
GillesPy2: A Biochemical Modeling Framework for Simulation
Driven Biological Discovery

Sean Matthewa, Fin Carterb, Joshua Cooperb, Matthew Dippelb, Ethan Greenb, Samuel
Hodgesc, Mason Kidwellb, Dalton Nickersonb, Bryan Rumseya, Jesse Reeveb, Linda R.
Petzoldd, Kevin R. Sanftb, Brian Drawerta

aNational Environmental Modeling and Analysis Center (NEMAC), University of North Carolina,
Asheville, NC 28804

bDepartment of Computer Science, University of North Carolina, Asheville, NC 28804

cDepartment of Computer Science, North Carolina State University, NC 27695

dDepartment of Computer Science and Department of Mechanical Engineering, University of
California, Santa Barbara, CA 93106

Abstract

Stochastic modeling has become an essential tool for studying biochemical reaction networks.

There is a growing need for user-friendly and feature-complete software for model design and

simulation. To address this need, we present GillesPy2, an open-source framework for building

and simulating mathematical and biochemical models. GillesPy2, a major upgrade from the

original GillesPy package, is now a stand-alone Python 3 package. GillesPy2 offers an intuitive

interface for robust and reproducible model creation, facilitating rapid and iterative development.

In addition to expediting the model creation process, GillesPy2 offers efficient algorithms to

simulate stochastic, deterministic, and hybrid stochastic-deterministic models.

Keywords

Simulation; Modeling; Stochastic; Hybrid

1. Introduction

In 1976, Dan Gillespie first presented the Stochastic Simulation Algorithm (SSA) (Gillespie,

1976, 1977), which allows for efficient and accurate simulation of discrete stochastic

reaction systems. This method has gained wide popularity in the simulation of complex

biological and biochemical systems, and is widely used in the field of computational systems

biology. It has inspired a plethora of software packages which implement this method,

and a family of algorithms that enhance and extend it. Our team has been part of the

development of many of these algorithms and related software. In particular, we developed

StochKit2 (Sanft et al., 2011) and later a Python 2 wrapper GillesPy (Abel et al., 2016),

CONTACT: Brian Drawert briandrawert@gmail.com.

HHS Public Access
Author manuscript
Lett Biomath. Author manuscript; available in PMC 2023 August 31.

Published in final edited form as:
Lett Biomath. 2023 January 10; 10(1): 87–103.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which we named in honor of Dan Gillespie. We have continued our algorithm and software

development with the next generation of simulation software, GillesPy2, which has been

completely rewritten and is stand-alone. Our design goals are to provide software that is

easy to use by novices but powerful enough in performance and features for even the most

advanced users. GillesPy2 is distributed and used as a Python 3 (Van Rossum and Drake,

2009) package, and the computationally expensive solvers are written in C++ (for maximum

performance) and Python (for maximum compatibility). It provides simulation interfaces for

stochastic and deterministic systems, as well as a novel hybrid method which can switch

automatically between them. GillesPy2 aims to be a modeling and simulation package

that can provide everything needed for building and solving any spatially homogeneous

biochemical reaction system.

Stochastic modeling and simulation has become a powerful and impactful tool for the study

of mathematical, biochemical, and biological systems (Gillespie et al., 2013; El Samad et al.,

2005; Elowitz et al., 2002). In addition, it has made an impact in the fields of conservation

ecology (Drawert et al., 2017, 2022) and epidemiology (Jiang et al., 2021; Drawert et al.,

2017). The process of understanding such systems via modeling and simulation is iterative,

akin to the scientific method: starting with observations and data, a user (modeler) first

develops a mathematical model. Most biological and similar dynamic models, such as many

ordinary differential equation (ODE) models, do not have analytical solutions and, therefore,

are “solved” by simulation. These simulations are a form of experimentation that produce

results and data that the modeler can compare to the original observations and data to

further refine the model. This iterative process is captured in the schematic shown in Figure

1(A). Software is an essential tool in this workflow. The software needs to be simple to

use, computationally efficient, and it should provide features to accommodate studying a

wide variety of systems. For example, Figure 1 shows simulation results from a discrete

stochastic model (B), a model with events (C), and a model with coupled discrete stochastic

and continuous components (D). GillesPy2 provides an integrated Python 3 platform that is

designed to meet the needs of modelers. A brief summary of the GillesPy2 capabilities is

shown in the boxes around the schematic in Figure 1(A).

A number of software packages are kindred to GillesPy2. These include COPASI (Hoops

et al., 2006), GillespieSSA (Pineda-Krch, 2008), StochPy (Maarleveld et al., 2013), PySB

(Lopez and Garbett, 2014), Biosimulator.jl (Landeros et al., 2018), BioNetGen (Harris

et al., 2016), Tellurium and libRoadRunner (Choi et al., 2018; Somogyi et al., 2015),

and others. While a complete feature review is beyond the scope of this paper, each of

these packages provides mechanisms for defining or importing models and/or simulating

models within a particular programming language, integrated development environment,

or graphical user interface. For example, COPASI features a graphical user interface that

allows users to define models with multiple compartments using a comprehensive set of

rate laws. GillespieSSA and Biosimulator.jl allow users to build and simulate biochemical

models in the R and Julia languages, respectively. PySB implements rule-based modeling

and BioNetGen implements structure-based modeling in Python. StochPy and Tellurium

and libRoadRunner provide text-based interfaces for defining biochemical models that

can be simulated and visualized in Python. GillesPy2 aims to provide a comprehensive

and flexible collection of simulation methods in an easy-to-use package. It provides an

Matthew et al. Page 2

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

intuitive object-oriented Application Programming Interface (API) for the development

of well-mixed biochemical reaction models that can include stochastic, deterministic, or

coupled components. GillesPy2 is designed to integrate with Jupyter notebooks. GillesPy2

is also the computational engine for our powerful web-based IDE, StochSS (Drawert et al.,

2016).

The remaining sections of this manuscript are structured as follows. In Section 2 we

discuss biological modeling and various methods of simulation. In Section 3 we present

the Tau-Hybrid Simulation Algorithm. Section 4 describes how GillesPy2 was designed

and implemented, including details on our novel hybrid simulation algorithm. Section 5

provides several examples of building and simulating models with GillesPy2. In Section 6,

we illustrate the performance of GillesPy2 and how it fits into the software ecosystem of

StochSS (Drawert et al., 2016). We end with our conclusions in Section 7.

