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ABSTRACT Studies on the role of the oral microbiome in SARS-CoV-2 infection and 
severity of the disease are limited. We aimed to characterize the bacterial communities 
present in the saliva of patients with varied COVID-19 severity to learn if there are 
differences in the characteristics of the microbiome among the clinical groups. We 
included 31 asymptomatic subjects with no previous COVID-19 infection or vaccina­
tion; 176 patients with mild respiratory symptoms, positive or negative for SARS-CoV-2 
infection; 57 patients that required hospitalization because of severe COVID-19 with 
oxygen saturation below 92%, and 18 fatal cases of COVID-19. Saliva samples collected 
before any treatment were tested for SARS-CoV-2 by PCR. Oral microbiota in saliva was 
studied by amplification and sequencing of the V1-V3 variable regions of 16S gene using 
an Illumina MiSeq platform. We found significant changes in diversity, composition, 
and networking in saliva microbiota of patients with COVID-19, as well as patterns 
associated with severity of disease. The presence or abundance of several commensal 
species and opportunistic pathogens were associated with each clinical stage. Patterns 
of networking were also found associated with severity of disease: a highly regula­
ted bacterial community (normonetting) was found in healthy people whereas poorly 
regulated populations (disnetting) were characteristic of severe cases. Characterization 
of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and 
may also identify potential markers for prognosis in the severity of the disease.

IMPORTANCE SARS-CoV-2 infection is the most severe pandemic of humankind in the 
last hundred years. The outcome of the infection ranges from asymptomatic or mild to 
severe and even fatal cases, but reasons for this remain unknown. Microbes normally 
colonizing the respiratory tract form communities that may mitigate the transmission, 
symptoms, and severity of viral infections, but very little is known on the role of 
these microbial communities in the severity of COVID-19. We aimed to characterize the 
bacterial communities in saliva of patients with different severity of COVID-19 disease, 
from mild to fatal cases. Our results revealed clear differences in the composition 
and in the nature of interactions (networking) of the bacterial species present in the 
different clinical groups and show community-patterns associated with disease severity. 
Characterization of the microbial communities in saliva may offer important clues to 
learn ways COVID-19 patients may suffer from different disease severities.
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S ARS-CoV-2 infection is the most severe human pandemic in the last 100 years, 
with over 599 million cases and 6.46 million deaths worldwide as of August 2022. 

By 2.5 years after it first appeared, the virus has become endemic, with occasional 
outbreaks that have sometimes required re-implementation of public health contain­
ment measures. SARS-CoV-2 infects human cells expressing the angiotensin-converting 
enzyme 2 (ACE2), which is used as receptor for the spike protein. This property enables 
the virus to infect different cells in different organs, causing a multisystem, multiorgan 
infection (1, 2). The outcome of infection ranges from asymptomatic or mild episodes 
to severe and fatal cases (3). Severity of disease is known to be determined by multiple 
factors, including host and viral characteristics.

Another factor that may determine severity of disease is the human microbiome, 
which is known to play a major role in the modulation of other infections. A healthy 
microbial community may mitigate the transmission, symptoms, and severity of viral 
infections (4). Members of our normal bacterial communities may also inhibit viral 
replication and modulate the inflammatory response to counteract the infection and 
prevent immune mediated tissue damage (4). However, studies on the role of the 
microbiome in SARS-CoV-2 infection and on severity of the disease have been limited. 
All studies reported to date have found that patients infected with SARS-CoV-2 have 
an altered microbiome composition in nasopharyngeal samples, with reduced diversity, 
although differences in bacterial composition vary among studies. One study repor­
ted that Propionibacteriaceae were significantly more abundant and Corynebacterium 
accolens significantly decreased in infected patients (5). Others reported that Prevotella 
and Alloprevotella were increased in abundance in severe cases (6). Metatranscriptomic 
analyses of nasopharyngeal swabs and sputum samples also found a reduced diversity in 
patients with COVID-19 pneumonia when compared with non-COVID-19 pneumonia. 
Different species of Prevotella, Veillonella, Haemophilus, Fusobacterium, and Gemella 
showed a reduced abundance in the COVID-19 cases (7). The oral mucosa has been 
recognized as an important site for SARS-CoV-2 infection and as a source for spreading 
the infection to the upper and lower respiratory tract (8). It has been reported that 
the oral microbiome (tongue swabs) forms a dysbiotic pattern in long-COVID cases, 
with higher abundance of microbiota that induce inflammation, including Prevotella and 
Veillonella (9). Diversity of oral (tongue scraping) microbiome was also found reduced 
in patients with COVID-19, with increases in bacteria producing lipopolysaccharide and 
decreases in bacteria producing butyric acid (10).

The oral cavity hosts over 1,000 bacterial species, representing the second largest 
and most diverse microbial community in the human body after the gut (11). The 
oral microbiota has been shaped as a result of coevolution with the human mouth. 
Local niches in the mouth supply shelter and nutrients, whereas the microorganism 
complement the physiological needs of the host, including nutrients, immune training, 
and host defense (12). The oral microbiota is formed by a collection of compositionally 
distinct communities that reflect the array of diverse microenvironments present in the 
different regions of the mouth. These communities usually grow as highly structured 
symbiotic biofilms, linked through physical and metabolic associations that confer a 
fitness advantage to the entire microbial community and make them particularly stable 
and resilient to microenvironmental changes (13). The salivary microbiota has been 
shown to be a conglomerate of bacteria shed from oral surfaces in the pharynx, the 
tongue and the tonsils as the main sites of origin (14). Thus, saliva is an appropriate 
sample that mirrors the microbiota from different regions of the oral cavity. Saliva can 
also be aspirated and reach the lungs, representing an important source of infection for 
the respiratory tract. Indeed, studies have suggested a relationship between oral hygiene 
and respiratory diseases, including asthma, chronic obstructive pulmonary disease, and 
pneumonia (15).

