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Abstract

Social desirability bias (SDB) has been a major concern in educational and
psychological assessments when measuring latent variables because it has the
potential to introduce measurement error and bias in assessments. Person-fit
indices can detect bias in the form of misfitted response vectors. The objective of this
study was to compare the performance of 14 person-fit indices to identify SDB in
simulated responses. The area under the curve (AUC) of receiver operating
characteristic (ROC) curve analysis was computed to evaluate the predictive power
of these statistics. The findings showed that the agreement statistic (A) outperformed
all other person-fit indices, while the disagreement statistic (D), dependability statistic
(E), and the number of Guttman errors (G) also demonstrated high AUCs to detect
SDB. Recommendations for practitioners to use these fit indices are provided.
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Since 1930, social desirability bias (SDB) has been considered a potential concern

when measuring variables or latent constructs in psychological studies (Bernreuter,

1933), and it has been addressed in psychological and educational research (e.g.,

Leite & Nazari, 2020; Leng et al., 2020; Vésteinsdóttir et al., 2019). In prior studies,
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researchers have attempted to address SDB using three different approaches: admin-

istering a social desirability scale along with the focal scale of interest, reducing

social desirability responding by manipulating test conditions, and using statistical

methods to correct scores. However, these approaches either increase the respondent

burden or are costly to the researcher in terms of research design or analysis com-

plexity. Therefore, there is a need for low-cost methods to address SDB. This article

addresses this need by evaluating whether a wide range of parametric and nonpara-

metric person-fit statistics (e.g., Karabatsos, 2003) can be used to effectively identify

responses affected by SDB.

Crowne and Marlowe (1960, p. 354), defined social desirability as ‘‘the need for

subjects to respond in culturally sanctioned ways’’ and also ‘‘a need to be thought

well of by others, a need for approval’’ (Crowne & Marlowe, 1964). Almost three

decades later, Paulhus (1991) defined social desirability responding as ‘‘the tendency

to give answers that make the respondent look good’’ (p. 17). SDB usually occurs

when the context of an item is perceived as inappropriate in society, so respondents

may not answer truthfully. They either systematically overreport or underreport their

true attitudes, depending on the positive or negative content of survey/test items

(Tourangeau et al., 2000). In survey studies to measure a construct, this type of bias

in responses lies underneath the ‘‘common method variance’’ (Podsakoff et al.,

2003), which is the variance due to measurement method and sources rather than var-

iance related to the targeted construct (e.g., Johnson et al., 2011).

There are several social desirability scales, the most popular of which are the

Marlowe–Crowne Social Desirability Scale (MCSDS; Crowne & Marlowe, 1960)

and the Balanced Inventory of Desirable Responding (BIDR; Paulhus, 1984). Once

SDB scores are obtained, the simplest method to evaluate the degree of SDB is calcu-

lating the correlation between the SDB scores and scores on the focal scale. Ferrando

(2005) proposed a method based on confirmatory factor analysis (CFA), while Leite

and Cooper (2010) developed a factor mixture model (FMM) to correct individual

scores affected by SDB. These models assume a separate latent factor for SDB which

influences item responses to the focal scale. The advantage of FMM over CFA is that

the former is both item and person-centered, and it can evaluate the degree to which

each person provided biased responses (Leite & Cooper, 2010). However, these

approaches are costly as researchers need to administer two scales simultaneously

and need a larger sample size as compared with the administration of one test (e.g.,

due to the complexity of models). In addition, administration of both the focal and

SDB scales may be time-consuming, and respondents may feel exhausted toward the

end of the testing period, thereby answering items carelessly (e.g., Nazari et al.,

2021). Also, these methods cannot be applied to secondary data.

Another approach to reducing social desirability consists of manipulating different

test conditions in an experimental setting. Methods using this approach include the

randomized response technique (Warner, 1965), bogus pipeline (Jones & Sigall,

1971), the item count technique (Holbrook & Krosnick, 2010), eye-tracking

(Kaminska & Foulsham, 2016), extended crosswise model (Heck et al., 2018), and
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audio computer-assisted self-interviewing (Stark et al., 2019). However, these meth-

ods cannot be applied to nonexperimental studies. Also, the design and administra-

tion of these methods are a burden on the researcher, and they cannot be used on the

secondary data.

A third approach is to address SDB with statistical methods to correct scores with-

out an SDB scale or an experimental manipulation. By introducing IRTree models,

Böckenholt (2014) assumed that rating an item can generate multiple response pro-

cesses based on both its content and response format. With the help of a tree struc-

ture, researchers can examine how people respond to different items in a variety of

ways (i.e., different response styles) by modeling the processes involved in respond-

ing to the items (Böckenholt, 2014). Social desirability responding, if conceptualized

as a response style, can be potentially addressed by the IRTree models.However,

other researchers have conceptualized social desirability responding as having both a

stable component that could be understood as a response style, and a situation specific

component that is due to the interaction between examinee and test setting (Leite &

Cooper, 2010).