2 Background

Biological systems feature dynamics that operate on a range of spatial and temporal scales.

This leads to many different types of mathematical models, each with their own modeling

assumptions and approximations. Furthermore, most models require software to simulate or

“solve” them, and it can be difficult to separate model development from simulation and

software. For example, creating an ODE model implicitly makes assumptions about the

continuity of the state variables. In this section we describe the classes of models and the

simulation algorithms that are utilized in GillesPy2.

2.1 Biological modeling

While there are many classes of biological models, here we consider models where the

system state is a time-dependent vector of populations. For example, the populations could

be numbers of molecules of different types in a biochemical simulation or populations of

different species in an ecological model. The models’ populations change in time due to two

primary mechanisms: discrete events and differential equations.

To demonstrate these mechanisms, consider the Michaelis-Menten reaction set (Michaelis

and Menten, 1913)

R1:A + B k1 C
R2:C k2 A + B
R3:C k3 B + D .

(1)

Reaction set (1) describes the enzyme-catalyzed conversion of substrate “A” into product

“D” via enzyme “B”. The model state is the vector of the N = 4 species’ populations

X t = A t , B t , C t , D t . The populations evolve via M = 3 reactions, denoted Rj. For

example, R1 describes the binding of a molecule of A and a molecule of B into the complex

C. Here, ki are rate constants that influence the rate at which the reactions are occurring.

A complete model description requires values for the rate constants and initial populations

defined at time t = 0. We assume that reactions occur instantaneously.

Matthew et al. Page 3

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The reaction set in (1) can be be formulated using reaction rate equations, as follows:

dA
dt = − k1AB + k2C
dB
dt = − k1AB + k2C + k3C
dC
dt = k1AB − k2C − k3C
dD
dt = k3C .

(2)

The model in (2) is deterministic and treats the populations as continuous quantities. This

ODE model is appropriate if the effect of stochastic fluctuations is relatively small, which

will generally be the case if all of the species populations are sufficiently large.

Alternatively, the reaction set in (1) could be formulated as a discrete stochastic system,

where the populations are discrete and the reactions are random events. In the discrete

stochastic representation, the evolution of the system state is probabilistic and can be

described by the Chemical Master Equation (CME) (Gillespie et al., 2013):

∂P X, t
∂t ∑

j = 1

M
aj X − vj P X − vj, t X0, t0 − aj X P X, t X0, t0 , (3)

where vj is the stoichiometry vector that describes how the state variable X t changes

when reaction Rj occurs (or fires), and aj is the propensity function that describes the rate

at which Rj is firing. The CME is huge. It contains one equation for each possible value

of the population X. Thus, it cannot be solved directly for most models (Munsky and

Khammash, 2006). Instead of solving the CME directly, the common alternative approach is

to approximate the solution using Monte Carlo simulation.

The Systems Biology Markup Language (SBML) provides a way to describe many

biological models such as the reaction set in (1) (Hucka et al., 2003). SBML uses tags
to describe the Species and Reactions in a model. Reactions are comprised of Reactants
(species that are consumed) and Products (species that are produced) and a KineticLaw,

which may use Parameters, to describe differential equation or discrete stochastic state

changes. SBML also defines other mechanisms such as rate rules and events. Rate rules

describe additional differential equation state-change mechanisms, and events are state

changes that happen when a condition known as a trigger occurs. For the purposes of this

work, we will follow the SBML nomenclature and use the terms “reaction”, “rate rule”, and

“event” to refer to the various state-change mechanisms in biological models.

We note that SBML includes several features that we will not consider. In particular, SBML

defines Compartment components that define the region in which the species populations

exist. Compartments can be used to describe spatially inhomogeneous models by tracking

separate species populations within each compartment and by treating “diffusion” as a

reaction that transfers populations between compartments. However, such spatial models

can benefit from additional geometry information that SBML does not currently provide

Matthew et al. Page 4

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(however, an SBML spatial package is in development). Other modeling and simulation

software is better suited to modeling systems that require detailed geometry information. In

this work we consider only spatially homogeneous models.

2.2 Deterministic simulation

The theory for simulating ODE models is well established and mature (Ascher and Petzold,

1998). Numerically solving an initial value problem involves starting with the initial state,

evaluating the derivatives, and repeatedly simulating over small, finite time intervals until

an end time is reached. Algorithms exist that use dynamic step size selection to efficiently

approximate the true solution. These algorithms can generally be categorized as explicit
or implicit. Implicit methods perform better on models that exhibit stiffness, which arises

in models that contain multiple timescales, as is common in biological systems. There are

algorithms and software that can detect the presence of stiffness and choose an appropriate

algorithm automatically (Petzold, 1983).

GillesPy2 uses the LSODA method (Petzold, 1983) for deterministic simulation. We use

the implementation from the SciPy Python package (Virtanen et al., 2020) for the Python

solvers, and the implementation from the SUNDIALS package (Hindmarsh et al., 2005)

for the solvers implemented in C++. In addition, the Python solvers provide options for

selecting other methods implemented by the SciPy package, which we recommend only for

advanced users.

2.3 Stochastic simulation

Gillespie’s Stochastic Simulation Algorithm (SSA) generates statistically exact samples

from the CME (3) (Gillespie et al., 2013). However, there are many variants of the SSA.

The assumptions underlying the CME, namely the Markovian assumption and the spatially

homogeneous assumption, require that each reaction type fires according to an exponential

distribution. The original SSA direct method was derived naturally from the joint density:

Pr τ, j X, t = aj X e−∑i = 1
M ai X τ, (4)

where Pr τ, j |X, t is the probability that reaction Rj will fire in the infinitesimal interval

t + τ, t + τ + dt . Any algorithm that produces samples of the next reaction time τ and next

reaction index j from Eq. (4) can be used to generate samples of the CME. Therefore, the

SSA is better viewed as a family of algorithms. Many algorithms have been proposed that

use various data structures to achieve different performance and scaling properties (Gibson

and Bruck, 2000; Slepoy et al., 2008; Ramaswamy et al., 2009; Mauch and Stalzer, 2011;

Sanft and Othmer, 2015).

It is important to note that the time step size is not an algorithm parameter in the SSA.