In the present work, we aimed to characterize the bacterial communities present in 
the saliva of patients with COVID-19. The study included groups of patients with different 
severity of disease, from mild to fatal cases, to determine if there were differences in the 
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composition of the microbiome among clinical groups. The results demonstrated clear 
differences in diversity, composition and networking of the bacterial species present in 
the saliva of the different clinical groups.

MATERIALS AND METHODS

Patients studied

The study was done during the period of June 2020 to January 2021, a period of high 
epidemiological uncertainty and strict containment measures because of COVID-19. 
Therefore, recruitment of patients was done by the attending health personnel. Under 
these circumstances, we did not have enough information to estimate a sample size, 
nor were we certain of the feasibility to reach an expected number of cases. Thus, 
patients were invited to the study as they were presented with suspicious symptoms, 
and before a confirmed diagnosis in mild cases, or within 5 days of hospitalization 
in severe confirmed cases. Final sample size of the clinical groups was based on the 
inclusion-exclusion criteria. Patients willing to participate were asked to sign an informed 
letter. The study was approved by the IRB Comisión Nacional de Investigación, Instituto 
Mexicano del Seguro Social, Mexico (registry number R-2020-785-053).

Asymptomatic cases (AC) were individuals without symptoms, no previous COVID-19 
infection (as referred by the patient) or SARS-CoV-2 vaccine, and no antibiotics in the last 
4 weeks. Smokers and those with any chronic disease were excluded. Mild cases were 
ambulatory patients with mild respiratory symptoms (fever, cough, headache, odyno­
phagia, myalgias) presenting for COVID-19 diagnosis. They were sampled before any 
treatment, including antibiotics, and followed until recovery. After testing for SARS-CoV-2 
by PCR test (COBAS 6800, Merck México, Mexico City), they were classified as ambulatory 
(mild cases) positive (AP) or negative (AN) for the infection. Patients who during follow 
up required hospitalization because they developed severe symptoms were excluded 
from this group and included in the hospitalized group. Severe patients were cases that 
required hospitalization because of severe symptoms (HP), particularly with an oxygen 
saturation below 92% and the presence of comorbidities of risk including hypertension, 
diabetes, morbid obesity, immunocompromise, cardiovascular or neurological diseases, 
chronic renal failure, tuberculosis or neoplasia. Patients were usually hospitalized within 
the first 7 days after symptoms started and followed until discharged because of 
recovery or improvement (treated at home until recovery) or because of death. For the 
analyses, patients who died were included in a group of deceased cases (DHP).

Saliva samples

A volume of 10 mL of saline solution (0.85% NaCl) was given to patients, who were 
asked to thoroughly wash the mouth and spit back into a 50 mL plastic tube. Samples 
were immediately transported to a central laboratory for SARS-CoV-2 diagnosis using 
a PCR test to amplify a fraction of the spike and N protein genes. On arrival, samples 
were immediately inactivated by heating at 65°C for 30 min. After the diagnosis, samples 
were sent to our laboratory for microbiome studies. Transport of the samples was done 
following international regulations for safety, including special multiple packing with dry 
ice. Once received in our lab, samples were frozen to −70°C until studied. All five groups 
of patients were recruited during the same period of time.

DNA extraction

Saliva samples (1 mL) were centrifuged for 10 min at 5,000 × g, then bacterial pellets 
were suspended and incubated at 37°C for 3 h with 180 µL of enzyme solution (20 
mg/mL lysozyme; 20 Mm Tris-HCl, pH 8.0; 2 mM EDTA; Triton 1.2%). Subsequently, DNA 
was extracted using the QIAamp DNA mini kit (Qiagen) according to the manufacturer’s 
protocol.
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Preparation of the amplicon libraries from the 16S rRNA hypervariable 
regions V1-V3 and sequencing

The amplicons of the V1-V3 hypervariable regions of the 16S rRNA gene were generated 
using previously published primers (16) (Table S1), which were ligated to the adapter 
sequences (17) (Table S2) and used to assemble the DNA libraries. For library assembly, 
25 ng of DNA were mixed with 12.5 µL of Go-Taq green master mix enzyme (Promega) 
and 10 µM of each primer (Table S1), and amplified using the following conditions: 3 min 
at 98° followed by 25 cycles (20 s at 98°C, 30 s at 65°C, 30 s at 70°C), 5 min at 72°C and 4°C 
hold. Libraries were normalized and sequenced using the 2 × 251 cycle configuration, 
with 20% Phix control, and 100 µM of the sequencing primers and placed in positions 12, 
13, and 14 of the sequencing cartridge. Sequencing of the libraries was performed on the 
MiSeq platform (Illumina, San Diego California, USA).

Bioinformatics analysis

Quality control and taxonomic classification

Paired sequencing fastq files were QC inspected for Phred values and for absence of 
adapters using FastQC v0.11.9 (18). The data were processed using the DADA2 v1.20.0 
pipeline (19). Standard filter parameters (maxN = 0, truncQ = 8, and maxEE = 2, lengths 
below 200 bp were discarded) were used. The process of reads continued with dereplica­
tion filtering, and removal of chimera formation (representing < 2%) using the removeBi­
meraDenovo option. 16S sequences associated with chloroplast or mitochondria were 
removed. The sequences were grouped into Amplicon Sequence Variants (ASVs) with the 
naive RDP Bayesian classifier of DADA2, and taxonomic classification was assigned to the 
species level using the expanded Human Oral Microbiome Database 16S V1-V3 training 
set, eHOMD v15.1 (20) (http://www.homd.org, consulted 5 November 2021).

