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ABSTRACT All the strains grouped under the species Ralstonia solanacearum represent 
a species complex responsible for many diseases on agricultural crops throughout the 
world. The strains have different lifestyles and host range. Here, we investigated whether 
specific metabolic pathways contribute to strain diversification. To this end, we carried 
out systematic comparisons on 11 strains representing the diversity of the species 
complex. We reconstructed the metabolic network of each strain from its genome 
sequence and looked for the metabolic pathways differentiating the different reconstruc
ted networks and, by extension, the different strains. Finally, we conducted an experi
mental validation by determining the metabolic profile of each strain with the Biolog 
technology. Results revealed that the metabolism is conserved between strains, with a 
core metabolism composed of 82% of the pan-reactome. The three species composing 
the species complex could be distinguished according to the presence/absence of some 
metabolic pathways, in particular, one involving salicylic acid degradation. Phenotypic 
assays revealed that the trophic preferences on organic acids and several amino acids 
such as glutamine, glutamate, aspartate, and asparagine are conserved between strains. 
Finally, we generated mutants lacking the quorum-sensing-dependent regulator PhcA in 
four diverse strains, and we showed that the phcA-dependent trade-off between growth 
and production of virulence factors is conserved across the R. solanacearum species 
complex.

IMPORTANCE Ralstonia solanacearum is one of the most important threats to plant 
health worldwide, causing disease on a very large range of agricultural crops such 
as tomato or potato. Behind the R. solanacearum name are hundreds of strains with 
different host range and lifestyle, classified into three species. Studying the differences 
between strains allows to better apprehend the biology of the pathogens and the 
specificity of some strains. None of the published genomic comparative studies have 
focused on the metabolism of the strains so far. We developed a new bioinformatic 
pipeline to build high-quality metabolic networks and used a combination of metabolic 
modeling and high-throughput phenotypic Biolog microplates to look for the metabolic 
differences between 11 strains across the three species. Our study revealed that genes 
encoding enzymes are overall conserved, with few variations between strains. However, 
more variations were observed when considering substrate usage. These variations 
probably result from regulation rather than the presence or absence of enzymes in the 
genome.

KEYWORDS trophic preferences, phylotypes, cost of virulence, RSSC, metabolic 
network, metabolic pathways, metabolic modeling

A ll the strains formerly grouped under the Ralstonia solanacearum and closely related 
species represent a species complex (abbreviated hereafter as RSSC) now compris

ing three distinct species, R. solanacearum, R. pseudosolanacearum, and R. syzygii (1). 
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These strains collectively constitute a devastating plant pathogen responsible for many 
diseases such as the bacterial wilt disease of solanaceous plants, the potato brown 
rot, the Moko disease on banana trees, or the Sumatra disease on clove (2, 3). Strains can 
infect at least 392 hosts in 78 different botanical families (3, 4) and are responsible for 
important economic losses throughout the world (5). The RSSC includes a large diversity 
of strains with phenotypic characteristics that may be specific for some strains (e.g., 
adaptation to cool temperatures or insect transmission) and not necessarily related to 
phylogeny (e.g., host range). Historically, several classification systems have been used 
to differentiate these strains, either on host range (“race”) or metabolic (“biovar”) criteria 
(6), but these systems have been progressively abandoned as not robust enough (7). 
Based on genomic comparison methods, strains were classified into four phylogenetic 
groups called phylotypes (I–IV). Each phylotype corresponds roughly to the geographical 
origin of the strains but is not related to host specificity (8). The three distinct species of 
RSSC correspond to these phylogenetic groups: R. pseudosolanacearum corresponds to 
phylotypes I and III, R. solanacearum corresponds to phylotype II, and R. syzygii corre
sponds to phylotype IV, the latter being divided into three subspecies (1).

To better apprehend the genomic diversity of the RSSC strains, comparative 
genomic and proteomic analyses were performed on several strains either study
ing the whole genome (2, 3, 9–14) or focusing on specific genes such as type 3 
secretion effectors (15), antiphage systems (16), or mobile genetic elements (17, 18). 
In particular, the species complex was shown to have a large pan-genome composed 
of at least 13,000 distinct genes, and a core genome composed of approximately 
3,200 genes (14). The division into phylotypes of the RSSC is also supported by 
genomic and proteomic evidence (3, 14).

Two studies have focused on differences in trophic preferences (i.e., the identification 
of the metabolic substrates preferentially metabolized by a strain) for some strains 
(19, 20), but no study has attempted to connect metabolic specificities of strains with 
life traits within the RSSC, an approach that has become possible with the advent of 
genomic-based methodologies. To date, the metabolic network was studied only in 
GMI1000 strain (21, 22). The metabolic network of R. pseudosolanacearum strain GMI1000 
was reconstructed (21), which first provided a global view of the strains’ anabolic and 
catabolic capacities. This study revealed the existence of a metabolic trade-off between 
virulence functions and bacterial growth, with the cost of producing virulence factors 
reducing the maximum growth rate of the pathogen. Indeed, it was shown that GMI1000 
mutant strain lacking the central regulator PhcA could grow faster and on a wider 
range of substrates than the wild-type strain (21). PhcA, a central regulator of virulence 
(23), thus appears also as a major regulator of metabolism. Finally, the mapping of 
the substrates preferentially metabolized by the GMI1000 strain was carried out, thus 
allowing the identification of the compounds that sustain fast bacterial growth and were 
likely to be assimilated in tomato xylem sap (22).

In this manuscript, we present a systemic comparison of metabolism and trophic 
preferences of 11 strains belonging to all three species of the RSSC. To this end, the 
metabolic network of the 11 strains was reconstructed from their genome sequence, and 
trophic preferences of each strain were assessed using Biolog phenotypic microplates 
in order to establish the major convergences/divergences at this level. We also created 
phcA mutants in three strains to have a representative mutant of each species in order 
to establish the extent to which PhcA-dependent regulation impacts metabolism within 
the species complex and whether the metabolic trade-off between virulence and growth 
observed in GMI1000 is conserved.
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MATERIALS AND METHODS

Genome sequencing and annotation

Sequencing was performed as described by Gopalan-Nair et al. (24) using PacBio 
technology. Library preparation was performed at GeT-PlaGe core facility, INRAE 
Toulouse, France and SMRT (single molecule real time technology) sequencing at 
Gentyane core facility, INRAE Clermont-Ferrand, France. The mean reference genome 
coverage obtained was 227×.

