 60 isolates, 
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resulting in near-complete genomes and circularized plasmid sequences. By analyzing 
networks of highly similar plasmid sequences, we identified potential occurrences of 
HGT enabling ARG transfer across taxonomic boundaries and maintenance of ARGs in 
the environment over time. This work adds to the body of work of MDRO colonization 
in hospital built environments, illuminates how colonization dynamics varies between 
different taxa, and illuminates examples of MDRO persistence in hospital sinks both 
through vertical and horizontal transmission of ARGs.

Recent studies have similarly sought to understand and characterize the ecology 
of hospital sinks using genomics (14, 18, 42–47). These surveys have found similari
ties between environmental isolates and patient isolates associated with nosocomial 
outbreaks, particularly in S. marcescens, P. aeruginosa, and C. freundii. Some high-resolu
tion studies indicate that similar strains establish themselves in sinks and persist over 
time, suggesting that sinks act as a reservoir for these pathogens (18, 42). Detection of 
similar MDROs in wastewater indicates that these pathogens can spread beyond a single 
sink and enter the larger ecosystem (48, 49). Based on these observations, we focused 
on longitudinal genomic measurements of MDROs persistence on these surfaces, in 
multiple rooms and buildings.

We found long-term contamination of surfaces, both from common pathogens like P. 
aeruginosa and less common, but increasingly appreciated pathogens like P. stutzeri (50, 
51). Hospital sinks acting as a reservoir of P. aeruginosa has been reported before (13, 
16, 46, 52, 53), but here we show that persistence of these strains is common outside 
of an outbreak setting, and provide strong genomic evidence showing reappearance 
of a recently transferred isolate rather than a derivative lineage (18). Interestingly, not 
all strains were found to persist over multiple collection times, and the P. aeruginosa 
accessory genome was found to be significantly associated with whether that strain was 
found at multiple time points (Fig. S7). We can speculate that a genomic association 
exists with strain persistence in P. aeruginosa, but elucidating that would require much 
more extensive sampling. We found less-extensive examples of strain persistence by 
Enterobacterales, which have been associated with nosocomial infections (15, 17, 54, 55). 
Sinks have previously been associated with nosocomial A. junii infection (56), and we 
previously found extensive colonization of PAK-ICU surfaces with Acinetobacter spp. (29). 
Similarly, we frequently recovered A. junii and A. johnsonii isolates from both clinical and 
non-clinical sink surfaces at PAK and US sites. So, it was somewhat surprising to find no 
examples of strain persistence. Both A. junii and A. johnsonii have been reported to form 
biofilms on liquid interfaces, which allow them to resist disinfection and persist over time 
(57–60). It is possible that the strains we sampled did not form biofilms as readily, or 
they were present at much lower density and additional sampling be necessary to detect 
strain persistence. Altogether, these findings are concordant with previous observations 
that Pseudomonas spp. can establish long-term colonization of sink surfaces (42, 52). 
Meanwhile, we frequently detected Klebsiella and E. coli, but strains appeared to be more 
transient in their appearance, possibly shed by recent patients or healthcare workers. 
Previous genomic surveillance of Klebsiella and E. coli has also shown that hospital sinks 
are populated by a mixture of strains, which can be associated with ward or location 
(61, 62), but the limited resolution of methods like MLST and core genome comparisons 
means that claims about vertical transmission cannot be made. Here, we observe that 
although sink contamination with Klebsiella and E. coli is common, the persistence of 
individual strains occurs on a shorter time scale compared to Pseudomonas (Fig. 2 Fig. 
S2). This corroborates observations that Klebsiella infection in hospitalized patients is 
largely caused by unrelated strains, likely originating from the patient’s own microbiome 
(63, 64). However, nosocomial transmission is still possible and detection and disinfection 
of these pathogens is critical to protect susceptible patients from recently shed MDROs 
(55, 64).