However, if the values of the propensities do not change much in a time step τ = Δt, then the

number of firings of reaction Rj can be well approximated as a Poisson random variable with

mean aj X τ. This approximation is the basis for the Tau-Leaping simulation algorithm:

Matthew et al. Page 5

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

X t + τ = X t + ∑
j = 1

M
Poisson aj X τ vj, (5)

where each Poisson is an independent Poisson random number. In practice, the step size τ
is determined adaptively to control the error in the simulation (Gillespie, 1977; Cao et al.,

2006).

When the populations are sufficiently large such that the mean of all the Poisson random

variables in (5) is large, then the Poisson random variables can be approximated as Normal

random variables. If one makes this approximation and replaces the finite step size τ with the

infinitesimal dt, the resulting algorithm is

X t + dt − X t = ∑
j = 1

M
N μ = aj X dt, σ = aj X dt vj, (6)

where each N μ, σ is an independent Gaussian random variate (Gillespie et al., 2013).

Equation (6) is a stochastic differential equation known as the Chemical Langevin Equation
(CLE). The CLE is often written as:

dX = va X dt + v a X NM μ = 0, σ = I dt, (7)

where ν is the stoichiometric matrix, a X is the vector of propensities, and NM is an

M-dimensional normal random variable. In moving from Tau-Leaping to the CLE, the state

X transitions from a discrete population to a continuous population. It is interesting to

note that as the population X increases, the noise term becomes negligible and the CLE

(7) approaches the reaction rate equation ODE, hence the ODE model arises in the large

population (thermodynamic) limit of the discrete stochastic model (Kurtz, 1972).

2.4 Hybrid simulation

In this context we define hybrid modeling and simulation to be the simulation of a

reaction system that includes both deterministic and stochastic components. This involves

partitioning a model into two subsystems, where one is simulated deterministically and the

other is simulated stochastically (Pahle, 2009; Helms et al., 2018). The partitioning can be

based on the populations (i.e., large and small) or the reaction rates (i.e., fast and slow).

Reactions that involve only large population species may be approximated as continuous,

while reactions that fire less often or involve small population species can be simulated

via an SSA variant or Tau-Leaping. With a hybrid model, one may gain computational

performance while still capturing the stochasticity of the system (Ahmadian et al., 2017). On

the other hand, hybrid simulation introduces computational overhead to maintain additional

data structures, in which case the performance will typically be slower than specialized

solvers for models that do not include both deterministic and stochastic components. In

these situations, the benefit of hybrid simulation is to allow modelers more flexibility

when defining their models by specifying whether a species should be simulated as only

continuous, only discrete, or be able to switch between the two.

Matthew et al. Page 6

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 The Tau-Hybrid Simulation Algorithm

Here, we introduce our novel Tau-Hybrid simulation algorithm, which is a hybrid of

ODE deterministic simulation of continuous species and the Tau-Leaping (Gillespie, 2001)

method for stochastic simulation of discrete species. The Tau-Hybrid algorithm features

two methods for combining continuous and discrete simulation: the coupling of discrete

and continuous species in a reaction network, and the automatic switching of a species

from discrete to continuous (and vice versa). It is important to note that in the case where

all of the propensities of the system are dependent only on discrete state variables (no

time-dependent propensities, or continuous species), this method is statistically equivalent to

Tau-Leaping (note, it is not the same method).

3.1 Simulation of a coupled discrete-continuous system

We will first discuss the combined simulation method for coupled discrete and continuous

species in a reaction network. We partition the reactions and species of the system.

Reactions are either part of the deterministic (det) or stochastic (stoch) sets, species S
are either continuous Sc ∈ ℝ0

+ or discrete Sd ∈ ℤ0
+ . We evolve the state of the system

X t = S1, ..., SN forward by continuously integrating the deterministic reactions and firing

discontinuous jump events for the stochastic reactions. Reactions are deterministic if

they consume and produce only continuous species, otherwise they are stochastic. The

partitioning of the species as discrete or continuous can be done a priori by the modeler or

automatically by the method (see next section).

We define the time evolution of the system due to the deterministic reactions as

d
dtSi = ∑

j

j ∈ det
vijaj X t , t (8)

for all continuous species i. Note that in this formulation we are allowing propensity

functions to be explicitly dependent on time. For stochastic reactions, we need to find

the firing time tj for all reactions j ∈ stocℎ. We find this using the integral form of the

next-reaction SSA as described in (Salis and Kaznessis, 2005):

∫
t0

t0 + tj

aj X t′ , t′ dt′ + log URN = 0, (9)

where t0 is the current time and URN is an independent uniform random number

URN ∈ 0, 1 . Note that in the case where aj X, t is constant over the interval t0, t0 + tj

(i.e., discrete stochastic systems), this is simplified to: tj = −log URN
aj X + t0, which is the time

to the next reaction in the SSA method (Gillespie, 1976). Following the method in (Salis

and Kaznessis, 2005) for solving (9), we define an indicator variable rj for each reaction

j ∈ stocℎ. We forward integrate these variables to find the time tj at which rj = 0, which is

the time at which the reaction fires. We do this by converting (9) to a differential equation

initialized by an independent uniform random number:

Matthew et al. Page 7

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

d
dtrj = aj X, t rj t = t0 = log URN . (10)

Note rj will always start negative since log URN < 0, and rj is monotonically increasing

since aj > = 0. The time at which rj crosses zero is then a statistically exact sample of

the firing time of reaction j for a jump process with time-varying intensity aj X, t . If the

numerical method used is an ODE solver to integrate (8) and (10) simultaneously, and using

a root-finder to determine the reaction event times, we then have the hybrid ODE-SSA

method as described in (Salis and Kaznessis, 2005).

However, integrating (8) and (10) with root-finding to find the reaction event times is

quite computationally expensive. Following the idea from Tau-Leaping that tolerating a

small amount of error can result in a large computational gain, instead of using root

finding to determine the time of each reaction event, we take larger simulation steps by

aggregating multiple firings of each stochastic reaction channel into a single event. All

stochastic reaction channel firing events are processed at the end of each time step τ. Over

the time period t, t + τ , deterministic reactions evolve the system using (8), and the reaction

indicator variables rj evolve using (10) (however, the rj variables may now have positive

values). At the end of each time step τ we examine each rj. If it is positive, we determine the

number of reaction events that have fired in the time step by finding the smallest number n
such that

arg min
n

rj + ∑
1

n
log URN < 0, (11)

i.e., the sum of the log of n samples of URN until the value of rj becomes negative. Since

the initial condition (10) after each firing is log URN , and we assume that aj X, t is constant

over t, t + τ , Eq. (11) can be efficiently implemented using the Poisson distribution:

n = 1 + Poisson rj , (12)

for all reaction indicators rj that are positive at the end of an integration step. Once we

know that reaction j has fired n times, we update the state: X + = n νj, and then re-initialize

rj = log URN . In this way, the simulation continues time-discontinuously, integrating (8)

and (10) from t to t + τ and using (12) to update the state of the system at the end of the step.