For all the genomes, the Prokka software has been used to infer gene boundaries 
(25) with these parameters: --cdsrnaolap and --coverage 60. The coding sequences 
were translated in amino acid sequences. The quality of each genome annotation for 
completeness and contaminations has been measured with Busco (26), considering 
Burkholderiales lineage as reference (Fig. S1 at https://github.com/cbaroukh/rssc-meta
bolic-networks).

Genome-scale metabolic network reconstruction

For the automatic reconstruction, 10 metabolic models were used as reference (Table 
1). The references were chosen because they are using BiGG ontology (27), they are of 
high curation quality, they have a phylogenetic proximity to R. solanacearum, and they 
were pathogens or had a similar lifestyle. Each model was downloaded in the systems 
biology markup language (SBML) format (28). Metabolic pathways information was 
added using BiGG database and ad hoc scripts. Reaction and metabolite identifiers were 
standardized, based mainly on their formula, to avoid redundancies. For instance, two 
reactions involving exactly the same participants are identified by the same identifier.

We built a pipeline called Meroom (MEtabolic Reconstruction from Orthology and 
Ordered Metabolic models) to build the metabolic network of each R. solanacearum 
strain studied. The Autograph method was used as starting point to infer the meta
bolic reactions (29). Autograph builds a new target metabolic network using only one 
reference network and performing orthology associations between the target and the 
reference genes. Gene–reaction associations are propagated from the reference to the 
target. Meroom improved the Autograph method by (i) allowing several references at the 
same time and (ii) allowing the reconstruction of several metabolic networks at the same 
time. In addition, Meroom orders the references so that the gene associations found 
in the first references are privileged over the others in case of conflict or duplication. 
It also computes the pan-network and comparison matrices for reactions, metabolites, 
and pathways. Fig. S2 at https://github.com/cbaroukh/rssc-metabolic-networks gives an 
overview of the complete pipeline of Meroom approach.

Orthology relations between target and reference proteomes have been computed 
using Orthofinder (30). A 40% of identity has been set as parameter for the diamond 
execution. Then, orthologies are filtered according to the order of the references. For 
the first reference, all the orthology associations are kept. For the following references, 

TABLE 1 Reference metabolic networks used for the reconstruction step

Priority Species Lineage Source of the metabolic model

1 R. pseudosolanacearum GMI1000 Betaproteobacteria https://www.ebi.ac.uk/biomodels/MODEL1612020000

2 Cupriavidus necator Betaproteobacteria https://github.com/m-jahn/genome-scale-models/tree/master/Ralsto

nia_eutropha/sbml

3 Escherichia coli Gammaproteobacteria http://bigg.ucsd.edu/models/iML1515

4 Xylella fastidiosa Gammaproteobacteria https://www.ebi.ac.uk/biomodels/MODEL2003100001

5 Xanthomonas oryzae Gammaproteobacteria https://www.ebi.ac.uk/biomodels/MODEL1912100001

6 Salmonella enterica Gammaproteobacteria http://bigg.ucsd.edu/models/STM_v1_0

7 Klebsiella pneumoniae Gammaproteobacteria http://bigg.ucsd.edu/models/iYL1228

8 Pseudomonas putida Gammaproteobacteria http://bigg.ucsd.edu/models/iJN1463

9 Bacillus subtilis Firmicutes http://bigg.ucsd.edu/models/iYO844

10 Yersinia pestis Gammaproteobacteria http://bigg.ucsd.edu/models/iPC815
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orthology associations are kept only if the target gene has no ortholog in the previous 
references. For each target and for each reference, a target metabolic model is built. 
Then, the target networks obtained from each reference are merged into a unique target 
network. The reactions without gene–reaction association are kept only from the first 
reference. Finally, all the target networks built by Meroom are merged into a pan-net
work, and comparison matrices are built (Fig. S2 at https://github.com/cbaroukh/rssc-
metabolic-networks).

Meroom uses met4j, a JAVA library for metabolic networks (http://metexplore.tou
louse.inrae.fr/met4j) and is open source (https://lipm-gitlab.toulouse.inra.fr/LIPM-BIO
INFO/multiple-propagation). For convenience, a singularity package makes easier its 
installation and usage (https://lipm-gitlab.toulouse.inra.fr/LIPM-BIOINFO/meroom-singu
larity).

Computational simulations

Since some essential reactions for biomass production were missing in the metabolic 
network reconstructed by Meroom, we added manually these reactions to perform 
computational simulations. Tryptophan tRNA charging reaction was added because it 
was missing in the metabolic network of all strains. This was due to the fact that the GPR 
(gene-protein-reaction link) of this reaction relies only on an RNA sequence and not a 
protein, thus making it impossible to propagate to other networks, since orthologs were 
inferred at the protein level. Cobalamin was removed from BDBR229 biomass equation. 
Glycolaldehyde dehydrogenase was added to all R. syzygii strains as well as K60 and 
RUN2340. 1,4-Alpha-glucan branching enzyme was added in R24.

Simulations were performed using in-house Python 3.7 scripts. Reactions were parsed 
from metabolic network tabular files generated by Meroom. This allowed to create a 
numerical stoichiometric matrix and reversibility constraint vectors for each metabolic 
network. The linear programming solver CPLEX (Python API), developed by IBM, was 
used to solve the system and get solutions. All scripts and command lines are available 
online on GitHub: https://github.com/cbaroukh/rssc-metabolic-networks.