Perhaps the most concerning finding is the maintenance of ARG-harboring plasmids 
in hospitals by HGT. This work adds to the growing body of literature that establishes 
specific examples of HGT occurring within hospitals (20, 25, 47) and describes specific 
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cases of HGT allowing for transfer of multiple ARGs—including carbapenemases and 
ESBLs—across phylogenetic boundaries (25, 47). This presents another mechanism by 
which ARGs persist in the environment that does not require a strain to establish itself 
on a surface. This is best illustrated by plasmid Clusters 2, 7, and 10 which demonstrate 
how high-risk carbapenemases can be preserved in species where we did not observe 
any strain persistence, or even between hosts of different species. When we typed 
these plasmid sequences, we identified relaxase and replicon types that are predicted 
to allow conjugation and are associated with appearance in multiple genera (65). We 
also identified plasmids in Acinetobacter spp., which are known to be naturally compe
tent (66). Much of the sharing of DNA sequences we found was within Enterobacter
ales, which is consistent with the dense plasmid exchange network seen in this order 
(25, 26, 41, 65). We did not find HGT as frequently within Pseudomonadales despite 
those genomes representing almost half of our data set. Other studies have reported 
that shared sequences among P. aeruginosa and Stenotrophomonas spp. contain many 
prophages and integrated conjugative elements (41), so it is possible that our analysis 
(which was designed to identify shared plasmids) overlooked the mechanism of HGT that 
is more commonly used by these taxa.

This study had several limitations. By selective culturing to enrich for MDROs, we 
did not capture the full microbial ecology of these surfaces. Metagenomic studies, 
which are becoming increasingly common in these environments, would be better 
suited to comprehensively profile their respective microbiomes (18, 67). We also cannot 
conclude an exact mechanism of transmission, as surface-to-surface transmission would 
appear the same as source-to-multiple-surface in our sampling scheme. Finally, our 
bioinformatic analysis was designed to detect whole plasmids, and therefore discarded 
shared sequences that may be the result of transposition and integration in the genome. 
Further analysis designed to capture the full extent of HGT on these surfaces could better 
characterize HGT events in non-Enterobacterales isolates.

In conclusion, our investigation of MDRO persistence in hospital sinks provides a 
high-resolution view of the strain dynamics of differing taxa, the ARG burden in these 
environments, and the different mechanisms used by these taxa that results in the 
maintenance of ARGs in these environments. Our work illustrates the utility of genomic-
based methods for monitoring surface contamination and emphasizes the role that 
HGT plays in the persistence of ARGs in the environment. Further work is needed 
to understand the full dynamics between patients, healthcare workers, and ICU sinks, 
complemented by efforts to decontaminate sinks and eliminate these MDRO reservoirs.

MATERIALS AND METHODS

Sample collection and culturing

Rooms (ICU, HOME, and WORK) were sampled every month for 5 months (due to a 
local holiday, the Month 4 samples from PAK were not collected). At each time point, 
three sink surfaces were sampled in each room: sink faucet opening (swabbing on the 
aerator for 1 min), sink basin (swabbing entire inside surface for 1 min), and the sink 
drain (swab inserted directly into the drain and rubbed against the sides of the pipe). 
Two water samples were then also collected: first collection (the first 14mL sitting in the 
fixture) and 2 min flow (after letting the water run for 2 min, collect 14mL of water). The 
ESwab collection and transport system (Copan, Murieta, CA, USA) was used to collect 
surface samples; swabs were moistened with sterile water prior to sample collection. Two 
swabs were held together for specimen collection. Specimens collected in Pakistan were 
shipped to the US site for processing and analysis. One ESwab specimen was vortexed 
and 90µL of eluate was inoculated to each of the following culture selective medium: 
VRE chromID (bioMerieux, Marcy-l'Étoile, France), HardyCHROM ESBL (Hardy Diagnostics, 
Santa Maria, CA, USA), Cetrimide Agar (Hardy, Santa Maria, CA, USA), MacConkey Agar 
with cefotaxime (Hardy, Santa Maria, CA, USA), and MacConkey Agar with ciprofloxacin 
(Hardy, Santa Maria, CA, USA). Sheep’s blood agar (Hardy, Santa Maria, CA, USA) was also 
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used as a growth control, but only isolates from selective plates were sequenced. Plates 
were incubated at 35°C in an air incubator and incubated up to 48h prior to discard if 
no growth. Up to four colonies of each colony morphotype (as appropriate for the agar 
type) were subcultured and identified using matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-TOF MS) with the VITEK MS system. Water 
samples were briefly vortexed, and 100µL was inoculated on the same media. All isolates 
recovered were stored at −80°C in TSB with glycerol.

Antibiotic susceptibility testing

After shipment to the US site, antimicrobial susceptibility testing was performed using 
Kirby-Bauer Disk Diffusion, interpreted according to criteria from the M100-S30 (39), on 
329 isolates from commonly recovered.