Alpha and beta diversity

Normalization geometric mean was calculated for each ASVs across all samples using 
Total Sum Scaling (TSS) (21) with MicrobiomeMarker v1.3.3 package (22). The alpha and 
beta diversity were determined using the Phyloseq v1.42.0 (23), Vegan v2.6-4 (24), and 
ggplot2 v3.4.1 (25) packages with a prevalence of 10%, to obtain the Chao1 (richness 
estimator), Fisher (abundance estimator), and the Shannon and Simpson (diversity and 
evenness estimators) values. Stacked bar graphs were created to observe the bacterial 
composition for each group, with a minimal prevalence of 0.1 for species and family. The 
ape package v5.3 (26) was used for the generation of the phylogenetic tree. Statistical 
significance was evaluated with a univariate ANOVA analysis and P-values ≤ 0.05 were 
considered significant. Between-group differences in beta diversity were assessed using 
principal coordinate analysis (PCoA) with unweighted and weighted UniFrac to visualize 
differences in COVID-19-associated bacterial communities. Significance with Bray–Curtis 
dissimilarity index was assessed by calculating non-parametric permutational multivari­
ate analysis of variance (PERMANOVA) with 10,000 permutations, using the adonis and 
beta disper functions. Analysis of similarities (ANOSIM) (27) and homogeneity of group 
dispersions (PERMDISP) were also performed.

Dysbiosis

The ASVs and taxa generated by DADA2 were used to build a Phyloseq object. A 
dysbiosis score was calculated using dysbiosisR v1.0.4 package, the selection measure 
was median variation (28) and as reference the AC group and Bray–Curtis dissimilarity 
matrix. Additionally, a graph of receiver operating characteristic (ROC) and area under 
the curve (AUC) values was calculated with pROC v1.18.0 package.
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Biomarker discovery

The differences in taxa between the experimental groups were studied in order to 
identify the ASVs that significantly distinguished each group (marker bacteria). The 
analyses were done using different models, including Random Forest (RF) using Caret 
v6.0-94 (29) and MLeval v0.3 package (30) with 1,000 trees to build the model, and 
MicrobiomeAnalyst v2.0 (31). For cross-validation values were multiplied by 10, and the 
training set was 90% while the test set was 10%. In addition, for further validation, a 
ROC plot and AUC table were determined. Analyses also included a LEfSe test using 
microbiomeMarker v1.3.3 package (22) with a q-value ≤ 0.1 and linear discriminant 
analysis (LDA score ≥ 2.0). To analyze the differences in taxa abundance among groups, 
the Fold Change (FC) and the FDR-adjusted were calculated using DESeq2 (32), and for 
normalization geometric mean was calculated for each ASVs across all samples using TSS. 
The data were previously filtered based on the significant results of Random Forest and 
LefSe. Volcano plots were constructed with EnhancedVolcano v1.12.0 (33).

Composition of the core microbiome

The microbiome v1.17.3 package with the core function (34) was used to calculate taxa 
present in most samples among all clinical groups. Samples were filtered applying a 
prevalence of 0.5 and a relative abundance of 0.20 (threshold for absence/presence) 
among the samples. The visualization of the data were carried out through a heatmap 
with the plot core function, the variables captured were relative abundance and the ASVs 
of the output samples for all the studied groups.

Determination of co-abundance networks

A single association, co-occurrence network was built with the NetCoMi v1.0.2 in R, 
with the sparse correlations for compositional data (SparCC) method (35). The resulting 
correlation matrix was utilized in network models to define links between taxa, if the 
absolute pairwise correlation between two taxa was greater than 0.25. A t-test was 
applied (alpha = 0.001) to reduce the network to a tractable size with a false discovery 
adjustment to select edges to include in the network (sparsification). Network fea­
tures, including degree, betweenness, closeness centrality, and modularity computation 
enabled identification of hubs (quantile set at 0.9). The network, including the subclus­
ters was constructed based on the fast, greedy algorithm, applying agglomeration at the 
species level and using the netConstruct function (measure of correlation of “pear­
son”, zeroMethod of “multRepl,” and normMethod “clr”) and the netAnalyze function 
(clust_fast_greedy method). Graphics were generated using the Fruchterman–Reingold 
layout algorithm of igrap. The size of the nodes was adjusted by a normalization of the 
counts, a color was assigned to each subcluster within the net, and the single nodes were 
removed. Estimated associations are shown with green connections for positive or red 
for negative correlations.

Metabolic routes

The inference of metabolic pathways were predicted with KEGG Orthology (KO) Level 
three information (36) and Phylogenetic Investigation of Communities by Reconstruction 
of Unobserved States 2 (Picrust2 v.2.1.3-b) (37), which predicts gene family abundance. 
To obtain relative abundance pathways, we used the scaled (TSS method), the ASV 
table and representative sequences, with the default options in picrust2_pipeline.py. 
The z-score of relative abundances and clustering were calculated using the package 
pheatmap v1.012. A linear discriminant analysis (LDA) integrated with effect size (LEfSe) 
of the relative abundance of KEGG pathways was performed. Microbial v.0.0.20 package 
with the ldamarker function and a P-value of 0.05 was used and the TMM normalization 
method was selected. To build the graphs, the plotLDA function was used with padj 
values of 0.05 and LDA ≥ 5.
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RESULTS

The number of patients that consented to participate was close to 500 and from those 
we were able to have enough saliva sample and follow up clinical data in 390 cases. After 
excluding patients who did not fulfill inclusion criteria, including quality and amount of 
sample, 314 saliva samples were sequenced. In the end, 282 samples (88.5%) passed the 
Q30 quality value with an average of 200,000 reads per sample and a total yield of 16.1 
Gb, distributed as described in Table 1.