Two studies investigated social desirability according to a cognitive-based

approach within the item response theory (IRT) framework. Böckenholt (2014) pro-

posed a retrieve–edit–select (RES) model, and Leng et al. (2020) proposed the

retrieve–deceive–transfer (RDT) model to address the process for response editing.

The former suggested that when people face sensitive questions in a questionnaire,

they may modify the initial information they received before deciding between

response options (Böckenholt, 2014). In the latter, Leng et al. (2020) stated that after

retrieving information, the respondent may deceive himself or herself by adding pos-

itive or negative information to the initial knowledge, thereby transferring the answer

to a more desirable higher or lower response option. The recently proposed RDT

model is the enhanced version of RES, and it is based on strong assumptions such as

equal threshold parameters across items and a multidimensional rating scale model.

Furthermore, from a statistical point of view, it is difficult for applied researchers to

implement this method with real data, and no statistical package is currently avail-

able. Wilcox (2017) added that with the use of these cutting-edge, robust techniques,

researchers can get a better, more nuanced grasp of the data. However, the scientific

community has been slow to adopt these enhanced methods, which may be due to

unfamiliarity with the methods and unavailability of specific software.

In this study, we propose that person-fit indices can function as low-cost methods

to detect SDB which are also applicable to secondary data. Given an established mea-

surement model, the goal of person-fit or appropriateness measurement is to define

individual response patterns as typical or atypical (Meijer & Sijtsma, 2001). These

statistics have been used frequently to detect several response biases such as cheating,

careless responding, lucky guessing, creative responding, and random responding

(e.g., Beck et al., 2019; Dimitrov & Smith, 2006; Karabatsos, 2003; Sinharay, 2017;

Tendeiro & Meijer, 2014). However, we found that no study examined the strength

and predictive power of these statistics to detect SDB in responses. In contrast to
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previous methods, utilizing these indices is cost-effective as they do not require either

administering an SDB scale accompanied by the focal scale or conducting an experi-

mental manipulation to detect bias. Therefore, the objective of this study is to com-

pare the ability of person-fit indices to detect SDB in individual responses using

Monte Carlo simulations.

Person-Fit Indices

Most of the person-fit indices were created to test dichotomous items, although sev-

eral have been expanded to test polytomous items as well (Tendeiro et al., 2016).

Table 1 shows 14 frequently studied person-fit indices, together with a brief descrip-

tion of each index. Two of the 14 fit indices in Table 1 are parametric person-fit

indices, which are used within the IRT framework to assess model fit at the individ-

ual level and determine the significance of test results (Embretson & Reise, 2013).

These indices, in a sense, check the consistency of individuals’ item response vectors

based on an IRT model, which is the key issue when seeking to flag particular indi-

vidual responses that may have been biased (Embretson & Reise, 2013). The other

12 person-fit indices are nonparametric. Nonparametric person-fit indices are not

computed based on an IRT model fit to the data; therefore, they have the advantage

that they do not have to adhere to the same assumptions as parametric ones.

Karabatsos (2003) compared 36 person-fit indexes to see how effective they were

at detecting five different types of aberrant responses such as cheating, careless

responding, lucky guessing, creative responding, and random responding. The results

showed that the HT statistic (Sijtsma, 1986) and then U3 statistic (Van Der Flier,

1982), caution statistic (C; Sato, 1975), and modified caution statistic (C�; Harnisch

& Linn, 1981) obtained the best predictive power or area under the curve (AUC) for

detecting all the types of aberrant responses examined, while other indices such as

the number of Guttman errors index (G; Meijer, 1994) and standardized normal

loglikelihood index (lz; Drasgow et al., 1985) showed fair AUC. Dimitrov and Smith

(2006) replicated part of this study to detect guessing and cheating with HT and four

other statistics. They found that HT outperformed other indices when the test length

was 20 and 30 items. Another study was conducted by Tendeiro and Meijer (2014),

which examined the parametric corrected lz index (l�z ; Snijders, 2001), nonparametric

C�, normalized Guttman errors (G�; Van der Flier, 1977), probability of exceedance