Illumina WGS

Total genomic DNA was obtained from pure cultures using the QIAmp BiOstic 
Bacteremia DNA kit (Qiagen, Germantown, MD, USA). DNA was quantified  with the 
Quant-iT PicoGreen dsDNA assay (Thermo Fisher Scientific,  Waltham, MA, USA), and 
0.5ng of genomic DNA was used to create sequencing libraries with the Nextera kit 
(Illumina, San Diego, CA, USA) using a modified  protocol (68). Samples were pooled 
and sequenced on the Illumina NextSeq platform to obtain 2×150 bp reads. The 
reads were demultiplexed by barcode and had adapters removed with Trimmomatic 
v0.38 (69). Processed reads were de novo  assembled into draft genomes with 
Unicycler v0.4.7 (69) using default settings, and the assembly.fasta file  was used for 
all  downstream analysis.  Assembly quality was verified  using QUAST v4.5 (70), bbmap 
(71), and CheckM v1.0.13 (72). Genomes were included for analysis if  the assemblies: 
(i)  had <500 contigs (≥1,000 bp), (ii)  the length of the assembly in small contigs 
(<1,000 bp) represented <2% of the total assembly length, and (iii)  had an estimated 
completeness >90% and contamination <5%.

ONT WGS

Total genomic DNA was obtained from pure cultures using the QIAmp BiOstic Bacter
emia DNA kit (Qiagen, Germantown, MD, USA) with the following modifications to 
preserve High Molecular Weight DNA: heating step reduced to 8 min and bead-beating 
step reduced to 90 s. DNA was quantified with the Qubit BR dsDNA assay (Thermo Fisher 
Scientific, Waltham, MA, USA), and 1µg of genomic DNA was used to create sequenc
ing libraries with the ONT Ligation Sequencing Kit (SQK-LSK109) and Native Barco
des (EXP-NBD196) (Oxford Nanopore Technologies, Oxford, UK). Samples were pooled 
and sequenced on an ONT MinION Flow Cell (R9.4.1 chemistry). Reads were demulti
plexed and basecalled with guppy v5.0.11 using the following command: guppy_base
caller -i fast5/ -s fastq/ --config dna_r9.4.1_450bps_sup.cfg gpu_runners_per_device 24 
--num_callers 12 --compress_fastq --trim_barcodes --disable_qscore_filtering --bar
code_kits EXP-NBD196–-detect_mid_strand_barcodes --min_score_mid_barcodes 60x 
cuda:0. Long reads were filtered with filtlong v0.2.0 (73) to remove reads <1,000 bp, 
and the worst 5% of reads. Long reads were combined with trimmed short reads and 
assembled with Unicycler v0.4.7 (69) using default settings. Assemblies were subjected 
to the same quality control measures as before.

Genome annotation

The assembly.fasta file from Unicycler was annotated with prokka v1.14.5 (74), and the 
resulting files were used for all further analyses. ARGs were identified using AMRFinder
Plus v3.9.8 (75). For statistical comparisons of ARG counts, only 530 new isolates were 
considered.
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Taxonomic assignment

All isolates were initially identified using the VITEK MS v2.3.3 system (bioMérieux, 
Marcy-l'Étoile, France). Following draft genome assembly, the species assignment was 
done using an in sliico approach. Species were first approximated by running Mash 
Screen (76) on each draft genome against a reference database built with all bacte
rial assemblies on RefSeq marked as “Assembly from type,” “Assembly from synonym 
type,” or “Reference” (accessed 16 July 2021). The top two hits from the Mash Screen 
results were selected as references. Those reference genomes were combined with 
our assembled draft genomes and compared in an all-vs-all manner using FastANI to 
calculate ANI between each pair of isolates (77). Species were determined if the genome 
in question had >95% ANI to a reference type genome (77). Isolates that did not pass 
this threshold were considered to be novel genomospecies, and a putative genus was 
assigned using the closest reference type genome matches. In addition to our assem
bled draft genomes, all genomes from D’Souza et al. were downloaded from RefSeq 
(BioProject accession PRJNA497126) (29) and included in this analysis to detect common 
species and genomospecies.