Flux balance analysis (FBA) was performed using the following constraints: all 
lower bounds of transport reactions were set to zero except water, hydrogen ion, 
potassium, phosphore, sodium, ammonium, sulfate, magnesium, chlore, iron, cobalt, 
manganese, molybdenum, oxygen, and carbon dioxide. The other constraints used were 
the following: L-glutamate (R_EX_glu__L_e set at −7.25 mmol.h−1.gDW−1), 3OHFAME 
(R_EX_3OHPAMES_e_ set at 1.5 × 10−4 mmol.h−1.gDW−1), exopolysaccharides (EPS; 
R_EX_EPS_e_ set at 0.0062 mmol.h−1.gDW−1), putrescine (R_EX_ptrc_e set at 0.28 
mmol.h−1.gDW−1), Tek (R_EX_Tek_e_ set at 2.7 × 10−4 mmol.h−1.gDW−1), and ethylene 
(R_EX_etle_e_ set at 0.129 mmol.h−1.gDW−1). Finally, non-growth associated maintenance 
(R_NGAME) was set at 8.38 mmol.h−1.gDW−1, and oxidation of Fe2+ to Fe3+ was set to zero 
to avoid creation of energy from this reaction, which is not biologically relevant. Gene 
deletion studies were performed with similar constraints.

Carbon substrate phenotyping

Phenotyping was performed using Biolog Phenotype Microarray plates PM1, PM2-A, and 
PM3-B following the manufacturer’s protocol. An initial OD of 0.10 (600 nm) was used 
for inoculation. Incubation time was between 67 h and 192 h, depending on the strain. 
Three independent replicates were performed.

Growth was assumed proportional to respiration and was assessed by calculating 
either the area under the curve (AUC) or the maximal intensity achieved (A, average on 
the top 10 values). Growth was considered effective if A >50. Fast growth was considered 
if AUC >7,000. The raw Biolog results are available on the GitHub repository (https://
github.com/cbaroukh/rssc-metabolic-networks).
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Construction of phcA mutant strains

Disruptions of the phcA gene of the Psi07, CFBP2957, and UW551 receptor strains were 
created with the pGAΩ plasmid that was previously used to create the phcA mutant in 
strain GMI1000 (23). pGAΩ carries an insertion of the Ω interposon 255 bp downstream 
of the phcA start codon. The HindIII-linearized construct was recombined in the genome 
of recipient strains through natural transformation (31). Competence of recipient strains 
has been achieved after growth for 48 h in minimal medium (32) supplemented with 
2% glycerol. Transformants were selected on medium supplemented with spectinomycin 
(40 µg/mL−1), and the genetic structure of the phcA::Ω recombinant locus was checked 
by PCR using the primers fw (forward) 5′-GGTACGACAACGAGTGG-3′ and rev (reverse) 5′- 
TTCATCAGCGAGTTGACCGT-3′ (except for strain CFBP57: rev was 5′-TTCATCAGCGAATT
GACCGT-3′).

RESULTS

Metabolic network reconstruction of 11 strains belonging to the three 
species

To represent the diversity of the RSSC, strains from each species of the species complex 
were chosen, with more strains R. solanacearum to better apprehend its diversity (Table 
2). The genome of each strain was either taken from literature or sequenced by ourselves 
using PacBio technology and structurally annotated (Table 2) using Prokka (25).

We developed an in-house reconstruction algorithm, which we called Meroom to 
reconstruct automatically the metabolic network of each of the 11 strains (https://
lipm-gitlab.toulouse.inra.fr/LIPM-BIOINFO/meroom-singularity). Briefly, this algorithm 
uses reference strains whose metabolic networks have either a high curation quality 
and/or are phylogenetically close to the organism whose metabolic network is to be 
reconstructed. The first step of the algorithm consists in defining ortholog groups using 
Orthofinder (30). Then each metabolic reaction linked to an orthogroup is propagated 
into the metabolic network under reconstruction (Fig. 1). The reference strains are 
ordered so that in case of conflicts, the reference strain with the highest order of priority 
is trusted. This allowed to yield draft metabolic networks of high quality, with few false 
positives and few gaps. The closer the model strains are phylogenetically, the easier it 
is to reconstruct the metabolic networks to perform flux balance analysis (33). Because 
the reference strain GMI1000 already had its metabolic network reconstructed (21), it 
allowed to generate in a straightforward manner the metabolic networks of the other 10 
strains. Other bacteria, such as Cupriavidus necator (34) or Escherichia coli (35), were also 
used as models (see Materials and Methods for more details). The GMI1000 metabolic 
network was also reconstructed de novo with the Meroom algorithm to avoid any bias in 

TABLE 2 List of the wild-type strains of the RSSC investigated in this studya

Strain Phylotype Species Plant origin Country of origin Genome sequence origin No. of predicted 

proteins

GMI1000 I R. pseudosolanacearum Tomato Guyana (30) 5,060

PSS4 I R. pseudosolanacearum Tomato Taiwan This work 5,117

RUN2340 III R. pseudosolanacearum Potato Madagascar This work 5,119

CFBP2957 IIA R. solanacearum Tomato French West Indies This work 4,951

K60 IIA R. solanacearum Tomato The United States (33) 5,081

BA7 IIA R. solanacearum Banana Grenada This work 5,035

UW551 IIB R. solanacearum Geranium Kenya (33) 4,755

MOLK2 IIB R. solanacearum Banana Philippines This work 4,868

PSI07 IV R. syzygii Tomato Indonesia (11) 4,812

R24 IV R. syzygii Clove Indonesia This study 4,879

BDBR229 IV R. syzygii Banana Indonesia This study 4,724

aThe Busco quality scores for completeness and contamination of each genome are shown in Fig. S1 at https://github.com/cbaroukh/rssc-metabolic-networksn. The number 
of proteins was computed from Prokka automatic annotation (25). The novel genome sequences are available in GenBank (Table S1 at https://github.com/cbaroukh/rssc-
metabolic-networks).
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the analysis. The GMI1000 network, therefore, refers to the new reconstructed metabolic 
network, whereas the model network from Peyraud et al. (21) is referred to as Model 
GMI1000. All the metabolic networks are available as File S1 in a table format or in SBML 
format at https://github.com/cbaroukh/rssc-metabolic-networks.