Diversity and abundance of bacterial species differ among patients with 
different severity of COVID-19

Microbial diversity indexes of the saliva samples are presented in Fig. 1A; results show 
that richness (Chao index) was higher in the asymptomatic individuals but gradually 
and significantly decreased in the ambulatory, hospitalized, and deceased patients, a 
result that was further supported by the Fisher analysis. Shannon index however showed 
an increased value in all symptomatic groups, suggesting an increase in evenness in 
these patients. Diversity in the microbial composition among groups was analyzed by 
a PCoA UniFrac and Weighted UniFrac analyses (Fig. 1B), which showed separation of 
the bacterial communities in the clinical groups, hospitalized severe cases (HP and DHP) 
clustered significantly apart from mild ambulatory cases and from the asymptomatic 
group (see P-values in Fig. 1B). The two hospitalized groups, HP and DHP, showed no 
significant separation. Differences in bacterial structure (according to species) among the 
groups were significant as the PERMDISP analyses show (Fig. 1B). The degree of dysbiosis 
in disease groups as compared with the asymptomatic group is shown in Fig. S4, the 
degree of dysbiosis significantly distinguished asymptomatic people from the disease 
groups as illustrated by the AUC analysis.

Pairwise comparisons showed marked and significant differences in bacterial 
composition among groups

Pairwise differences between groups were studied with the enhanced volcano test (Fig. 
2). By amplifying the V1-V3 regions of the 16S rRNA gene and by using the eHOMD 
database to annotate, we were able to identify most of the AVS to the level of species 
(20). Compared with the asymptomatic group, Actinomyces odontolyticus, Streptococcus 
parasanguinis, Oribacterium sinus, Atopobium parvulum, and Streptococcus mutans 
(among others) were significantly more associated with the mild ambulatory group (Fig. 
2 AP vs AC). In contrast, Prevotella intermedia, Porphyromonas gingivalis, Alloprevotella sp., 
and Prevotella oris were more associated with healthy adults. When the group of 
hospitalized patients was compared with the healthy individuals, Leptotrichia sp., 
Escherichia coli, Staphylococcus epidermidis, and Prevotella oris were significantly more 
associated with HP patients (Fig. 2 HP vs AC). Haemophilus sp. HTM259, Porphyromonas 
gingivalis, Actinomyces sp. HTM169, Haemophilus parainfluenzae, and others were more 
associated with the asymptomatic group. Acinetobacter baumannii, Capnocytophaga 
granulosa, Prevotella melaninogenica, Granulicatella adiacens, Prevotella salivae, and 
Veillonella parvula were significantly more associated with the DHP fatal patients 
compared to asymptomatic patients (Fig. 2 DHP vs AC). In contrast, Granulicatella elegans, 

TABLE 1 Characteristics of patients with different severity of COVID-19, studied for oral microbiome in 
saliva samples

Group of patients No. studied Age mean ± SD Sex ratio male:female

Asymptomatic 31 27.8 ± 7.7 0.78
Mild negativea 73 38.2 ± 12.1 0.59
Mild positivea 103 41 ± 13.1 0.77
Severe positiveb 57 50.8 ± 13.9 1.94
Deceasedb 18 74.4 ± 6.5 3.3
aAmbulatory patients.
bHospitalized patients.
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Haemophilus parainfluenzae, Veillonella sp. HMT780, Alloprevotella sp. HMT308, and 
Prevotella intermedia were more associated with asymptomatic adults. Of interest, when 
the two groups of hospitalized patients were contrasted, Acinetobacter baumannii and 
Prevotella salivae were more associated with deceased patients, whereas Escherichia coli, 
Leptotrichia HMT21,5 and Staphylococcus epidermidis with the severe HP patients (Fig. 2 
DHP vs HP). Thus, Acinetobacter baumannii and Prevotella salivae were marker species 

FIG 1 Indices of microbial diversity of bacterial species in saliva of patients with different severity of COVID-19 disease. 

(A) Chao, Shannon, Fisher, and Simpson index; (B) Beta diversity with the PCoA UniFrac and Weighted UniFrac analyses. 

Changes in community structure and in beta diversity were evaluated with permutational multivariate analysis of variance 

(PERMANOVA), analysis of similarities (ANOSIM) and permutational analysis of multivariate dispersions (PERMDISP) and 

showed significant differences (P < 0.001). Permutation test for homogeneity of multivariate dispersions (Betadisper) was also 

significant (P < 0.05) for most pairwise comparisons, except for HP vs DHP.
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that differentiated deceased patients from severe hospitalized patients and from 
asymptomatic individuals.

We also studied a group of patients with mild respiratory disease that were nega­
tive for SARS-CoV-2 infection (AN). Compared with the asymptomatic adults (Fig. S1 
AN vs AC), these patients had higher abundance of Actinomyces graevenitzii, Strepto­
coccus mutans, Peptostreptococcaceae XI G1, Actinomyces dentalis, and Stomatobaculum 
longum ,whereas Prevotella intermedia, Veillonella sp. HMT780, Alloprevotella sp. HMT308, 
Escherichia coli, and Neisseria sicca were more abundant in the healthy group. Of note, 
when the two groups with mild disease (AP and AN) were compared, Streptococcus 
parasanguinis was more abundant in the SARS-CoV-2 patients, whereas Veillonella 
dispar, Peptostreptococcaceae X1 G1, Porphyromonas pasteri, Actinomyces dentalis, and 
Actinomyces graevenitzii were significantly more abundant among the mild non-infected 
patients (Fig. S1 AP vs AN).