Core genome alignment

For individual species, the .gff  files  generated by Prokka were used to construct 
a core genome alignment with Roary v3.12.0 and PRANK v.170427 (78, 79).  The 
core genome alignment was used to build a maximum likelihood tree using rAxML 
v8.2.11 and visualized using iToL (80, 81).  For the phylogenetic analysis of all  isolates, 
marker genes were identified,  extracted, and aligned using GTDB-Tk v1.7.0 (82). A 
maximum likelihood tree was constructed from the alignment as before using rAxML 
and iToL (80, 81).

Strain-sharing analysis

For species where at least 10 isolates were found across both studies (with at least 
one being from this study), pairwise core genome SNP counts between isolates were 
calculated using snp-dists v0.8.2 and clustered roughly using a cutoff of <500 pairwise 
SNPs (83). Within each grouping, trimmed Illumina reads and draft genomes were used 
to call variants in an all-vs-all manner using snippy v4.6.0 (84). Reads from D’Souza 
et al. were downloaded from SRA using the BioProject accession (PRJNA497126) and 
processed with Trimmomatic v0.38 (69). SNVs (including SNPs and indels) were counted 
between each query-reference pairing, with sites showing variation between a genome 
and its own reads masked from all calculations. Within each grouping, the genome with 
the highest median number of aligned bases when used as a reference was chosen as 
the reference assembly for comparisons within that group. ANI was calculated using the 
formula:

ANI = num_aligned_bases − SNVs
num_aligned_bases

An ANI cutoff of 99.9995% was chosen as a cutoff for determining strain identity 
based on the cutoff of 99.999% recommended by inStrain’s authors (85) and the 
observation that it captured the comparisons between the most similar isolates in 
the multimodal distribution of calculate ANI values (Fig. S6). Given observations that 
non-hypermutator P. aeruginosa strains accumulate SNPs at a rate of 1.1–5.5 per year in 
the setting of chronic infection (86–88), this threshold would represent about 6.4–31.8 
years of divergence. These strain groups were confirmed using inStrain: genomes were 
dereplicated with drep v3.2.2 (89) to create a reference set, reads were mapped with 
bowtie2 v2.3.4.1 (90), profiled with inStrain profile, and pairwise comparisons calculated 
with inStrain compare (19). The same threshold was used with inStrain’s popANI statistic. 
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If there were multiple calculations for the same comparison (using a different reference), 
the one with the highest number of compared bases was selected.

Accessory genome analysis of P. aeruginosa

Core genes were removed from the gene_presence_absence.Rtab generated by Roary. 
The vegdist function from the Vegan R package to calculate Jaccard distance between 
genomes, and pcoa function from the ape R package was used to perform principal 
coordinates decomposition (91). PERMANOVA was performed using the adonis2 function 
in Vegan (92).

Identification of shared plasmid sequences

Draft genomes were first filtered for contigs predicted to originate from plasmids using 
platon v1.5 (34), and then aligned against one another in an all-vs-all manner using 
nucmer v4.0.0b2 (93). Matches were filtered for >5 kbp and 95% identity. Sequences 
were extracted and merged with bedtools v2.27.1 (94) and aligned against one another 
by all-vs-all blastn using blast+ v2.6.0 (95). The resulting comparisons were filtered for 
matches that were ≥99% identity, ≥95% coverage, and ≥5 kbp, and clustered using 
Cytoscape v3.9.0 (37). To identify plasmid sharing events, the comparisons were further 
filtered for alignments where at least one contig was circularized, and the two contigs 
being compared are no more than 10% different in overall length. After clusters were 
identified with Cytoscape, SNVs were called by aligning Illumina reads to the plasmid 
contig using snippy v4.6.0 within each cluster (84). The earliest appearance of the 
plasmid was used as reference, or the lowest percentage of unaligned bases in the case 
of a tie. Pairwise SNV distances were calculated based on the output of snippy-core, and 
ANI was calculated using the formula:

ANI = num_aligned_bases − SNVs
num_aligned_bases

Pairwise plasmid alignment and visualization was done using EasyFig v2.2.0.

Plasmid typing

Plasmid replicons, relaxases, and Mate-Pair formation types were identified using 
MOB-typer function in the MOB-suite v3.1.0 set of tools (96, 97).

Annotation of MGEs on plasmids

An ORF was considered an MGE if the prokka annotation mentioned any of the following 
terms: “transposase,” “transposon,” “integrase,” “integron,” “conjugative,” “conjugal,” 
“recombinase,” “recombination,” “mobilization,” “phage,” “plasmid,, “resolvase,” “insertion 
element,” or “mob.”
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