The merged metabolism of all strains, i.e., the pan-metabolome, is composed of 2,573 
reactions and 2,562 metabolites. The common metabolism of all strains, i.e., the core 
metabolome, represents a majority of the pan-metabolome, since 2,111 (82%) reactions 
and 2,251 (88%) metabolites are present in all strains. For comparison, the metabolic 
network of GMI1000 strain shares 1,149 reactions to the E. coli metabolic network (36). A 
metabolic network contained on average 2,390 reactions; the smallest one was obtained 
for BDBR229 (2,315 reactions) and the largest for PSI07 and PSS4 (2,440 reactions), both 
strains belonging to R. syzygii (Fig. S3 at https://github.com/cbaroukh/rssc-metabolic-
networks). Meroom propagates the complex links between genes and reactions formed 
by AND (protein complexes) and OR (isoenzymes). In the propagation, an orthologous 
gene participating in an enzymatic complex may be missing, so the link between 
genes and reactions is said to be incomplete. These reactions with incomplete gene 
links represent only 3.1%–7.7% of the reactions associated with a gene in the different 
networks.

Tracking major metabolic differences among the strains

In order to identify metabolic markers that differentiate the 11 RSSC strains, we 
generated tables of presence/absence of the metabolic reactions for each strain and 
performed a clustering analysis and a multiple component analysis (MCA) on these 

FIG 1 Meroom pipeline to reconstruct automatically draft metabolic networks of high quality. The algorithm relies on reference strains that are trusted 

for their metabolic network quality and/or are phylogenetically close to the strains under reconstruction. The first step consists in using Orthofinder (30) 

to determine orthogroups between reference strains and strains under reconstruction. The second step consists in propagating reactions from reference 

metabolic models using gene–proteins–reactions associations and the orthogroups issued from step 1. The third step consists in merging the metabolic network 

obtained from each reference strain, for each strain under reconstruction. A more detailed description of the pipeline is available in Fig. S2 at https://github.com/

cbaroukh/rssc-metabolic-networks.
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tables (Fig. 2). The clustering analysis clustered strains belonging to the same phylotype 
(Fig. S4 https://github.com/cbaroukh/rssc-metabolic-networks) and strains belonging to 
same species. The MCA separated on the first axis (27% of explained variance) strains 
according to their phylotype, thus discriminating each species of the species complex. 
The second axis (21% of explained variance) separated strains within their phylotype. 
Phylotype and species could thus be separated using only the presence/absence of 
reactions in each metabolic network.

From this MCA analysis, we wanted to identify the metabolic pathways that 
distinguished the four phylotypes (see the list File S2 at https://github.com/cbar
oukh/rssc-metabolic-networks). Looking into which reaction(s) contributed the most 
to the first axis, we found that several reactions belonged to the general pathway of 
benzoate degradation. Most of these reactions appeared in fact to be related to salicylate 
degradation pathways, indicating that diverse pathways are able to degrade salicylate 
within the species complex (Fig. 3; Fig S5 at https://github.com/cbaroukh/rssc-meta
bolic-networks). Indeed, all strains possess a 4-aminobenzoate degradation pathway 
going through 3-oxoadipate, reaching the central core carbon network via succinyl-
CoA and acetyl-CoA. All strains also have a salicylate degradation pathway via genti
sate, reaching the core metabolic network via fumarate and pyruvate. However, R24, 
K60, and CFBP2957 have lost some of the genes in the operon (2, 4 genes) coding 
for this pathway (corresponding to RSc1085-RSc1091 in GMI100). Finally, all strains 
have a reaction converting salicylate to catechol (Fig. 3; Fig. S5 at https://github.com/
cbaroukh/rssc-metabolic-networks). Phylotype I and phylotype III strains have another 
gentisate degradation pathway (RSc1821-1829 in GMI1000, Fig. S5 at https://github.com/
cbaroukh/rssc-metabolic-networks). Phylotype I has a catechol degradation pathway 
going through 2-oxopent-4-enoate to acetyl-CoA and pyruvate (Fig. 3; Fig. S5 at https://
github.com/cbaroukh/rssc-metabolic-networks). All phylotype II and IV strains, except 
R24, have an operon degrading catechol to 3-oxodipate through cis,cis-muconate (Fig. 3, 
Fig S5 at https://github.com/cbaroukh/rssc-metabolic-networks). In summary, according 
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to the phylotype, different pathways are used by RSSC strains to degrade salicylate; only 
R24 appears to have a non-functional degradation pathway of this metabolite.

Other differences contributing to the first axis of the MCA (listed File S2 at https://
github.com/cbaroukh/rssc-metabolic-networks) relied on the presence/absence of 
several catabolic pathways, rather involving non-central metabolites, or single determi
nants in the primary metabolism which appear discriminating between groups of strains. 
For example, all the phylotype II and IV strains have a second glutamate dehydrogenase, 
converting glutamate to alpha-ketoglutarate, an extra phosphate import reaction, and a 
second pathway converting acetate into acetyl-CoA. Phylotype IIB and IV strains possess 
a gallate degradation pathway encoded in one operon (RSPSI07_04540-RSPSI07_04548). 
PSI07 (phylotype IV) and phylotype I and III strains have a degradation pathway for 
sarcosine, an intermediate metabolite for glycine-betaine degradation, and this pathway 
appears duplicated in phylotype I. Only phylotype I and III strains have a reaction 
converting N2O into N2 and a reaction repairing di-iron centers in Fe-S proteins, in 
agreement with previous reports (3, 37, 38), and phylotype IV strains have a thymine 
degradation pathway which is absent in other strains.

Looking at the second axis of the MCA, both R24 and BDBR229 miss an enzyme in 
ketogluconate catabolism, an enzyme involved in nitrate and nitrite import/export, and 
four enzymes in the catabolism of glycogen. R24 also misses two additional enzymes 
belonging to the glycogen catabolic pathway and one for glycogen synthesis (1,4 
alpha-branching enzyme). Finally, three enzymes involved in galactonate degradation 
are missing in phylotype II strains. In conclusion, reactions discriminating strains are 
involved in salicylate degradation pathways, catabolism of specific substrates, reactions 
involved in secondary metabolism, and some specific reactions involved in primary 
metabolism.