We call this hybrid Tau-Leaping/ODE simulation method the Tau-Hybrid Algorithm.

Figure 2 shows a visual representation of a simulation using the Tau-Hybrid algorithm. The

populations of the two species are shown, along with the values of the reaction indicator

variables. Note that the value of r3 moves in straight lines between the discontinuous jumps

that arise due to stochastic reactions firing. This is due to the propensity function being

constant. In contrast, the value of r1 moves in curved lines, with a positive second derivative.

This is because the propensity function a1 X depends on the population of A, which is

continuously increasing. In this example, the value of r2 is ignored, as it is a deterministic

Matthew et al. Page 8

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reaction. Thus, the value of A changes continuously using the ODE integration over the step

t, t + τ , and then discontinuously (discretely) at the end of each step.

3.2 Automatic switching between discrete and continuous species

Gillespie described how the different simulation regimes (e.g., stochastic vs. deterministic)

relate to each other, and the assumptions at each level in Gillespie (2009). Using this

as a foundation, we make the observation that for many discrete stochastic systems, it is

important to keep track of the exact stochastic variations when the populations are relatively

low. However, when the population of a discrete species is high, and the stochastic variation

from the mean field trajectory is low, we can utilize the law of large number assumption and

transition the discrete species into a continuous species with minimal loss of accuracy in the

solution.

The Tau-Hybrid algorithm has two different methods for detecting when a species should be

switched between discrete and continuous. The first is a simple population threshold value,

where above this threshold the species is considered continuous and below the threshold

the species is considered discrete. The second method uses the relative noise in the species

simulation trajectory to determine whether the stochastic variation about the mean is more or

less than an error tolerance. For this calculation we use an approximation of the coefficient

of variation CV = σ/μ, where σ and μ are the standard deviation and mean value respectively.

Related auxiliary quantities σ and μ are approximated as part of the τ step size selection step

outlined above, and as defined in (Cao et al., 2006), thus we use

μi = − ∑
j

M
∑

k

N
aj X ∗ Reactants k, j + ∑

j

M
∑

k

N
aj X ∗ Products k, j (13)

σi
2 = − ∑

j

M
∑

k

N
aj X ∗ Reactants k, j 2 + ∑

j

M
∑

k

N
aj X ∗ Products k, j 2

(14)

CV i = σi
2/ Si + μi (15)

where Reactants k, j is the number of species k that are consumed by reaction j (i.e., 2 for

a bimolecular reaction, 0 if not involved). Similarly, Products k, j is the number of species

k that are produced by reaction j. If CV i for species Si is less than the specified per-species

tolerance, we mark the species continuous. We then examine each reaction j. If all of the

reactants and products are marked as continuous then the reaction is marked deterministic,

otherwise it is marked stochastic.

We also use the values from (13) and (14) in our implementation of the τ step size selection

method (Cao et al., 2006)

τ = min
i ∈ Reactants

max εiSi, 1
μi

, max εiSi, 1 2

σi
2 (16)

Matthew et al. Page 9

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where Reactants is all species k where Reactants k, j > 0 for any reaction j, and ε is the

error control parameter. We refer the reader to (Cao et al., 2006) for the complete derivation.

In the implementation of the τ step size selection method (Cao et al., 2006), to prevent

species from going negative it is sometimes necessary to take a single SSA step (Step 9 in

Algorithm 1). In our implementation, we check to see if any species are negative after all

stochastic reactions have been processed for a given step. If a negative state is detected, then

the system is restored to the state prior to the step and a new τ and the reaction j′ to fire is

determined using the next-reaction SSA methodology by calculating

τj = −rj t
aj X t , t (17)

j′ = arg min
j

τj (18)

for all j ∈ stocℎ. Using (18) we find j′, integrate the ODE system over t, t + τj′ , then fire a

single j′ reaction. A complete description of the methods is given in Algorithm 1.

Algorithm 1:Hybrid Tau − Leaping algorithm (hybrid of ODE and Tau − Leaping)
1: Initialize state X t = 0 and each rj = log URN
2: while current time < simulation end time do
3: Evaluate propensities aj X at current state .
4: Find μi, σi & CV i for each species as in Eqs . (13) – (15) .
5: Select the step size τ according to Eq . 16 .
6: Identify continuous/discrete species and deterministic/stochastic reaction sets .
7: Integrate stochastic reaction indicator variables rj, and deterministic species from t to t + τ using Eqs . 8 and 10 .
8: Update state based on number of stochastic reaction firings using Eq . 12 .
9: if no species have a negative population then
10: Store state X t + τ = X, t = t + τ
11: else
12: Reset state X = X t , the state at the beginning of the step .
13: Using 17 and 18 , Update state by firing a single j′ reaction:X t + τj′ = vj′ + X t , and set t = t + τj′ .
14: end if
15: end while

4 GillesPy2 Design and Implementation

GillesPy2 is a Python 3 package that uses an object-oriented approach that provides

an intuitive API for working with models, simulations, and results. In object oriented

programming, classes describe the components of an object. GillesPy2 users create and

manipulate objects via well documented methods (or “functions”). The primary classes in

GillesPy2 are the Model, Solver, and Results classes, which are described in the subsections

below.

Matthew et al. Page 10

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1 Model class

A Model object consists of three primary components: species, parameters, and reactions. A

GillesPy2 user can build a model by creating Species, Parameter, and Reaction objects and

adding them to a Model object. This process is best described via a concrete example.

