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Artificial intelligence (AI) tools are being used more
frequently in healthcare, particularly in medical
applications such as radiology and risk prediction.1

With this comes the palpable excitement to demo-
cratise healthcare using new AI models such as
ChatGPT. However, we must tread carefully and
act urgently to ensure that these large language
models (LLMs) and their iterations do not exacer-
bate recently highlighted ethnic and global health
inequalities.

The biases in AI systems often stem from their
training data. For LLMs, this training process
starts with ‘pre-training’: a large corpus of data
scraped and ingested by the model from disparate
sources such as websites and scientific literature.
Using these data, a technique called ‘self-supervised
learning’ predicts words based on the preceding word
it has written. These models can then be fine-tuned
for specific tasks/domains.2 However, due to poten-
tial risks it poses to societal safety, concerns have
been raised about opacity of the data sources used
to train LLMs.3 A particularly dangerous prospect
for healthcare LLMs is their susceptibility to ‘hallu-
cinations’ – creating ungrounded, subtly incorrect
information without self-awareness.4,5

Given the nature of these training processes, there
is a risk that health inequalities may become even
more entrenched, particularly for ethnic minorities,
due to systemic structural and societal biases in
healthcare research perpetuated when training
LLMs. Evidence depicts that ethnicity data are
often missing6 or unrecorded due to privacy con-
cerns.7 Compounding this is the inability to define
an accurate scale of how little ethnic minorities par-
ticipate in research.8 The broader generalisability of
research findings is already concerning as partici-
pants are less representative than those receiving

the evaluated interventions in trials.9 The scarcity
of published research and therefore smaller sample
size with ethnic minorities will mean ‘less certainty’
statistically and, thus, less accuracy regarding effect
sizes of interventions. Furthermore, this dispropor-
tionately lower representation of ethnic minorities
in research has evidence of causing harm, e.g. by cre-
ating ineffective drug treatments10 or treatment guid-
ance which could be regarded as racist.11 It is widely
accepted that a differential risk is associated with
being from an ethnic minority background across
many disease groups.12 If the published literature
already contains biases and less precision, it is logical
that future AI models will maintain and further exac-
erbate them.

Beyond the issues of ethnic inequalities, there is a
significant concern that health inequalities could
worsen in low- and middle-income countries
(LMICs), which suffer from most chronic disease
without the requisite resources. AI models are pri-
marily developed in wealthier nations like the USA
and Europe, collectively known as the Global North,
and a significant disparity in research and develop-
ment exists between high- and low-income coun-
tries.13 Most published research does not prioritise
the needs of those in the LMICs with their unique
health challenges, particularly around healthcare
provision. LLMs, using published literature, may
provide advice based on the corpus of data trained
on populations wholly different from those in
LMICs. Inevitably, the outputs of these and any
future AI models being widely generalisable and
truly inclusive will be limited.

While crucial to acknowledge these potential
difficulties, it is equally important to focus on solu-
tions. We must exercise caution acknowledging we
cannot and should not stem the flow of progress.
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Nevertheless, we ask researchers to consider the
broader generalisability of AI models including
LLMs. Several actions need to be implemented to
overcome potentially exacerbating health inequalities.

First, AI models should clearly describe their body
of medical data used in model development’s ‘pre-
training’ and refinement stages, including ethical
approvals. Second, work is needed to address ethnic
health inequalities in research. This includes recom-
mendations to improve recruitment and recording of
ethnicity information.8,9 Encouraging wider partici-
pation and recording of ethnicity data will enable AI
models to be trained on representative populations.
Third, we must ensure that the data used to train the
AI model are adequately representative while consid-
ering potential model biases and its accuracy. The
model must consider key factors, including ethnicity,
age, sex and socioeconomic factors. Fourth, using
appropriate methodologies, further research is
required to understand the generalisability of LLMs
and other AI models in ethnically diverse popula-
tions. Researchers should consider recalibrating
models before using them in ethnically diverse popula-
tions. Moreover, when utilising published research, it is
advisable to assess the risk of bias14 and research qual-
ity using tools like GRADE.15 Given their reliance
solely on the training data coupled with their inability
to reason, these models have limited capability in dis-
cerning between ‘good’ and ‘poor’ research. By ensur-
ing that only high-quality research is used for training
AI models, we can reduce the risk of providing incor-
rect answers.

In summary, LLMs and future AI models have the
potential for transforming healthcare. However, cau-
tion is warranted before these models are used in
healthcare with ethnic minority populations. The
corpus of data in training any future AI models
must represent the population they are deployed, to
mitigate current research trends that show it is unrep-
resentative of different populations. By addressing
these considerations, we can harness the power of
AI models to drive positive change in healthcare
while promoting fairness and inclusivity.
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