FIG 3 Different pathways to degrade 4-aminobenzoate and salicylate present in 11 strains. Black arrows, pathway present in the 11 strains investigated in 

this work; dotted black arrow, present in all strains, K60 misses two genes catalyzing reactions in the pathway; dashed black arrow, present in all strains, 

K60, R24, and CFBP2957 miss two genes catalyzing reactions in the pathway; blue arrows, present in all phylotype II and IV strains except R24; red arrow: 

present in all phylotype I and III strains; purple arrow, present in all phylotype I strains. 4hbz, 4-aminobutyrate; 5odhf2a, 5-oxo-4,5-dihydrofuran-2-acetate; 

3oxoadp, 3-oxoadipate; succoa, succinyl-coa; accoa, acetyl-coa; ccmuc, cis,cis-muconate; op4en, 2-oxopent-4-enoate; fum, fumarate; pyr, pyruvate. A detailed 

representation of the diverse metabolic pathways comprising all reactions and all genes implied in each pathway is available in Fig. S5 at https://github.com/

cbaroukh/rssc-metabolic-networks.
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Prediction of metabolic pathways critical for biomass growth in each 
reconstructed network

In order to predict in silico how the different strains were able to achieve growth under 
standard constraints, we performed flux balance analysis (33) on each reconstructed 
network, by setting the same constraints previously used for strain GMI1000 (21). 
Briefly, growth was simulated on L-glutamate, with imposed excretion of putrescine, 
EPS, ethylene, the diffusible signal molecule 3OHMAME (3-hydroxy fatty acid methyl 
esterase), and a protein substrate from the type II secretion system, as described by 
Peyraud et al. (21). Unfortunately, for most strains, the models were unable to yield 
growth or metabolite excretion, indicating that some essential reactions were missing 
in the corresponding reconstructed networks. To identify these essential reactions, 
assumed to be present in the ModelGMI1000, we have computed the systematic 
addition of each reactions from ModelGMI1000 missing in a given strain and then 
performed an in silico reaction essentiality test on each of them. This allowed to unravel 
the missing reactions that were mandatory for growth and metabolites excretion in our 
FBA models. Detailed results are available in File S3 at https://github.com/cbaroukh/rssc-
metabolic-networks.

First, BDBR229 missed nine reactions from the cobalamin synthesis pathway (vitamin 
B12), implying eight enzymes belonging to the same operon. The entire operon 
has disappeared in BDBR229 (e.g., RSp0614-RSp0628 in GMI1000). However, cobala
min is probably non-essential for growth (39) and contributes to a faster growth 
of the bacteria in media without the presence of cobalamin in the environment 
(36). In addition, BDBR229 has lost its S-adenosylmethionine decarboxylase (RSp1293 
in GMI1000) necessary for synthesizing decarboxylated-S-adenosylmethionine, an 
intermediate metabolite which allows the synthesis of spermine and spermidine from 
putrescine. However, these polyamines are not always essential for bacterial growth (40). 
Only putrescine, in GMI1000, was shown essential (41). Finally, R24 missed a 1,4 alpha 
glucan branching enzyme, necessary for the synthesis of glycogen. Looking in more 
details into the operon to which this enzyme belongs (RSp0235-RSp0242), the synteny 
of the operon is highly conserved in each strain, except for BDBR229 and R24. The 
operon is implied in glycogen synthesis and degradation. R24 misses seven genes out 
of the eight genes and BDBR229 four genes. The metabolic networks were modified 
to perform FBA for all strains by adding essential reactions or modifying the biomass 
equation. Results obtained also illustrates the high quality of the metabolic networks 
generated by Meroom since very few reactions (maximum 3) were modified or added in 
the metabolic network to be able to predict biomass growth and metabolite excretion. 
Some reactions were present in a strain but absent from Model GMI1000. To know if 
the presence of these reactions conferred any gain in growth, we performed a similar 
analysis as for the missing reactions. The flux of each extra reaction was set to zero to see 
if biomass growth was impacted. Results showed that none of the reactions conferred 
any significant gains in growth or metabolite excretion on glutamate (File S3 at https://
github.com/cbaroukh/rssc-metabolic-networks).

Prediction of growth robustness of RSSC strains through gene essentiality 
analysis

With the 11 metabolic networks reconstructed for each strain, we performed in silico 
a comparative gene essentiality analysis to estimate the growth robustness of each 
strain when growing on L-glutamate as sole carbon source (results listed in File S4 
https://github.com/cbaroukh/rssc-metabolic-networks). Beyond a group of genes (196) 
that are essential for all strains and belong to the essential central metabolism, this 
analysis identified 32 genes for which essentiality differed between strains (File S4 
https://github.com/cbaroukh/rssc-metabolic-networks). We examined this list in more 
detail to understand why these genes were predicted to be essential for growth in one 
strain and not in another, in order to uncover these specificities. The 32 genes were 
involved in majority in the synthesis of amino acids, or essential cofactors and vitamins 

Research Article mSystems

July/August  Volume 8  Issue 4 10.1128/msystems.00083-23 9

https://github.com/cbaroukh/rssc-metabolic-networks
https://github.com/cbaroukh/rssc-metabolic-networks
https://github.com/cbaroukh/rssc-metabolic-networks
https://github.com/cbaroukh/rssc-metabolic-networks
https://doi.org/10.1128/msystems.00083-23


such as folate, ubiquinone, or flavin. Some of the genes were essential only in specific 
phylotypes as, for example, a reaction step in the synthesis of leucine which did not have 
any associated isoenzyme in phylotype II and IV strains but had one in phylotype I and III 
strains (RSc1988 and RSp0329).