Consider the Michaelis-Menten reaction set from Eq. (1). A user can create the Species

objects with the following simple Python 3 code snippet:

A = Species(name="A", initial_value=301)

B = Species(name="B", initial_value=120)

C = Species(name="C", initial_value=0)

D = Species(name="D", initial_value=0)

Similarly, one can define Parameters:

rate1 = Parameter(name="rate1", expression=0.0017)

rate2 = Parameter(name="rate2", expression=0.5

rate3 = Parameter(name="rate3", expression=0.1)

Species and Parameters are used to build the Reaction objects:

r1 = Reaction(name="r1", reactants={A: 1, B: 1}, products={C: 1}, rate=rate1)

r2 = Reaction(name="r2", reactants={C: 1}, products={A: 1, B: 1}, rate=rate2)

r3 = Reaction(name="r3", reactants={C: 1}, products={B: 1 , D: 1},

rate=rate3)

A user can then instantiate a Model object and add the Species, Parameters, and Reactions

components to it:

michaelis_menten = Model()

michaelis_menten.add_species([A, B, C, D])

michaelis_menten.add_parameter([rate1, rate2, rate3])

michaelis_menten.add_reaction([r1, r2, r3])

Finally, to facilitate simulation, we define a TimeSpan that specifies the time points at which

to keep data from a simulation:

michaelis_menten.timespan(TimeSpan(numpy.linspace(0, 100, 101)))

GillesPy2 models can include several additional features of the SBML Level 3 standard

(Hucka et al., 2003), including rate rules, assignment rules, function definitions, and events.

4.2 Solvers

The base class for all GillesPy2 simulation algorithms is GillesPySolver, which provides an

abstract “run” method that all subclasses (“Solvers”) must implement. However, GillesPy2

users are not required to have knowledge of particular Solvers or algorithms in order to

Matthew et al. Page 11

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

run a simulation. GillesPy2 intelligently uses the properties of the Model and the user’s

system to automatically select the appropriate Solver. Therefore, running a simulation of the

Michaelis-Menten model defined above is as simple as:

results = michaelis_menten.run()

The above code will run a single stochastic simulation (or trajectory) using the SSA. To run

an ensemble of several trajectories the code is:

results = michaelis_menten.run(number_of_trajectories=20)

The above code will generate a Results object containing simulation data similar to that

shown in Figure 1(B).

GillesPy2 includes Solver classes for the SSA, Tau-Leaping, ODE, CLE, and Tau-Hybrid

algorithms. Specifically, the SSA uses the direct method (Gillespie, 1977), Tau-Leaping uses

the adaptive step-size algorithm from (Cao et al., 2006), ODE uses Sundials (Hindmarsh

et al., 2005) or SciPy.integrate’s ode function (Virtanen et al., 2020), CLE uses an Euler-

Maruyama method (McCauley, 2013) with dynamic step size chosen as in the Tau-Leaping

method, and the Tau-Hybrid is implemented as described in Section 3. The default algorithm

when a user calls the run() method will be the SSA unless the model includes Species

designated as “dynamic” or “continuous” or if the model contains one or more of the

following SBML features: rate rules, events, assignment rules, or function definitions, in

which case the selected algorithm will be the Tau-Hybrid. The user can also manually select

an algorithm, for example:

results = michaelis_menten.run(algorithm="Tau-Leaping")

Each algorithm (except the CLE) is implemented in two Solver classes, one written in

Python and one written in C++. The rationale is that code written in C++, a compiled

language, is faster than Python code. However, running C++ code requires a compiler.

Therefore, GillesPy2, when selecting the particular Solver for a given algorithm, checks for

an available C++ compiler and uses the C++ Solver if a compiler is accessible, otherwise it

uses the Python implementation. A list of the available Solvers is shown in Table 1.

Users can override the default by instantiating a Solver object directly to have total control

over the Solver. For example, a user with a C++ compiler could manually choose to use the

Python SSA implementation to run an ensemble of the Michaelis-Menten model:

python_ssa = NumPySSASolver(model=michaelis_menten)

results = python_ssa.run(number_of_trajectories=20)

4.3 Simulation output and visualization

The GillesPy2 Solvers’ simulations return a Results object. A Results object contains a

Python list of Trajectory objects, where each Trajectory contains a Python dictionary of the

time array specified by the model’s timespan object and an array of values corresponding

Matthew et al. Page 12

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to those time points for each Species in the Model. The Results object is convenient for

conducting analysis directly in Python.

The Results class provides several methods to facilitate common analysis tasks, including

plotting and generating descriptive statistics. To plot a Results object, the syntax is:

results.plot()

If the results variable contained an SSA ensemble from the Michaelis-Menten model,

the above statement will generate a plot similar to that in Figure 1(B). The default

plot method uses the Python Matplotlib (Hunter, 2007) library. Users can generate a

Plotly (Plotly Technologies Inc., 2015) graph with the plotplotly method. The methods

average_ensemble and stddev_ensemble create a Trajectory object containing the means and

standard deviations, respectively. The methods plot_mean_stdev and plotplotly_mean_stdev

compute these statistics and plot them in a single call. Finally, users can export their Results

by writing them to a file using the to_csv method.

5 Examples

In the following examples, we will look at the process of creating, simulating,

and visualizing models with GillesPy2. All of the examples demonstrate the core

benefit of GillesPy2’s object-oriented implementation: that of compartmentalization.

Compartmentalization makes GillesPy2 easy to use by splitting the composition of a

model into separate “building blocks”. Section 5.1 demonstrates the core components

of a GillesPy2 model, Section 5.2 demonstrates events using an epidemic model, and

the photosynthesis model in Section 5.3 demonstrates GillesPy2’s hybrid solver. All of

the examples in this section are available in notebooks posted here: https://github.com/

GillesPy2/GillesPy2_paper.

5.1 Predator-prey model

Lotka-Volterra models are a class of predator prey models often represented as ODEs

(Lotka, 1920; Volterra, 1926). For example, the following set of ODEs can be used to

described the population dynamics of a predator F and prey R (e.g., foxes and rabbits):

dF
dt = k2FR − k3F
dR
dt = − k2FR + k1 .

(19)

These ODEs can be converted into mechanistic reaction format:

R1: ∅ k1 R
R2:F + R k2 2F
R3:F k3 ∅ ,

(20)

Matthew et al. Page 13

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/GillesPy2/GillesPy2_paper
https://github.com/GillesPy2/GillesPy2_paper

where the empty set symbol is used when there are no reactants or products. In GillesPy2,

these reactions are described with the following code:

R1 = Reaction (reactants={}, products={R: 1}, rate=k1

R2 = Reaction(reactants={R: 1, F: 1}, products={F: 2}, rate=k2)

R3 = Reaction(reactants={F: 1}, products={}, rate =k3)

For the parameter set k1 = 10, k2 = 0.01, k3 = 10, the ODE model has an equilibrium point at

F = 1000, R = 1000 (see Figure 3(B)). For non-zero populations away from the equilibrium

point, the ODE system exhibits oscillations, as seen in Figure 3(A). Simulated stochastically,

an initial population at the ODE equilibrium F = 1000, R = 1000 does not remain constant,

as stochasticity pushes the system away from equilibrium and the system exhibits noisy

oscillations as seen in Figure 3(C).