(PE; Van der Flier, 1980, 1982), U3, and HT statistics, to detect spuriously low,

high, and mixed responding. They concluded that HT performed better across all

manipulated conditions, while l�z had low performance compared with C�, U1, U3,

and HT . These findings were in contrast with Sinharay’s (2017) results with real

datasets, which showed that there was no meaningful difference between the perfor-

mance of HT and l�z statistics. The lz index (Drasgow et al., 1985) also showed a

good detection rate to detect lack of motivation when misfit is considerably large in

response vectors (Conijn et al., 2014). Moreover, using a simulation study, Artner

(2016) compared five well-known indices to detect guessing, cheating, careless
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behavior, distorting, and fatigue in responses. The results showed that nonparametric

HT , C�, and U3 outperformed parametric OUTFIT and INFIT (Linacre, 2002) using

a Rasch model. Finally, Beck et al. (2019) utilized response time, instructed response

items, and person-fit statistics such as G (Meijer, 1994), U3, HT , and lz, to detect

inattentive responding, finding that HT had the greatest AUC among indices. In

Table 1. Person-Fit Indices.

Person-fit index Description

Nonparametric
Personal point-biserial correlation
(rpbis; Donlon & Fischer, 1968)

It is the correlation between the individual’s
score and the item proportion-correct score.

Caution statistic (C; Sato, 1975) It is the complement of the two covariances
ratio that measures to what extent an
individual’s response deviates from a perfect
response pattern.

Modified caution statistic
(C�; Harnisch & Linn, 1981)

It is the modified version of the caution statistic,
which ranges from zero to one.

Number of Guttman errors
(G; Meijer, 1994)

Guttman error occurs when an easy item is
answered incorrectly and a hard item is
answered correctly.

Normalized Guttman errors
(G�; van der Flier, 1977)

It is the normalized version of the Guttman
error which ranges from zero to one.

Agreement statistic (A; Kane &
Brennan, 1980)

It is the agreement between an individual’s
responses (xi) on an item and proportion-
correct score (pi) on that item. A =

P
i xipi

Disagreement statistic (D; Kane &
Brennan, 1980)

D = A(max)� A

Dependability statistic (E; Kane &
Brennan, 1980)

E = A=A(max)

U3 statistic (U3; van der Flier, 1980) It is a global fit index that assumes invariant item
ordering based on the proportion-correct
score on items.

Standardized normal U3 (ZU3;
van der Flier, 1982)

It is the standardized normal version of U3.

Norm conformity index (NCI;
Tatsuoka & Tatsuoka, 1982, 1983)

It is the conformity of an individual’s response
pattern in comparison with a criterion order
such as item difficulty order.

HT statistic (HT ; Sijtsma, 1986;
Sijtsma & Meijer, 1992)

When an individual’s response is compared with
the rest of the respondents, the HT measures
the extent to which data complies with the
Guttman model.

Parametric
Standardized normal loglikelihood
(lz; Drasgow et al., 1985)

It measures the standardized normal
loglikelihood fit of an individual’s response
based on an IRT model.

Corrected lz (l�z ; Snijders, 2001) It is the corrected form of lz.
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summary, most of the previous studies showed that HT had the best performance

among a set of person-fit indices to detect a wide variety of aberrant response

patterns.

Given that person-fit indices can potentially be used to detect SDB, the current

study addresses the following research question: Can person-fit indices detect mis-

fitted individuals stemming from SDB in scale responses under varying conditions of

the number of items, sample size, class separation, and cross-loading between two

factors?

The mentioned conditions were selected based on the conditions that were exam-

ined in previous research (e.g., Karabatsos, 2003; Leng et al., 2020; Rupp, 2013;

Sinharay, 2015) and showed promising result for detecting different aberrant respond-

ing (e.g., careless responding, SDB, guessing). These conditions and their effects on

different response biases will be discussed in ‘‘Manipulated Conditions’’ section in

detail.

Method

A Monte Carlo simulation study was conducted to answer the research question by

manipulating different conditions that may affect the performance of person-fit

indices to detect SDB.

Population Model

The FMM proposed by Leite and Cooper (2010) was selected as the population

model to simulate SDB in responses, as manipulating the degree of bias was more

feasible in FMM compared with CFA and IRT models. FMM was also preferable to

CFA due to exploring both item and person dimensions. The population two-class

FMM model consists of one class whose responses to the items of the focal factor

were affected by the SDB factor, and one class whose responses to the focal factor

were independent of the SDB factor. The focal factor is the latent variable measured

by binary items of a hypothetical scale of interest to the researcher, while the SDB

factor is the latent variable measured by items of an SDB scale. The population

model is shown in Figure 1.

For the items of both the focal and SDB scales, we assumed that there is a contin-

uous response y�ij underlying the observed binary response yij. Therefore, a threshold

is required to convert a continuous response to a binary response (Kaplan, 2008). We

simulated dichotomous items because the most popular scale to detect SDB, the

MCSDS, has dichotomous items, and was used in Leite and Cooper’s (2010) study.