Trophic preferences among the phylotypes

In parallel to the metabolic network analysis, the carbon and nitrogen trophic prefer
ences of the 11 strains (Table 2) were studied using Biolog phenotypic microplates 
type PM1, PM2-A, and PM3-B. Results confirmed that BDBR229 has a fastidious growth 
compared with the other strains (2), since 192 h instead of 96 h were necessary to reveal 
a metabolic activity (Fig. 4A). We developed a script to infer automatically if there was 
growth (respectively fast growth) and applied it on each substrate and for each strain 
(cf. Materials and Methods for details, and File S5 at https://github.com/cbaroukh/rssc-
metabolic-networksfor detailed results). Overall, there is a noticeable level of variation 
in metabolic versatility between strains, whether for nitrogen or for carbon sources. At 
both extremes, strain R24 appears to be able to metabolize twice as many substrates 
as either strain K60 or BDBR229 (101, 49, or 44, respectively). BDBR229 is an exception 
with a reduced versatility and only one substrate enabling rapid growth (Table 3), which 
probably explains the slow growth phenotype of this strain compared with the others. 
For K60, versatility is also reduced but seems to be compensated by a better ability to 
metabolize carbon substrates ensuring a rapid growth. All the strains could grow on 11 
common carbon sources and 8 nitrogen sources (Table 3; File S5 at https://github.com/
cbaroukh/rssc-metabolic-networks). When considering substrates which could sustain 
growth for 10 out of the 11 strains studied, we found 14 additional carbon sources 
and 6 additional nitrogen sources in common. The carbon sources included mainly 
organic acids and several amino acids but here too there were variations between 
strains, including strains within the same phylotype. This is particularly visible for certain 
amino acids (proline, alanine, serine, and threonine) or sugars (sucrose, fructose, and 
trehalose). We also detected automatically carbon substrates that could support a fast 
growth in at least 9 strains out of 10 (we excluded BDBR229, which does not have a 
“fast growth” phenotype). We found that glutamine, glutamate, aspartate, asparagine, 
fumarate, citrate, and malate could support a fast growth in most of the strains.

We performed a principal component analysis (PCA) on the Biolog profiles of 
each strain using the maximal intensity (A) reached for each substrate as values 
characterizing each strain. The PCA could not distinguish the four phylotypes, contrary 

FIG 4 Number of carbon (resp. nitrogen) sources which can support growth for each wild-type strain (A) and phcA mutant strain (B). *, phcA mutant strain. 

Carbon sources were divided as sustaining a fast growth or a slow growth. Strains were grouped by phylotypes. The trophic preferences were assessed using 

Biolog phenotype microplates PM1, PM2-A, and PM3-B and an in-house script, which detect automatically if there is growth or fast growth (see Materials and 

Methods for details).
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to the MCA performed on the metabolic network reconstructions (Fig. S6 at https://
github.com/cbaroukh/rssc-metabolic-networks). Similar results were obtained using the 
AUC criterion instead of maximal intensity (data not shown). We performed hierarchi
cal clustering, using the same table of values characterizing the strains (A and AUC). 
Here again, the strains were not clustered according to their phylogenetic relationships 
(Fig. S7 at https://github.com/cbaroukh/rssc-metabolic-networks). Only strains from 
phylotype I clustered together when performing clustering on AUC for PM1 plate only 
(Fig. S8 at https://github.com/cbaroukh/rssc-metabolic-networks). Specific markers of 
the relationship between these strains were the ability to metabolize sorbitol, dulcitol, 
and mannitol. This finding confirmed previous results that identified a 22-kb region 
specifically present in phylotype I strains (42) and was associated to the degradation of 
these three sugar alcohols.

Conserved versus specific impact of the PhcA-dependent regulation on the 
metabolism of RSSC phylotypes

Since PhcA was shown to regulate metabolism (21), we wanted to determine if this 
PhcA-mandated regulatory pattern on the pathogen’s metabolism was conserved within 
the RSSC. We, therefore, built phcA mutant strains in three strains representative of 
each species: CFBP2957 for R. solanacearum (phylotype IIA), UW551 for R. solanacea
rum (phylotype IIB), and Psi07 for R. syzygii (phylotype IV). We then performed Biolog 
phenotype microplates experiments for each of these mutants. In addition, we already 
had Biolog results for phcA mutant in GMI1000 (21). Results showed that any phcA 
mutant strain grew faster on more carbon substrates than the wild type and could 
also grow on a larger number of substrates (Fig. 4B). Overall, strains carrying the 
phcA mutation acquire a capacity to metabolize substrates ranging from 30% to 37% 
higher than the wild type except for strain UW551 where this rate is only 13%. This 

TABLE 3 Growth diversity of RSSC strains belonging to diverse phylotypes on amino acids, organic acids issued from the Krebs cycle, and sugars as carbon 
sourcesa