5.2 Epidemic model with events

Next we consider a variation of the standard SEIR epidemic model inspired by the early

Covid-19 pandemic (Jiang et al., 2021). The species S, E, and R correspond to susceptible,

exposed, and recovered individuals, respectively. The total infected population is split into

two categories: I1 and I2 corresponding to asymptomatic and symptomatic, respectively.

Population C are individuals who were silently cleared, meaning they were infected but

never became symptomatic. Finally, D is the number of deaths. The basic reaction set is as

follows:

R1:S + I1
ke I1 + E

R2:S + I2
ke I1 + I2

R3:E ki I1

R4:I1
kp I2

R5:I1
kS C

R6:I2
kr R

R7:I2
kd D .

(21)

In this example we consider the effect of a societal “lockdown” to reduce virus transmission,

as was common in the early months of the Covid-19 pandemic. To model a lockdown, we

introduce two events. The first event triggers at time t = 20 and modifies parameter ke by a

value q between 0 and 1 corresponding to the reduction in exposure due to the lockdown.

The second event ends the lockdown at t = 70 by modifying parameter ke by a value between

q and 1, where a value of 1 would simulate the population fully returning to pre-lockdown

behaviors. An Event object is composed of an EventTrigger and an EventAssignment object.

For example, the first event is added to the model as follows:

e1trigger = EventTrigger(expression="t >=20")

e1action = EventAssignment(variable=self.listOfParameters["k_e"],

expression="q∗k_e0")

Matthew et al. Page 14

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

lockdown = Event(name="lockdown_start", trigger=e1trigger,

assignments=[e1action])

self.add_event(lockdown)

Here “k_e0” is the nominal value of ke. The Event’s trigger will become true at t = 20,

then the EventAssignment will be executed. The Event for ending the lockdown is defined

similarly. This model was used to create part (C) in Figure 1.

5.3 Hybrid simulation of photosynthesis

To demonstrate the Tau-Hybrid solver, we have created an example model of photosynthesis

based on (Whitmarsh and Covindjee, 1999). This model demonstrates the two major features

of the Tau-Hybrid solver. The first feature is the ability to couple stochastic reactions

to continuously changing variables. In this model, a RateRule is assigned to the variable

“photons” to set its continuous value based on a derivative proportional to sin tπ/12 to

mimic the daily cycle of the sun. The domain of interest is a cell of a plant, though we do

not explicitly model this. Instead, we simulate the diffusion of carbon dioxide, water, and

oxygen into and out of the cell using purely deterministic reactions, with the steady-state

being the initial condition of those quantities. The second feature we illustrate with this

model is the ability for a reaction to be simulated stochastically at low populations and

automatically switch the reaction to a continuous mode when the relative noise of the

reactants and products falls below the threshold level. In this case, we have specified that the

variable representing the carbohydrates in the model will switch when its relative noise is

less than the default threshold of 0.03, using the following code:

Species(name="Carbohydrate", initial_value=0, mode="dynamic")

Alternatively, switching behavior can also be specified by a minimum population level

parameter that changes the type from continuous to discrete when the species population

drops below the specified threshold.

Figure 4 shows the results of the simulation of this model. The photons (green) change

continuously with time. The carbohydrates (red) increase when Photons are high, and

change discretely (taking only integer values) until t ≈ 17. Each reaction event can be seen

as a step increase in this variable. After t ≈ 17, the Carbohydrates variable is simulated

deterministically, and thus has smooth changes, though the qualitative behavior remains

the same. Carbon dioxide (blue) and water (orange) are consumed in the photosynthesis

reaction and oxygen (purple) is produced. Before t ≈ 17 discontinuous jumps in their values

correspond to reaction events. During this same time, the deterministic diffusion in/out

reaction also changes the values continuously between reaction events.

This example demonstrates that the Tau-Hybrid solver allows the modeler to couple

stochastic reactions with deterministic reactions and continuously time-varying inputs. It

allows the modeler to specify whether a set of reactions should be stochastic, deterministic,

or to switch between the two options based on specified thresholds. These features are

applicable to a large class of models, as it is important to capture stochastic dynamics,

Matthew et al. Page 15

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

however it is difficult to a priori determine which species and which reactions need to

be simulated discretely, and which ones can be accurately simulated deterministically.

GillesPy2’s Tau-Hybrid solver switches between these two modes automatically, giving the

modeler an accurate and efficient simulation without requiring any extra knowledge.

6 Discussion

6.1 Performance

In GillesPy2 we provide a variety of solvers to our users, so that we may address as

many different computational requirements as possible. GillesPy2 includes logic to choose

the correct solver for the user automatically, by inspecting the features used in the

model construction and testing if the C++ solver can be used in the current computation

environment. This logic is contained in the “get_best_solver()” method. This method will

return a C++ implementation over the Python counterpart, if supported. It will inspect

the model for any advanced features (e.g., Event, Assignment Rules, Rate Rules, or

Function Definitions) and returns the Tau-Hybrid solver if so, otherwise it returns the SSA

Solver. These heuristics are appropriate for many situations, however we suggest that our

users specify the solver that most closely fits their computational situation to maximize

productivity. The SSA solvers have been optimized for performance in simulating stochastic

systems, and as such does not support as many features. The ODE solvers have similarly for

deterministic systems. However, the Tau-Hybrid solvers have been developed to simulate the

most complex biochemical models by simultaneously solving ODE and SSA systems, thus it

must do more work than either of them alone.