The rationale for socially desirable responding in dichotomous items is that individu-

als will be more likely to respond in a socially desirable direction (which can be

endorsing or not endorsing the item, depending on the item’s wording) than expected

from the level of the trait being measured. When focal and SDB factors are unidi-

mensional, the matrix form of the equation is as follows (Leite & Cooper, 2010):
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where y�i1 . . . y�ij and y�i(1 + 1) . . . y�i(j + k) are assumed continuous responses for focal and

SDB factors; t1 . . . tj and tj + 1 . . . tj + k are intercepts of focal and SDB factors;

l11 . . . lj1 and l(j + 1)1 . . . l(j + k)2 are factor loadings of two mentioned factors; ji1 and

Figure 1. Simulation Model Using SDB Factor and Focal Factor.
Note. SDB = social desirability bias.
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ji2 are factor scores, and εi1 . . . εij and εi(j + 1) . . . εi(j + k) are residuals. In Equation 2,

nj are thresholds (see Class 2 in Figure 1). When responses in the focal factor are

affected by the SDB factor, the factor loadings in Equation 1 change to the following

form:

l11

..

.

lj1

l12

..

.

lj2

0

..

.

0

l(j + 1)2

..

.

l(j + k)2

2
666666664

3
777777775

, ð3Þ

where the second column of the matrix shows focal factor items are affected by

l12 . . . lj2 (see dashed factor loadings in Class 1, Figure 1). The other terms in

Equation 1 stay the same in Equation 3. The structural model explains the relation-

ships between the latent variables and categorical latent variables, c (i.e., class;

Lubke & Muthén, 2005).

ji1m = A1mci + zi1m, with zi1m;N (0, C),

where ji1m is focal factor score for the person i in class m; A1m is the focal factor

mean for class m; ci is the latent class, which is a binomial variable; and zi1m is the

residual which follows a normal distribution with a mean of 0 and covariance matrix

of C (Muthén & Shedden, 1999).

To generate SDB scale items, the short form XX of the MCSDS (Strahan &

Gerbasi, 1972) with dichotomous items was selected. This 20-item short form has

been frequently used in previous research (e.g., Dawes et al., 2011; Fernandez et al.,

2019; Fisher et al., 2012; Leite & Beretvas, 2005). The focal scale is a hypothetical

scale with dichotomous items that will be detailed in the data generation section. As

shown in Figure 1, Class 1 contains individuals with responses affected by SDB,

which is illustrated by dashed cross-loadings. In this class, focal items are regressed

on both focal and SDB factors, but SDB items are only regressed on the SDB factor

(see Equation 3). In Class 2, with individuals not affected by SDB, there are no

cross-loadings from the SDB scale to the focal scale, and the response vectors of

individuals in this class are unbiased (see Equation 1).

Data Generation

To simulate the data for this study, Mplus 8.5 (Muthén & Muthén, 1998–2017) and

the R statistical software version 4.0.3 (R Core Team, 2020) were used. To call

Mplus from R, the MplusAutomation package (Hallquist & Wiley, 2018) was used.

To facilitate setting the scale for both factors shown in Figure 1, the population value

of the first factor loading of each factor was set to one. We assume that the SDB
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factor and focal factors are theoretically uncorrelated, so the population correlation

between the two factors was set to zero. Except for the cross-loadings (dashed lines

in Figure 1) that were manipulated to change from low to high, other population fac-

tor loadings of focal and SDB factors were set to 0.8. The population proportions of

individuals in each class were set to be equal by setting the population logit of the

two class proportions to zero (Muthén & Muthén, 1998–2017). Because of the long

computation time for FMM, we generated 100 replications for each combination of

simulated conditions, which is the number of replications frequently used in Monte

Carlo studies of mixture models (e.g., Lubke & Muthén, 2007; Kim & Muthén,

2009).

Manipulated Conditions

The Monte Carlo simulation study had a fully crossed 3 3 3 3 3 3 3 factorial design,

resulting in 81 independent simulated conditions with 100 datasets per condition. The

manipulated conditions included three levels of sample size, three levels of test length

(i.e., the number of items), three levels of SDB (i.e., size of cross-loadings), and three

levels of class separation.