FIG 2 Differential abundance analysis. Volcano plot shows ASV fold changes (FC) on x-axis and the negative logarithm base 10 of the False Discovery Rate (FDR) 

on y-axis. Dashed lines reflect threshold, FC ≥ 1.0 (either positive or negative) and FDR > -log (0.05). AP vs AC) comparison between the ambulatory SARS-CoV-2 

positive group and the asymptomatic control group; HP vs AC) comparison between the hospitalized SARS-CoV-2 positive group and the asymptomatic control 

group; DHP vs AC) comparison between the deceased SARS-CoV-2 positive group and the asymptomatic control group; DHP vs HP) comparison between the 

deceased and the hospitalized group. Species in orange dots presented increased abundance and those in blue decreased abundance.
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An all-vs-all comparison revealed species that distinguishes each clinical 
group

We next examined the differences among all groups by means of the random for­
est and LEfSe analyses (Fig. 3). In this all-vs-all groups’ analyses, random forest (Fig. 
3A) found Haemophilus parainfluenzae, Prevotella nigrescens, Neisseria sicca, Gemella 
haemolysans, and Rothia dentocariosa among those most significantly distinguishing 
the asymptomatic group, whereas Streptococcus parasanguinis, Oribacterium sinus, 
Atopobium parvulum, and Actinomyces odontolyticus differentiated the mild ambula­
tory cases. Escherichia coli, Leptotrichia sp. HTM225, and Staphylococcus epidermidis, 
distinguished the hospitalized patients, whereas Veillonella parvula, Prevotella melanino­
genica, Acinetobacter baumannii, Granulicatella adiacens, Actinomyces dentalis, Capnocy­
tophaga granulosa, Leptotrichia wadei, and Veillonella dispar strongly differentiated the 
deceased patients. The model was further validated with an AUC analysis as shown in 
Fig. S2, where AUC values and the confusion matrix show an excellent differentiation 
of the AC, AP and HP groups (asymptomatic, moderate, and severe). Behavior of the 
AN patients suggests its microbiota composition overlaps with the AP group; these two 
groups are clinically similar but differ in the detection of SARS-CoV-2 infection.

FIG 3 Biomarker discovery analysis. Study of all-vs-all clinical groups by (A) Random forest and (B) LEfSe test. Groups are indicated to the right of the figures, AC, 

asymptomatic; AN, ambulatory SARS-CoV-2 negative; AP, ambulatory SARS-CoV-2 positive; HP, hospitalized; DHP, deceased patients.
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Results with the linear discriminant analysis (LDA) (Fig. 3B) showed a strong 
agreement with random forest (Fig. 3A) and of note, the two models pointed to 
Prevotella melaninogenica,  Veillonella parvula,  and Acinetobacter baumannii  as species 
strongly distinguishing the group of deceased patients, whereas Neisseria sicca, 
Haemophilus parainfluenzae,  and Prevotella nigrescens  were markers for asymptomatic 
adults.

A core microbiome analysis show species present in all clinical groups

Finally, we determined the core microbiome (Fig. 4) to learn which species were present 
in all clinical groups, probably because they are more resilient to changes in the 
microenvironment. Of note, Streptococcus pneumoniae was found present in all clinical 
groups with a relative abundance of over 10% in over 60% of the patients (see also 
Fig. S3), highlighting its endurance to changes in the microenvironment regardless of 
the clinical condition of the patients. Granulicatella adiacens, Veillonella dispar, Streptococ­
cus parasanguinis, Prevotella melaninogenica, and Veillonella parvula showed a relative 
abundance of over 1.0% in at least 50% of all patients (Fig. 4; Fig. S3). Other species 
of Actinomyces, Prevotella, and Veillonella were also among the species in the core 
microbiome.

Based on all above results we asked how much normobiosis was altered in these 
patients and estimated a dysbiosis score (Fig. S4A ) and found that the scores signifi­
cantly differentiated microbiota of mild and severe patients from microbiota of healthy 
individuals, as evidenced by an AUC analysis (Fig. S4B ).

FIG 4 Determination of the core microbiome for all clinical groups. Heatmap of relative abundance for each species is described on the y-axis. The x-axis shows 

prevalence of each relative abundance.
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Analysis of networking in bacterial communities shows marked contrasts in 
the different clinical groups

The interaction between the members of the bacterial community in each group was 
studied by network analyses. In each network, the size of the circle is proportional to the 
abundance of the species and each circle’s color represents subclusters of bacteria with 
a stronger interaction between them. The color of each connection (edge) relates to the 
type of interaction, green is positive, and red is negative, results are presented in Fig. 5 
and 6.

Of note, Streptococcus pneumoniae was by far the most abundant species in all five 
clinical groups, whereas abundance of other species varied per group (Fig. 5). In the AC 
group, all species showed about the same relative abundance, except Streptococcus 
pneumoniae that clearly had the highest abundance. When compared the AC group with 
AN several species of a green subcluster presented higher abundance including 
Actinomyces odontolyticus, Streptococcus parasanguinis, Actinomyces graevenitzii, 

FIG 5 Co-abundance networks for each clinical group analyzed with the SparCC method in the NetCoMi package. The size of the nodes was adjusted by 

a normalization of the counts, and a color was assigned to each subcluster within the network. Positive associations are shown with green connections and 

negative correlations with red connections.
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Veillonela dispar, and Prevotella melaninogenica. In the AP patients species of different 
subclusters were increased in abundance like Veillonella dispar, Actinomyces odontolity­
cus, Prevotella melaninogenica, and Streptococcus parasanguinis. In the HP, members of a 
green subcluster also increased, with a notorious abundance of Prevotella melaninogen­
ica, followed by Veillonella dispar, Veillonella parvula, and Granulicatella adiacens. Finally, 
in the deceased patients (DHP) Prevotella melaninogenica becomes more abundant than 
Streptococcus pneumoniae, and Granulicatella adiacens also showed a marked abundance 
increase. Interestingly, Acinetobacter baumannii also presented increased abundance in 
this group and it showed positive association with Kluyvera ascorbata and with Rumino­
coccaceae HMT075.