Understanding all of the performance characteristics of a simulation is a complex and

multifaceted endeavor. To assist our readers in understanding the performance of GillesPy2,

we present three analyses. In Figure 5, we compare the performance of the SSA, Tau-

Hybrid, Tau-Leaping, and ODE solvers as a function of increasing system size by increasing

the steady-state population, X0
∗ = X t = 0 , in the birth-death model where ∅ X at rate

k ∗ X0
∗, and X ∅ at rate k (e.g., a1 X = k ∗ X0

∗ and a2 X = k ∗ X). Both the C++ (A) and

Python (B) implementations are analyzed. In Figure 6 we show separately total time (in

A), initialization and compilation time (in B), and simulation run time (in C) as a function

of the number of simulated trajectories. We see that in some fast-running simulations,

the compilation time dominates the total time. In Table 2 we compare a set of common

biochemical models with the GillesPy2 solvers, and additionally show the time for the

simulation with StochKit2 (Sanft et al., 2011), for external comparison. Some entries are

marked “N/A” if the solver does not possess the capabilities to correctly simulate the model.

The models compared are: Decay S ∅ , S 0 = 100 , Dimerization 2S1 S2, S1 0 = 30 ,

Michaelis-Menten (Michaelis and Menten, 1913), Genetic Toggle Switch (Gardner et al.,

2000), Tyson 2-state Oscillator (Tyson, 1991), Vilar Oscillator (Vilar et al., 2002), a Multi-

Event model (a test model with events), and an All-SBML-Features model (a test model that

includes all supported SBML features: Event, Assignment Rules, Rate Rules, and Function

Definitions).

Matthew et al. Page 16

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.2 Availability

GillesPy2 is open source software, available under the GNU General Public License

(Version 3) (https://github.com/GillesPy2/GillesPy2/blob/main/LICENSE). Like many

Python 3 packages, stable versions of GillesPy2 can be installed from PyPI via the

Python “pip” command. It is also available on conda-forge.org for those using the Conda

package manager. The source code and documentation can be downloaded from http://

www.github.com/gillespy2/gillespy2. Users are encouraged to report bugs and request new

features through the github repository’s web interface.

GillesPy2 is part of the StochSS ecosystem (Drawert et al., 2016). The StochSS organization

encompasses multiple projects, including: StochSS Live (Jiang et al., 2021), SCIOPE

(Scalable inference, optimization and parameter exploration) (Singh et al., 2020), and

SpatialPy. GillesPy2 is the engine for all spatially homogeneous modeling and simulation

services in StochSS. Through StochSS live, a Software-as-a-Service platform, users can

create, simulate, and analyze models in a web browser.

7 Conclusion

GillesPy2 is an open source Python 3 package that provides biological modelers a set of

user-friendly tools to facilitate their workflows. GillesPy2’s object-oriented design allows

users to build, simulate, analyze, and improve their models using an intuitive set of classes

and methods. The core solvers are written in C++ and Python for high performance and

accessibility. The novel Tau-Hybrid implementation is compatible with several SBML

model features, including events and rate rules. Additionally, GillesPy2 works well with

Jupyter notebooks, facilitating open and reproducible science. In fact, all of the examples

and code in this paper are available in notebooks posted at https://github.com/GillesPy2/

GillesPy2_paper. All figures and data in this paper are based on GillesPy2 version 1.7.0.

For biological modelers who would like to use GillesPy2, a great place to start is the

“Start_Here.ipynb” Jupyter notebook in the GillesPy2/examples folder. Users can start with

a provided working example and then modify the code to develop their own model. The

examples folder contains additional notebooks that showcase several different biochemical

models and notebooks that demonstrate many GillesPy2 features. Users can also consult the

extensive documentation on the web at https://gillespy2.readthedocs.io/. The documentation

provides everything from a “Basic usage” page that walks through the basic workflow,

to a complete API reference of all GillesPy2 classes and public methods. Through the user-

friendly API, example notebooks, and extensive documentation, users can progress quickly

from GillesPy2 beginners to experts who can utilize the powerful range of biochemical

modeling, simulation, and analysis tools that are available in GillesPy2.

Acknowledgments

The authors acknowledge research funding from NIBIB Award No. 2-R01-EB014877-04A1. The content of
the information does not necessarily reflect the position or the policy of the funding agency, and no official
endorsement should be inferred.

We would like to thank all of the contributors to GillesPy2. A complete list can be found in the Github repository in
the AUTHORS file.

Matthew et al. Page 17

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/GillesPy2/GillesPy2/blob/main/LICENSE
http://www.conda-forge.org/
http://www.github.com/gillespy2/gillespy2
http://www.github.com/gillespy2/gillespy2
https://github.com/GillesPy2/GillesPy2_paper
https://github.com/GillesPy2/GillesPy2_paper
https://gillespy2.readthedocs.io/

References

Abel JH, Drawert B, Hellander A, and Petzold LR (2016). GillesPy: A Python package for stochastic
model building and simulation. IEEE Life Sciences Letters 2(3), 35–38. 87 [PubMed: 28630888]

Ahmadian M, Wang S, Tyson J, and Cao Y (2017). Hybrid ODE/SSA model of the budding yeast
cell cycle control mechanism with mutant case study In Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM-BCB ‘17,
New York, NY, USA, pp. 464–473. Association for Computing Machinery. 91

Ascher UM and Petzold LR (1998). Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, Volume 61. Siam. 90

Cao Y, Gillespie DT, and Petzold LR (2006). Efficient step size selection for the Tau-Leaping
simulation method. The Journal of Chemical Physics 124(4), 044109. 91, 93, 94, 95, 96 [PubMed:
16460151]

Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, and Sauro HM (2018). Tellurium: An
extensible Python-based modeling environment for systems and synthetic biology. Biosystems 171,
74–79. 88 [PubMed: 30053414]

Drawert B, Griesemer M, Petzold LR, and Briggs CJ (2017). Using stochastic epidemiological
models to evaluate conservation strategies for endangered amphibians. Journal of the Royal Society
Interface 14(133), 20170480. 87 [PubMed: 28855388]

Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Daigle BJ Jr, Douglas G, Gu M,
Gupta A, Hellander S, et al. (2016). Stochastic simulation service: Bridging the gap between the
computational expert and the biologist. PLoS Computational Biology 12(12), e1005220. 88, 99
[PubMed: 27930676]

Drawert B, Matthew S, Powell M, and Rumsey B (2022). Saving the devils is in the details: Tasmanian
devil facial tumor disease can be eliminated with interventions. bioRxiv 87

Drawert B, Thakore N, Mitchell B, Pioro E, Ravits J, and Petzold LR (2017). Modeling the
neuroanatomic propagation of ALS in the spinal cord. In AIP Conference Proceedings, Volume
1863, pp. 500002. AIP Publishing LLC. 87