Sample Size. In previous person-fit studies, a sample size of 1,000 was simulated

most frequently because of model complexity, the number of response categories, or

other reasons (e.g., Rupp, 2013; Sinharay, 2015). Artner (2016) used 100 and 500

sample sizes for a Rasch model while Tendeiro and Meijer (2014) used a 1,000 sam-

ple size considering a three-parameter logistic (3-PL) model. To compute parametric

person-fit indices, a two-parameter logistic (2-PL) IRT model (see ‘‘Analysis’’ sec-

tion) was selected, and the minimum suggested sample size for this model is 500

(Crocker & Algina, 1986). Therefore, we selected 500 as a small sample size, 1,000

as a large sample size, and considered 750 to represent a medium sample size.

Test Length. In methodological literature about person-fit indices, there are a wide

variety of test lengths that were considered. For example, Hong et al. (2021) exam-

ined 16, 32, and 64 items per latent trait; Tendeiro (2017) manipulated four scale

lengths of 10, 20, 40, and 100; Artner (2016) included items sets of 50 or 25; and

Sinharay (2015) tested three test length levels of 12, 30, and 60 items. In

Karabatsos’s (2003) study, 17, 33, and 65 items were examined, but in Tendeiro and

Meijer’s (2014) study, 15, 25, and 40 items were manipulated. In the current study,

the number of items in SDB and focal scales was set to be equal, because it is

unusual for researchers to administer a longer SDB scale than the focal scale.

Therefore, we simulated conditions with focal and SDB scales with 10, 20, and 30

items each.

SDB. To generate different degrees of SDB, there is only one study to our knowledge

that simulated SDB: Leng et al. (2020) introduced the RDT model with three latent
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traits, where the deceive trait is related to SDB. In their study, the model discrimina-

tion parameters (i.e., factor loadings) ranged from 0.5 to 2. In the current study, 0.1,

0.3, and 0.5 were selected for SDB cross-loadings to represent low, medium, and high

levels of SDB in individual responses.

Class Separation. In a FMM, the distance between two classes can be measured by

the multivariate Mahalanobis Distance (MD; Lubke & Muthén, 2007). Moreover, as

MD considers covariances, standardized factor mean differences between classes can

determine this distance to a large extent (Lubke & Muthén, 2007). In real data, the

classes affected and not affected by SDB are not clearly separated, so we decided to

consider a range of class separation from low to high. We expect improved class

detection with a higher difference between factor means (Lubke & Muthén, 2007).

Therefore, the means of two biased and unbiased classes were separated by 1, 2, and

3 standard deviations (SDs).

Analysis

We investigated the performance of 14 frequently used parametric and nonparametric

person-fit statistics that showed promising results in previous research (see Table 1).

All of these indices were available in the PerFit (Tendeiro et al., 2016) package of R

statistical software (R Core Team, 2020). When 8,100 datasets were generated, the

simulated data were divided into SDB and focal factor items, and the SDB items were

discarded to keep only focal items. This is because SDB items are not needed in the

calculation of person-fit indices.

To compute nonparametric person-fit indices, there is no need for an IRT model;

however, to compute the parametric person-fit indices lz and l�z , the 2-PL model was

used. We chose the 2-PL model because factor loadings (which are equivalent to dis-

crimination parameters; Kamata & Bauer, 2008) were manipulated. The 2-PL model

is (Birnbaum, 1968) as follows:

P Yis = 1jusð Þ = exp1:7ai(us�bi)

1 + exp1:7ai(us�bi)
, ð4Þ

where P is the probability of correct response (Y = 1) for item i and person s, given u,

the latent ability of the individuals. b and a are item difficulties and item discrimina-

tions, respectively. Y represents the item responses and 1:7 is a scaling constant.

To evaluate person-fit indices’ prediction results, we used receiver operating char-

acteristic (ROC) curve analysis for each person-fit statistic, separately. For dichoto-

mous data, the ROC curve relates a predictor’s sensitivity to its specificity (Hanley &

McNeil, 1982). The capacity to recognize true SDB in responses (true positive rate)

is referred to as sensitivity, whereas specificity refers to correctly identifying those

responses that are not biased (true negative rate). ROC curves typically show ‘‘1-spe-

cificity,’’ which determines the Type I Error rate (false positive rate; Hanley &

McNeil, 1982). The predictive power of the predictor or feature is represented by the
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AUC of a ROC curve, which varies from 0.5 to 1 from the identification line (i.e.,

the diagonal on the ROC), and different values of it can be interpreted to demonstrate

the strength of a test. To interpret the AUC in the current study, we followed the aca-

demic point system (Tape, n.d.) guideline: AUC of 0.90 to 1 indicates an excellent

test, 0.80 to 0.90 is regarded good, 0.70 to 0.80 is fair, AUC of 0.6 to 0.7 shows a

poor test and 0.5 to 0.6 represents a fail test. For each simulation condition, the aver-

age of AUCs across 100 replications is reported.