Members of the hub-species (species with more links and important to maintain the 
structure of the net) markedly varied between groups and only a few were present in 
more than one group, Prevotella pallens in the three sARS-CoV-2 + groups, AP, HP and 
DHP, Tannerella forsythia in the AP and HP groups, and Absconditabacteria HMT874 in 
the two severe groups HP and DHP (Fig. 5). The number of hub-species varied between 
11 and 14 among the groups and were usually included within a single subcluster. 
Because of the marked abundance of Streptococcus pneumoniae in all groups we asked 
if it was linked to other species (Table S3). Streptococcus pneumoniae had positive links 
with Granulicatella adiacens in the AN, AP and HP patients but not in the DHP group, with 
Gemella sanguinis in the three sARS-CoV-2 + groups, AP, HP and DHP and with Gemella 
haemolysans in the two sARS-CoV-2- groups, AC and AN. Streptococcus pneumoniae also 
showed positive or negative links with different species in each clinical group (Table S3).

Finally, the number and type of total links also varied among groups (Fig. 6) and 
the total number of links gradually increased from healthy AC (251) to mild AP (388) to 
severe HP (424) and to deceased DHP (473). Whereas the type of association was rather 
balanced in the AC (52%+, 48%−) this balance was lost in all disease groups, where 
positive links increased to around 80%. Other properties of the nets are described in Fig. 
6, connectivity values increase in moderate and severe cases, modularity decreased in 
severe cases, whereas clustering coefficient increase in moderate cases.

FIG 6 Number and type of links (edges) in the bacterial network in saliva of patients from different clinical groups.
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Estimation of metabolic activity shows a highly increased activity by the 
bacterial community of the severe and deceased patients

An approximation to the metabolic activity of the bacterial community in each group 
was deduced with the use of Picrust2 software. Notably, the analyses revealed a 
significantly increased metabolic activity by the bacterial community of deceased 
patients (DHP) in most of the metabolic pathways, which gradually decreased in 
hospitalized patients, in ambulatory patients and finally in asymptomatic adults (Fig. 
7). This drastic tendency is clearly illustrated looking at the metabolic pathways at 
the two different levels presented in Fig. 7A and B. The few activities diminished in 
severe (HP) and deceased patients (DHP) were the biosynthesis of the antimicrobial 
aminoglycosides (produced by Actinomycetes) and clavulanic acid (Streptomyces) as well 
as the metabolism of xenobiotics by P450 and polyketide sugar biosynthesis (Fig. 7B). 
Of note, microbiota of deceased patients presented a marked increased (z-score > 1.5) 
in degradation of organic compounds (caprolactam, fluorobenzoate, bisphenol, geraniol, 
naphthalene, and nitrotoluene) with environmental and health importance.

DISCUSSION

The  oral  cavity  may  be  the  entry  to  the  respiratory  tract  and  the  source  of  the 
oral  microbiome  of  the  upper  and  lower  airways,  including  the  lungs.  In  fact,  the 
oral  mucosa  is  recognized  as  an  important  site  for  SARS-CoV-2  infection  and  as  a 
source  for  spreading  the  infection  to  the  upper  and  lower  respiratory  tract  (8). 
Thus,  it  becomes  relevant  to  study  the  oral  microbiome  in  patients  with  COVID-19 
to  try  to  elucidate  its  role  in  the  severity  of  the  disease.  In  this  study  we  used 
saliva  as  a  surrogate  of  the  oral  microbiota  (14).

Our results show that diversity of the bacterial communities in saliva decreases as the 
severity of the disease increases, from ambulatory to hospitalized to deceased patients. 
Previous studies reported similar results when comparing healthy controls vs COVID-19 
patients (10) or vs patients with long-COVID (9), but these studies did not contrast oral 
microbiota in patients with different severity of disease. Several studies in nasopharyng­
eal samples have consistently reported reduced diversity in COVID-19 patients (5), (6, 7) 
indicating infection is associated with important changes in the structure of bacterial 
populations colonizing the upper airways. To further study the nature of the changes in 
the microbiota we searched for differences in its composition among the groups. A main 
difference of our work with previous COVID reports is that we amplified the V1-V3 region 
of the 16S rRNA gene, which results in improved sensitivity when working with oral 
microbiome (38) and we used the updated eHOMD database with an extended coverage 
of oral species (20). eHOMD is considered as a comprehensive microbiome database with 
high resolution to study the human aerodigestive tract in health and disease usually to 
the level of species, that performs as well or better than other commonly used 16S 
databases (39). Thanks to this we were able to identify most ASV to the level of species, 
which contrasts with previous studies usually reporting down to the level of genus. This 
is relevant if we consider that the oral cavity hosts over 1,000 bacterial species (11) and 
reporting differences at the level of genus fell short in the interpretation of results. This 
can be illustrated by our findings that Prevotella intermedia and Prevotella oris were found 
significantly associated with asymptomatic adults, whereas Prevotella melaninogenica 
and Prevotella salivae were associated with deceased cases. These differences would be 
missed if analysis is limited to the genus level (see also Fig. S5).