Strain GM1000 PSS4 RUN2340 CFBP2957 BA7 K60 UW551 MOLK2 Psi07 R24 BDBR229

L-aspartic acid +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +

L-glutamic acid +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++

L-asparagine +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +

L-glutamine +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +

L-alanine + + +++ + +++ − + + + +++ +

L-histidine − +++ +++ + +++ +++ +++ +++ + +++ +

L-serine + + + + + − + + + +++ +

L-threonine − + +++ + +++ − +++ + − − −

L-proline − − +++ − +++ +++ +++ + − +++ +

L-valine − − − − + + + + − + −

L-leucine − − − − + + − − − − −

Succinic acid + + +++ + +++ +++ +++ + + +++ +

Fumaric acid +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +

L-malic acid +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +

α-Ketoglutaric acid + + + +++ +++ +++ +++ + + + +

Citric acid +++ +++ +++ +++ +++ +++ +++ +++ + +++ −

Pyruvic acid +++ +++ +++ +++ +++ − +++ +++ +++ +++ +

α-D-glucose +++ +++ +++ +++ +++ − +++ +++ + +++ −

D-trehalose +++ +++ +++ +++ +++ − − + + +++ −

Sucrose + +++ +++ + +++ − +++ − + − −

D-fructose − + + − − − + + + +++ −

D-galactose + + − − − − − − + +++ −

Phylotype I I III IIA IIA IIA IIB IIB IV IV IV

aThe trophic preferences were assessed using Biolog phenotype microplates PM1 and PM2-A and an in-house script, which detect automatically if there is growth (+) or fast 
growth (+++, see Materials and Methods for details). The rest of the substrates is available in File S5 at https://github.com/cbaroukh/rssc-metabolic-networks.
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behavior reveals that, as in GMI1000 (21), the phcA mutation leads to enlarged metabolic 
capacities and enhanced growth in representative strains of the four phylotypes and 
so suggests the occurrence of similar growth/virulence trade-off. It is interesting to 
note that these effects take place on a wide range of substrates, which again can vary 
between strains (Table 4). Several carbon sources that are not or poorly metabolized 
by wild-type strains can support a fast growth for phcA mutants in a majority of strains 
(proline, histidine, alanine, and gluconate), while other carbon sources appear to be 
exploited more specifically by the phcA mutant of only a given strain (e.g., sucrose and 
malonic acid for strain CFBP2957). This observation underlines that a specific PhcA-medi
ated regulation may exist in some strains for some specific substrates.

DISCUSSION

In this study, we set up a metabolic network propagation pipeline on RSSC strains using 
genomic sequences and reference networks, including the manually curated network 
of GMI1000 strain. We sequenced (or re-sequenced) several strains in order to have at 
least three strains for each species of the RSSC with high-quality genome sequence. This 
sample size is still limited and must weigh the generality of the conclusions, but the 
group of 11 strains used, beyond evolutionary (i.e., phylogenetic) relationship, also covers 
large phenotypic differences (broad versus narrow host range strains, adaptation to cool 
temperature, and insect transmission versus root infection) and geographical origin.

TABLE 4 Comparison of fast growth between phcA mutants and WT strains on amino acids, organic acids 
issued from the Krebs Cycle, and sugars and other discriminating metabolites as carbon sourcesa

Strain Psi07 CFBP2957 UW551 GMI1000

L-aspartic acid 2 2 2 2

L-glutamic acid 2 2 2 2

L-glutamine 2 2 2 2

L-asparagine 2 2 2 2

Fumaric acid 2 2 2 2

L-malic acid 2 2 2 2

Pyruvic acid 2 2 2 2

α-D-glucose 1 2 2 2

Citric acid 1 2 2 2

D-saccharic acid 1 2 2 2

D-trehalose 1 2 0 2

α-Ketoglutaric acid 1 2 2 1

Succinic acid 1 1 2 1

L-proline 1 1 2 1

L-histidine 1 1 2 1

Pectin 1 2 1 1

L-alanine 1 1 1 1

Sucrose 0 1 2 0

L-threonine 0 1 2 1

Acetic acid 1 1 0 1

D-galactose 1 1 0 1

D-fructose 1 0 1 0

L-Serine 1 0 1 1

D-gluconic acid 1 1 1 1

m-Inositol 1 2 0 1

Butyric acid 2 1 0 1

Glycerol 1 1 2 1

a2, both phcA mutant and WT strains grow fast on the substrate; 1, only phcA mutant grows fast on the substrate; 
0, neither the WT nor the phcA mutant grows fast on the substrate. The trophic preferences were assessed using 
Biolog phenotype microplates PM1 and PM2-A and an in-house script, which detect automatically if there is 
fast growth (see Materials and Methods for details). The rest of the substrates are available in File S5 at https://
github.com/cbaroukh/rssc-metabolic-networks.
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Analysis of the 11 reconstructed networks reveals that the metabolic diversity is 
not so high between these strains, with a reactome (i.e., the set of possible metabolic 
reactions associated with the genome) comprising on average 2,390 reactions and a 
core reactome consisting of 82% of the pan-reactome. This is in sharp contrast to 
the inter-strain comparison at the genomic level as the core genome was estimated 
to comprise 1,940–2,370 genes (11.6%–17.9% of the pan-genome, respectively), thus 
showing a high degree of genomic diversity between strains throughout the species 
complex (3, 13, 14, 43–45). The high proportion of the core reactome thus reflects a very 
high (or even near complete) conservation of the core metabolism in the network of the 
different strains. Interestingly, on average, the metabolic network encompasses only 32% 
of the genome of each strain (Table S2 at https://github.com/cbaroukh/rssc-metabolic-
networks), allowing diversity over the remaining 68%. Another point to consider is that 
most of the metabolic genes involved in secondary metabolism, such as production of 
toxins or various uncharacterized diffusible molecules beside ralfuranones, ralsolamycin, 
Hrp-dependent diffusible factors, etc. (46–49), are also probably involved in adaptation 
processes and may vary between strains. However, the current state of knowledge of 
these secondary metabolic processes is relatively poor, thus making it nearly impossible 
to incorporate them into the reconstruction step of the metabolic networks.

Based on a criterion of presence/absence of reactions in the metabolic network 
of each studied strain, both the MCA and clustering analyses were congruent with 
phylogeny, distinguishing correctly in both cases the four phylotypes and three species. 
Strains from phylotype I and III clustered together, IIA/IIB strains were distinct from each 
other but clustered together in the phylotype II group, and phylotype IV strains also 
clustered even if they were the ones with the largest differences between strains (Fig. 
2; Fig. S4 at https://github.com/cbaroukh/rssc-metabolic-networks). This observation is 
in agreement with the current view of the phylogeny of the RSSC, with phylotypes I 
and III taxonomically closer together and grouped into the R. pseudosolanacearum novel 
species and phylotype IV in which a wider diversity is predicted (10, 14).