The effect of the manipulated conditions on AUC was assessed using a four-way

between-subjects analysis of variance (ANOVA). The generalized eta-squared (GES,

h2
G; Olejnik & Algina, 2003) was then calculated to reflect the size of effects. To

interpret the effect sizes, we considered Cohen’s (1988) description of 0.02 as a

small, 0.13 as a medium, and 0.26 as a large effect size for h2 which is also appropri-

ate for h2
G. In this study, the significant ANOVA factors with an effect size of 0.01

and higher were reported.

Results

The AUCs across 81 simulation conditions for 14 person-fit indices were calculated

and averaged across 100 replications of each condition. This study aimed at identify-

ing the strongest person-fit indices to detect SDB. The strongest indices are those

with the highest predictive power in the classification of biased and unbiased

responses which is represented by AUC. Therefore, to evaluate the strength of

person-fit indices, we can compare the conditions that resulted in the highest AUC

across all person-fit indices.

As shown in Table 2, the maximum AUC average for each person-fit index and

the simulation factors that led to the maximum AUC were listed.1 Overall, out of 14

person-fit statistics, five indices could detect SDB in responses with approximately

70% and greater AUC. One of these indices, G�, detected SDB similar to a fair test

with about 70% AUC and the other four indices, namely, the disagreement statistic

(D; Kane & Brennan, 1980), G, dependability statistic (E; Kane & Brennan, 1980),

and agreement statistic (A; Kane & Brennan, 1980), detected bias similar to a good

test with equal or greater than 80% AUC. The last two indices, A and E, reached

96.3% and 94.4% AUC, respectively, showing excellent discrimination ability. Norm

conformity index (NCI ; Tatsuoka & Tatsuoka, 1982, 1983), standardized normal U3

(ZU3; Van der Flier, 1982), HT , C, lz, C�, U3, and personal point-biserial correlation

index (r.pbis; Donlon & Fischer, 1968) could not discriminate between biased and

unbiased responses. Because HT performed very well in previous studies of detection

of aberrant response patterns, it was unexpected that it did not work for the detection

of SDB.

Furthermore, among indices with equal or greater than 70% AUC in Table 2, one

index in the fair group (i.e., G�) and three indices in the high predictive power group

(i.e., D, G, and E indices) showed a consistent pattern across manipulated factors. As

expected, the conditions with the highest class separation (3 SD), and the lowest
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SDB (0.1) resulted in the highest AUCs across six indices, but we observed some

differences across the number of items and sample size factors. More specifically,

while G� with the lowest test length (10 items) and highest sample size (1,000) led

to the highest AUC, D, G, and E with the highest test length (30 items) and medium

sample size (750) obtained the highest AUCs. Finally, A with the highest test length

(30 items) and lowest sample size (500) led to the highest AUC of 96.3% across all

indices.

The next step of the analysis was to determine which combination of manipulated

conditions significantly affects the AUC of person-fit indices using a four-way

ANOVA. Among significant design factors with large enough effect sizes, those with

the highest interaction level are reported. We expected the highest AUC in an ideal

situation where sample size, the number of items, and class separation conditions

were at the highest level, and the degree of bias was at the lowest level. That is the

Table 2. Conditions With Max AUCs.

Class
separation (SD) Cross-loading

No. of
items

Sample
size

Person-fit
index

Max AUC
mean

3 0.1 30 500 A 96.3%
3 0.1 30 750 A 96.3%
3 0.1 30 1,000 A 96.3%
3 0.1 30 750 E 94.4%
3 0.1 30 1,000 E 94.4%
3 0.1 30 750 G 89.8%
3 0.1 30 1,000 G 89.8%
3 0.1 30 750 D 86.6%
3 0.1 10 1,000 G� 70.4%
3 0.1 10 750 G� 70.4%
3 0.1 10 1,000 l�z 69.1%
3 0.1 10 500 l�z 69.1%
3 0.1 10 750 l�z 69.1%
3 0.5 20 750 U3 59.1%
3 0.5 20 750 C� 59.0%
3 0.1 10 1,000 lz 58.4%
3 0.5 10 500 C 53.5%
3 0.5 30 500 rpbis 53.2%
3 0.5 10 500 HT 52.9%
3 0.5 10 500 ZU3 52.6%
2 0.1 30 500 NCI 52.0%
2 0.5 30 500 NCI 52.0%

Note. A = agreement statistic; E = dependability statistic; G = number of Guttman errors;

D = disagreement statistic; G� = normalized G; l�z = corrected lz; U3 = U3 statistic; C� = modified

caution statistic; lz = standardized normal loglikelihood; C = caution statistic; rpbis = personal

point-biserial correlation; HT = HT statistic; ZU3 = standardized normal U3; NCI = norm conformity

index; AUC = area under the curve.
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condition with 30 items, three SDs of class separation between class means, 0.1 degree

of bias, and 1,000 sample size; however, not all the findings followed our expectation.