Volcano test, random forest, and LEfSe analyses showed a strong agreement in 
severity-associated species and led us to identify specific changes in the composition of 
bacterial communities that differ in patients according to the severity of the disease. 
Thus, our results show that Gemella haemolysans, Neisseria sicca, Prevotella oris, Prevotella 
nigrescens, Rothia dentocariosa, Porphyromonas gingivalis, and Granulicatella elegans are 
salivary markers of asymptomatic adults. Previous studies have also reported Granulica­
tella elegans more prevalent in healthy subjects. Porphyromonas gingivalis is associated 
with periodontal disease and is considered a “keystone pathogen” because of its ability 
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to modify the host inflammatory response and cause dysbiosis. Streptococcus parasangui­
nis, Actinomyces odontolyticus, Oribacterium sinus, and Atopobium parvulum were 
characteristic of mild COVID cases, Leptotrichia sp HMT225, Staphylococcus epidermidis, 
and Escherichia coli were more abundant in severe cases and represent Taxa uncommon 
in healthy oral microbiota but rather opportunistic pathogens that overgrow when 
microbiota dysbiosis occur (40). Of note, in patients recovering from COVID-19, Leptotri­
chia has been reported to significantly decreased (10). We also found that Prevotella 

FIG 7 Metabolic activity by the bacterial community present in each clinical group as inferred by Picrust2 software and KEGG database. (A), (B), (C), and (D) 

differentially abundant pathways between clinical groups. Pathways enriched in the AC group are indicated with negative LDA score (mint green) and pathways 

enriched in symptomatic groups with a positive score. Only pathways with a significant LDA threshold of > 5 are shown; (F) presents heatmap with z-scores of the 

relative abundance of the metabolic pathways level 3 as defined in KEGG.
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melaninogenica, Veillonella parvula, Granulicatela adiacens, Acinetobacter baumannii, 
Prevotella salivae, Leptotrichia wadei, and Capnocytophaga granulosa were characteristic 
of fatal cases. L. wadei and A. baumannii are rare in healthy oral microbiota and are 
usually considered as co-infection, as described below. Of note, Prevotella, Veillonella, and 
Leptotrichia are high LPS-producers that promote inflammation and have been associ­
ated with long-lasting COVID (9) and interestingly, it has been postulated that SARS-
CoV-2 may promote the growth of the anaerobic bacteria like Prevotella, Veillonella, and 
Capnocytophaga in the lungs and favor acute severe symptoms (41). The 2019 Wuhan 
outbreak could have been aggravated by Prevotella, which is aided by the coronavirus, 
possibly to adhere to epithelial cells (42).

A comparison with previous studies is difficult because most of them report up 
to genus level, but also because studies with oral microbiota are scarce (9) (10). 
Even studies with nasopharyngeal samples are limited and they show contradictory 
results. Whereas some agree reporting that Corynebacterium significantly decreased and 
Prevotella increased in infected patients (5) (6) (43), others have reported a reduction 
of Prevotella and Veillonella in COVID cases (7, 43). It is relevant to highlight the fact 
that in many instances disease associated bacteria are Taxa reported as members of the 
normal microbiota where abundance is modified and as reported here, networking is 
also altered. Changes in diversity lead to changes in networking patterns and this new 
scenario may favor persistence and abundance of certain Taxa that better adapt to the 
changing microbiota community. In this context, it was intriguing to see that microbiota 
of deceased patients presented a marked increased (Z-score > 1.5) in degradation of 
organic compounds (caprolactam, fluorobenzoate, bisphenol, geraniol, naphthalene and 
nitrotoluene) with environmental and health importance because they are man-made 
pollutants of high industrial production (44) (45) and probably bacteria are evolving to 
degrade these compounds (46).

Changes in the composition of bacterial communities are not the only factor to 
consider in microbiota studies. Coinfections with pathogens or opportunistic pathogens 
are common during viral pneumonia and known to increase the severity and risk of 
mortality (47). Thus, Streptococcus pneumoniae coinfection is a major cause of increase 
morbidity and mortality during influenza infection (48). Coinfections have also been 
documented in patients with COVID-19, particularly with S. pneumoniae, K. pneumoniae 
or H. influenza (49), and a metagenomic study of nasopharyngeal samples of patients 
with COVID-19 found a co-infection with a clinically relevant microorganism in 12.5% 
of patients (5). It should be noted that in our work Streptococcus pneumoniae was 
present in all groups studied and in fact its abundance was higher in healthy individuals 
and decreased as the severity of the disease increased, which questions its role as an 
opportunistic pathogen in our population.

In our study coinfections were common in severe hospitalized cases: Escherichia coli, 
Leptotrichia HMT225, and Staphylococcus epidermidis in severe patients and Acinetobacter 
baumannii and Leptotricia wadei in fatal cases. Leptotrichia has been found increased 
in patients with COVID-19 (10). Leptotrichia species are present in the oral cavity of 
healthy individuals and is considered an opportunistic pathogen because its abundance 
increases in caries, stomatitis or cases of septicemia in immunocompromised patients. 
Leptotricia wadei has been isolated in saliva of patients with caries or halitosis (40). On 
the other hand, Acinetobacter baumannii, a hospital-acquired opportunistic pathogen, 
has been reported in severe COVID patients, even in the lungs of fatal cases (50) and we 
found it significantly more abundant in the saliva of deceased patients.