No clear association between metabolic specificities and phenotypic traits 
but a common preference for organic acids and some amino acids

Apart from metabolic pathways that had already been identified as strain/phylotype 
specific [metabolism of sugar alcohols (42) and nitrate assimilation (37)], the results 
point to a range of pathways involved in the catabolism of various “non-core” com
pounds (salicylate, sarcosine, gallate, benzoate, galactonate, etc.). Interestingly, gallate 
and salicylate are found abundantly in plants. Gallate and derivatives, such as methyl 
gallate or epigallocatechin gallate, are metabolites exhibiting antimicrobial activities 
(50, 51). In particular, it was shown that methyl gallate can inhibit growth of R. solana
cearum (51). The fact that some strains of the RSSC possess a degradation pathway 
suggests that some plants used gallate as an immunity response to R. solanacearum. 
It can be hypothesized that the pathogen has acquired a gallate degradation pathway 
to counter the effect of these antimicrobial compounds. In a similar way, salicylate, a 
plant molecule involved in defence against pathogens, was shown to be degraded by 
R. solanacearum to protect the bacteria against inhibitory levels upon infection (52). Our 
study reveals that the degradation of salicylate involves up to four distinct salicylic acid 
degradation pathways in the RSSC pan-reactome. Some of the salicylate degradation 
paths were only present in some phylotypes and not others, possibly reflecting a variety 
of evolutionary solutions to degrade this molecule, probably through selection for more 
efficient degradation in some strains. Intriguingly, only one strain (R. syzygii R24) appears 
to be unable to degrade salicylate, which raises questions about the existence of an as 
yet unidentified alternative pathway or a dependence on its particular lifestyle (insect 
transmitted and restricted to the clove tree host).

Two of the strains belonging to phylotype IV (BDBR229 and R24) have both very 
distinct behaviors from the other studied strains. Some metabolic determinants that are 
widely conserved in the species complex appear to be missing in these strains such as 
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the glycogen degradation pathway, a functional salicylate degradation pathway for R24 
or genes for the biosynthesis of the cofactor cobalamin in BDBR229. Biolog phenotyping 
confirmed that these two strains had atypical metabolic profiles, with BDBR229 having a 
limited number of substrates that could support growth, and R24, in contrast, being able 
to grow on the largest number of different substrates. These observations also support 
the view that BDBR229 has a fastidious growth character, similar to other insect-borne 
plant pathogens (36, 53), but the case of R24, also insect transmitted, remains enigmatic, 
and it will probably be necessary to obtain other genomes of R. syzygii strains for a 
better understanding. The rough appearance of the R24 strain on plate may suggest that 
a “phcA-like” mutation has occurred, either in the wild-type strain or during laboratory 
manipulation conditions. The hypothesis that R24 is a natural phcA-like mutant would be 
consistent with the fact that this strain is insect transmitted and thus restricted to the 
xylem compartment during plant infection, a condition for which we know, thanks to an 
experimental evolution study that this type of mutation can occur (54).

To a lesser extent, strain K60 (phylotype II) also has characteristics that distinguish 
it from most other RSSC strains. K60 seems to be able to metabolize a smaller number 
of substrates than the average of the other strains but with greater efficiency (higher 
proportion of substrates promoting fast growth, see Table 3). The growth of this strain 
also appears to be deficient on several sugars (e.g., lacking some transporters such as for 
sucrose). It has recently been proposed that strain K60 may be representative of a new IIC 
clade (14), and it is, therefore, unclear at present whether the metabolic behavior of K60 
is related to this phylogenetic distinction or not.

Beyond an apparent diversity in the trophic spectrum of the RSSC strains, our study 
highlights the importance of organic acids (such as citrate, malate, or pyruvate) and 
amino acids (glutamine, glutamate, aspartate, and asparagine) as a common substrate 
base supporting efficient bacterial growth in all strains tested (except BDBR229). Amino 
acids and sometimes organic acids are the main components of xylem sap of plants, 
with glutamine and asparagine often present in high amount in xylem sap (55). The 
experimental approach showed the importance of amino acids, such as glutamine and 
asparagine, in enabling abundant multiplication of strain GMI1000 in tomato xylem 
(22, 56). Amino acids and many organic acids are also present in soil extracts (57). The 
organic acids probably result not only from the decomposition of organic matter in 
the soil by bacteria and archaea but also from root exudates (58). Roots also appear to 
exudate amino acids (58). Interestingly, L-malate was shown to be a chemoattractant of 
R. solanacearum (59), and more generally, organic acids could play a role in the survival of 
the bacteria in the soil.

PhcA-mediated regulation reveals the metabolic potential of strains and also 
distinguishes substrate usage specificities

It is known that PhcA, a master transcriptional regulator in the RSSC, regulates in a direct 
or indirect manner expression of some metabolic pathways (60). GMI1000 phcA mutant 
could also grow faster and on more substrates than the wild-type relative (21). We 
generated phcA mutants in three additional strains, representing each species, including 
the IIA and IIB phylotype distinction. Characterization of the metabolic profile of these 
mutants showed that they could also grow faster and on more carbon and nitrogen 
substrates than wild-type strains, although there is significant variation in the number 
of additional carbon and nitrogen substrates between strains. Qualitatively, there were 
also significant variations in the type of substrates metabolized by the different phcA 
mutants, independent of phylogeny. These observations suggest that: (i) the trade-off 
between bacterial growth and virulence is globally conserved within the species, (ii) 
PhcA-mediated regulation may operate in a distinct manner on different metabolic 
genes depending on the strain and that this regulation introduces a strong differentia-
tion at the metabolic level, probably linked to the necessities of the strains’ life style and 
adaptated to their immediate environment.
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The existence of such differentiation could also explain why the PCA analysis of 
Biolog metabolic profiles does not overlap with phylogeny (unlike the analysis based 
on the presence/absence of reactions). Indeed, we can see that the presence of a 
metabolic gene does not necessarily imply its expression and that the regulation that 
can take place will not depend on the phylogenetic origin of the strain. Another possible 
explanation to some discrepancies between Biolog profiling data and metabolic network 
prediction is that the absence of a single gene such as a substrate transporter can lead 
to a lack of growth even if the metabolic pathway is present (e.g., UW551 misses the 
trehalose transporter).

Supporting information

All supporting information is available at https://github.com/cbaroukh/rssc-metabolic-
networks.
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