As shown in Table 3, all four person-fit statistics in the high predictive power

group including A, E, G, and D showed a similar pattern of results, but with different

effect sizes. The main effect of the size of cross-loading and two-way interaction of

class separation by the number of items were the design factors with GES of � 0:01.

For the size of cross-loading, as it increased, AUC decreased. For example, we

observed a lower AUC for A with a cross-loading of 0.5 compared with the situation

where the cross-loading was 0.3 or 0.1. The size of the main effect of the cross-

loading varied across the fit index, with the G index showing a GES of 0.25, and A

showing a GES of 0.11, while E and D showed relatively small GES of 0.04 and

0.03, respectively. Regarding the interaction between class separation and the num-

ber of items, higher AUC was observed with higher levels of class separation and a

higher number of items for A, E, D, and G. For example, AUC for A was highest

when the number of items was 30 and class means were 3 SDs apart (see Figure 2).

Among five person-fit indices categorized as fair tests, the interaction effect

between class separation and the number of items had a different pattern for G� than

the other four indices. For the G� index, there was a two-way interaction of class

separation by the number of items with a very large effect size of 0.44, showing that

as the number of items decreased and class separation increased, the AUC increased.

For example, the highest AUC was when the number of items was 10 and class

separation was 3. For a complete ANOVA table, please see Appendix A.

Discussion and Conclusion

This study investigated a wide range of person-fit indices and offered valuable infor-

mation about the ability of these statistics to detect SDB in responses. It contributes

to the literature because, to the knowledge of authors, it is the first study that utilizes

Table 3. ANOVA Result and GES.

PF statistic Effect GES

A cl 0.11
cs3i 0.04

E cl 0.04
cs3i 0.20

G cl 0.25
cs3i 0.31

D cl 0.03
cs3i 0.27

G� cs3 i 0.44

Note. i = number of items; cs = class separation; cl = cross-loading; PF = person-fit; GES = generalized eta-

squared (h2
G � 0:01 were reported), 3 indicates an interaction.
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person-fit indices to detect SDB in a systematic simulation study. Moreover, given

the importance of evaluating and monitoring SDB in both large-scale testings (e.g.,

scales administered within the Trends in International Mathematics and Science

Study—TIMSS; Mullis & Martin, 2017), and measurements for academic research

and personnel selection, this study can inform a host of measurement practices.

The results of this study lead to the recommendation of A for the detection of SDB

in item responses. This recommendation is anchored on the findings that A showed a

minimum AUC of 68.2% and a maximum AUC of 96.3% across all conditions. Also,

for 72 out of 81 manipulated conditions, A performed as a fair or higher-level test.

Regarding the other nine conditions, the AUC was close to 70%. Therefore, the

results show that this index could detect SDB across all study conditions. The second

recommended index in this study was E, which showed minimum and maximum

AUC of 62.4% and 94.4%, respectively. This index’s strength was similar to A, but

with a few percent lower AUC and a lower number of simulated conditions with

AUC of equal or greater than 70%. The third and fourth indices which showed strong

performance were G and D, with an approximately similar range of AUC from 53%

to 90%. Mean AUCs related to 45 out of 81 manipulated conditions were over the fair

range for G, but the number of covered conditions with fair predictive power was 26

for D. In summary, all three person-fit statistics (i.e., A, D, and E) proposed by Kane

and Brennan (1980) performed well in this study.

The three recommended person-fit indices were also successful in detecting other

response biases in previous studies. For example, in Karabatsos’s (2003) study, over-

all, A index detected random responding with the AUC of greater than 0.8, which is

a good test. Moreover, D index detected careless responding and E index detected

careless responding and lucky guessing as fair tests with AUC of greater than 0.7. E

index was also an excellent test to detect random responding with the AUC of more

than 0.9. In another study, Nazari et al. (2021) used these three indices to detect care-

less responding in an applied study, and the results showed that A with AUC of 69.1

was very close to being classified as a fair test.

For A, D, E, and G, class separation, cross-loading, and the number of items were

important design factors to detect SDB. However, sample size did not influence the

person statistics’ AUC to detect SDB. Regarding these indices, for most conditions

that led to poor or failed AUCs, class separation was one. In agreement with what

we expected, a larger difference between classes, lower degree of bias, and higher

number of items led to higher AUC in person-fit statistics. The only exception was

G�, where the lower number of items resulted in higher AUC. One unexpected find-

ing was HT ’s poor performance to capture SDB by AUC of 52.9%, which was an

ineffective test. In previous research (e.g., Artner, 2016; Beck et al., 2019; Dimitrov

& Smith, 2006; Karabatsos, 2003; Sinharay, 2017; Tendeiro & Meijer, 2014), HT

was frequently found to be a successful person-fit to capture aberrant responding.