We also determined the core microbiome for all clinical groups, which is seldom 
reported in microbiome studies. As indicated above, Streptococcus pneumoniae was 
found with high relative abundance in over 80% of all cases, representing the most 
prevalent and most abundant species in our population, regardless of the severity of 
COVID-19. The next most prevalent species included Granulicatella adiacens, Veillo­
nella dispar, Streptococcus parasanguinis, and Prevotella melaninogenica, with a relative 
abundance of over 1.0% in most cases. Interestingly, Granulicatella adiacens, Prevotella 
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melaninogenica, and Veillonella parvula (all within the 10 most abundant in the core 
microbiome) significantly differentiated the deceased patients. At this point it is not 
possible to conclude whether they play a role in the progression to fatal cases or are 
present in all groups because they are resilient to microenvironment changes.

Microbiota form complex ecosystems on human surfaces reflecting strong positive or 
negative interactions and studies on these communities should not be limited to report 
differences in presence or abundance. Networks of co-abundance or co-dependency 
are necessary to better understand the role of microbiota in health and disease (51). 
Accordingly, we analyzed the interaction between members of the bacterial community 
in each clinical group and found marked differences. Each network was composed 
of subclusters where its members had strong positive interaction between them. The 
composition of these subclusters varied in each clinical condition. In asymptomatic 
individuals the microbial community showed a balanced interaction, 52%-positive, 
48%-negative. In contrast, this balanced was lost in all disease groups and positive 
correlation was the more prevalent (around 80%). Although some species remain in all 
groups (as observed also with the core analyses), changes in the composition, abun­
dance and even in the hub-species were apparent in each group. Some species showed 
a clear increase in relative abundance as the severity of disease progress, like Prevotella 
melaninogenica, Veillonella dispar, and Granulicatella adiacens and these changes were 
also associated with differences in hub-species.

The marked changes in the bacterial population of severe cases alter the integrity of 
the community. Furthermore, it is intriguing to observe that the number of links between 
member of the net increase as severity increases. Probably when homeostasis in the 
microbial community is broken, bacteria are looking for new partners and what we see is 
this acute search. Thus, major changes occurred in the structure of bacterial communities 
as the severity of the disease increased. The possible role of these large changes in the 
pathogenesis and severity of COVID-19 remains to be studied. Perhaps these changes 
affect the nature of the local and systemic inflammatory response.

Thus, the complex community of healthy people, balanced in its interactions, could 
be considered a normal state or normonetting. When the balance is gradually lost as 
severity of the disease increased the altered networking or disnetting may result in 
a highly unregulated community. A previous study also found that the complexity of 
co-abundance networks was decreased in patients with severe COVID-19, indicating 
a reduction in the interaction between members of the bacterial community (6). A 
highly unregulated bacterial community may result in marked metabolic alterations and 
strong microenvironment changes. In fact, our metabolic deductions showed signifi­
cantly large changes in metabolic pathways as the severity of disease increased (Fig. 
7). It was noticeable that the activity of most metabolic pathways was markedly and 
gradually increased from asymptomatic to ambulatory, to hospitalized and to deceased 
patients. This may suggest that the gradual looseness in negative interactions impacts 
metabolic activity of the bacterial community. The increased metabolites produced by 
the microbiota may have profound effects on the patient’s health (12).

COVID-19 is a complex multisystemic, multiorgan disease probably due to the ability 
of the virus to disseminate and invade several cell types of the body (1, 2). Changes 
in the bacterial communities may also contribute to severity of the disease. Oral 
microbes and microbial molecules might directly enter the bloodstream and contrib­
ute to the pathogenesis of systemic diseases. Brain specimens and cerebrospinal fluid 
from individuals diagnosed with Alzheimer’s disease suggest that P. gingivalis could 
colonize the brain and induce neurodegeneration (52). Also, network analyses in oral 
microbiota have shown a significant correlation of disease-associated bacterial species 
with proinflammatory cytokines (53), and a significant correlation of the abundance 
of Staphylococcus in the nasopharynx with systemic levels of IL-6 and TNF has been 
reported (43). On the other hand, oral microbiota plays integral roles in maintaining host 
health systemically and locally. One example is the conversion by oral microbes of nitrate 
to nitrite, which is absorbed and converted to NO, important for the control of blood 
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pressure and endothelial function (54). Thus, disruption of the oral microbiota may in 
several ways affect severity of COVID-19 disease.

Although there were important consistencies in results across methods, we still 
observed variation in taxa associated with disease severity in the different analytical 
methods. Currently, there is no consensus on the best methods to analyze microbiota 
and new approaches continue to be proposed, we choose to use several approaches 
including those most commonly reported. Sample size was also a limitation that affected 
the strength of the analyses, particularly for the group of deceased patients, and which 
in part was due to the lack of previous reports on the subject but also to the limitations 
in recruitment and sampling of patients during the first wave of the epidemy. Another 
limitation is that we used the updated eHOMD database for oral microbiome and our 
analysis was limited to the extent of this database; however, eHOMD is recognized as 
the most comprehensive reference for microbiome studies in the aerodigestive tract 
and commonly used for studies in the oral cavity. Furthermore, using this database we 
detected several opportunistic pathogens usually absent in the mouth like Acinetobacter 
baumannii or enterobacteria.

In summary, we report significant changes in diversity, composition, and network­
ing in the saliva microbiota of patients with COVID-19 and found patterns associated 
with severity of the disease. We report oral species associated with each clinical stage 
because of its presence or abundance, as well as infection with opportunistic pathogens. 
Patterns of networking were also found associated with severity of disease. A highly 
regulated community (normonetting) was found in healthy people, whereas poorly 
regulated populations (disnetting) were characteristic of severe cases. Characterization 
of microbiota in saliva may offer important clues in the pathogenesis of COVID-19 and 
may also identify potential markers for prognosis of the disease.
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