However, researchers did not attempt to address SDB in any of these studies.

The current implementation of the proposed methods and simulation study is

based on dichotomous items, but existing SDB questionnaires often include
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polytomous items. This issue can be addressed by expanding this simulation study to

cover polytomous items. For example, Emons (2008) simulated polytomous item

responses based on the graded response model (e.g., Samejima, 1997). Alternatively,

the current simulation can be extended to polytomous item responses after recoding

each polytomous item response into binary codes. This is a reasonable approach

according to the machine learning literature on the one-versus-all (OVA) approach

to classification (e.g., Gao et al., 2021; Rifkin & Klautau, 2004).

It is noteworthy to say that the simulation design essentially created a multidimen-

sional true parameterization that was unequal across different groups (classes).

Ultimately, researchers would not know why a person-fit statistic identified a

response as a misfitted pattern. A response may be flagged due to SDB, or it could be

due to any other secondary dimension that was not modeled and that behaved differ-

ently over the classes. Therefore, the test content, the testing context, and the popula-

tion tested may lead the researchers to hypothesize that SDB may be a problem. For

example, one might expect SBD issues in personnel selection contexts when the

stakes of the test results are high, or when attitude tests ask about sensitive topics

without enough assurance of respondent anonymity. When the test administrators

have reasons to believe that the test or testing context will elicit high SDB, they can

apply the recommended person-fit indices to identify individuals who responded in a

socially desirable way. Then, they may choose whether to remove or include the

flagged responses in the subsequent analysis or decisions. For example, if researchers

used the three recommended person-fit indices of A, D, and E, small values of A and

E, as well as large values of D, may represent SDB in responses. However, to deter-

mine cutoffs for flagging individuals would require additional studies using an exter-

nal measure, such as the MCSDS, or experimental manipulation of testing conditions.

If the proportion of individuals with responses affected by SDB is large, it may be

necessary to administer a social desirability scale (e.g., short form of MCSDS;

Strahan & Gerbasi, 1972) or perform a manipulation of the testing conditions (e.g.,

extended crosswise model; Heck et al., 2018) to reduce SDB.

There are a variety of person-fit indices in the literature. For example, Karabatsos

(2003) examined 36 different indices, but in this study, the most frequently studied

statistics were used. Although person-fit indices can be used to detect SDB, they cur-

rently do not provide a way to correct responses for the effects of SDB. For that,

methods that rely on the administration of an SDB scale, such as Leite and Cooper’s

(2010) FMM, are needed. Also, multidimensional IRT models were developed to

detect response styles (e.g., Falk & Cai, 2016), and these models could potentially be

used to detect SDB without the need for administering an SDB scale. Another method

that can be potentially used to detect SDB is Bayesian robust IRT outlier-detection

model (Öztürk & Karabatsos, 2017).

In this study, based on a two-class model to simulate data, we assumed that some

individuals respond in a socially desirable way while others do not. However, it might

be possible that for a certain test condition, all individuals respond in a socially desir-

able way to different extents, corresponding to a one-class model.
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The proposed methods of identifying SDB with person-fit indices are limited in that

they only flag the complete response vector for a person as affected by SDB or not.

However, it is possible that only a portion of an individual’s responses was biased, such

as a few items with sensitive content within a larger survey. Therefore, there might be a

potential for expanding the use of these person-fit indices as features or predictors in dif-

ferent machine learning classifiers to distinguish between biased and unbiased responses

within an assessment and to explore the bias from multiple dimensions.
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Appendix A. Complete ANOVA Results.

PF statistic Effect GES

G cs 0.98
cl 0.25
i 0.65

cs3i 0.31
G� cs 0.83

i 0.63
cs3i 0.44

A cs 0.97
cl 0.11
i 0.69

cs3i 0.04
D cs 0.82

cl 0.03
i 0.50

cs3i 0.27
E cs 0.95

cl 0.04
i 0.82

cs3i 0.20

Note. i = number of items; cs = class separation; cl = cross-loading; PF = person-fit; GES = generalized eta-

squared (h2
G � 0:01 were reported), 3 indicates an interaction.

Nazari et al. 923



Note

1. Simulation and analysis codes are provided in the GitHub repository. https://github.com/

SanazNazari/Person-Fit-Paper
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