El Samad H, Khammash M, Petzold L, and Gillespie D (2005). Stochastic modelling of gene
regulatory networks. International Journal of Robust and Nonlinear Control: IFAC-Affiliated
Journal 15(15), 691–711. 87

Elowitz MB, Levine AJ, Siggia ED, and Swain PS (2002). Stochastic gene expression in a single cell.
Science 297 (5584), 1183–1186. 87 [PubMed: 12183631]

Gardner TS, Cantor CR, and Collins JJ (2000). Construction of a genetic toggle switch in Escherichia
coli. Nature 403(6767), 339–342. 99 [PubMed: 10659857]

Gibson M and Bruck J (2000). Efficient exact stochastic simulation of chemical systems with many
species and many channels. The Journal of Physical Chemistry A 104(9), 1876–1889. 90

Gillespie D (2001, 07). Approximate accelerated stochastic simulation of chemically reacting systems.
Journal of Chemical Physics 115, 1716–1733. 91

Gillespie DT (1976). A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics 22, 403–434. 87, 92

Gillespie DT (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry 81(25), 2340–2361. 87, 91, 95, 96

Gillespie DT (2009). Deterministic limit of stochastic chemical kinetics. The Journal of Physical
Chemistry B 113(6), 1640–1644. 93 [PubMed: 19159264]

Gillespie DT, Hellander A, and Petzold LR (2013). Perspective: Stochastic algorithms for chemical
kinetics. The Journal of Chemical Physics 138(17), 05B201_1. 87, 90, 91

Harris LA, Hogg JS, Tapia J-J, Sekar JA, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan RP,
and Faeder JR (2016). BioNetGen 2.2: Advances in rule-based modeling. Bioinformatics 32(21),
3366–3368. 88 [PubMed: 27402907]

Helms T, Wilsdorf P, and Uhrmacher AM (2018). Hybrid simulation of dynamic reaction networks
in multi-level models In Proceedings of the 2018 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pp. 133–144. 91

Matthew et al. Page 18

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, and Woodward CS (2005).
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on
Mathematical Software (TOMS) 31(3), 363–396. 90, 95, 96

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, and Kummer
U (2006). COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074. 88
[PubMed: 17032683]

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,
Cornish-Bowden A, et al. (2003). The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531. 90,
95 [PubMed: 12611808]

Hunter JD (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9(3),
90–95. 96

Jiang R, Jacob B, Geiger M, Matthew S, Rumsey B, Singh P, Wrede F, Yi T-M, Drawert B, Hellander
A, and Petzold L (2021). Epidemiological modeling in StochSS Live! Bioinformatics 87, 97, 99

Kurtz TG (1972). The relationship between stochastic and deterministic models for chemical reactions.
The Journal of Chemical Physics 57 (7), 2976–2978. 91

Landeros A, Stutz T, Keys KL, Alekseyenko A, Sinsheimer JS, Lange K, and Sehl ME (2018).
BioSimulator.jl: Stochastic simulation in Julia. Computer Methods and Programs in Biomedicine
167, 23–35. 88 [PubMed: 30501857]

Lopez CF and Garbett SP (2014). Pysb: A modeling framework to explore biochemical signaling
processes and cell-decisions. Biophysical Journal 106(2), 643a. 88

Lotka AJ (1920). Analytical note on certain rhythmic relations in organic systems. Proceedings of the
National Academy of Sciences 6(7), 410–415. 97

Maarleveld TR, Olivier BG, and Bruggeman FJ (2013). StochPy: A comprehensive, user-friendly tool
for simulating stochastic biological processes. PloS ONE 8(11), e79345. 88 [PubMed: 24260203]

Mauch S and Stalzer M (2011). Efficient formulations for exact stochastic simulation of chemical
systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(1), 27–35. 90
[PubMed: 21071794]

McCauley J (2013). Stochastic Calculus and Differential Equations for Physics and Finance
Cambridge University Press. 95, 96

Michaelis L and Menten ML (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49,
333–369. 88, 89, 99

Munsky B and Khammash M (2006). The finite state projection algorithm for the solution of
the chemical master equation. The Journal of Chemical Physics 124(4), 044104. 90 [PubMed:
16460146]

Pahle J (2009). Biochemical simulations: Stochastic, approximate stochastic and hybrid approaches.
Briefings in Bioinformatics 10(1), 53–64. 91 [PubMed: 19151097]

Petzold L (1983). Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM Journal on Scientific and Statistical Computing 4(1), 136–148. 90, 96

Pineda-Krch M (2008). GillespieSSA: Implementing the Gillespie stochastic simulation algorithm in
R. Journal of Statistical Software 25, 1–18. 88

Plotly Technologies Inc. (2015). Collaborative data science 96

Ramaswamy R, González-Segredo N, and Sbalzarini IF (2009). A new class of highly efficient exact
stochastic simulation algorithms for chemical reaction networks. The Journal of Chemical Physics
130(24), 244104. 90 [PubMed: 19566139]

Salis H and Kaznessis Y (2005). Accurate hybrid stochastic simulation of a system of coupled
chemical or biochemical reactions. The Journal of Chemical Physics 122(5), 054103. 92

Sanft KR and Othmer HG (2015). Constant-complexity stochastic simulation algorithm with optimal
binning. The Journal of Chemical Physics 143(7), 08B609_1. 90

Sanft KR, Wu S, Roh M, Fu J, Lim RK, and Petzold LR (2011). StochKit2: Software for discrete
stochastic simulation of biochemical systems with events. Bioinformatics 27 (17), 2457–2458. 87,
99, 100 [PubMed: 21727139]

Matthew et al. Page 19

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh P, Wrede F, and Hellander A (2020, 07). Scalable machine learning-assisted model exploration
and inference using Sciope. Bioinformatics 99

Slepoy A, Thompson AP, and Plimpton SJ (2008). A constant-time kinetic Monte Carlo algorithm for
simulation of large biochemical reaction networks. The Journal of Chemical Physics 128(20). 90

Somogyi ET, Bouteiller J-M, Glazier JA, König M, Medley JK, Swat MH, and Sauro HM (2015).
libRoadRunner: A high performance SBML simulation and analysis library. Bioinformatics
31(20), 3315–3321. 88 [PubMed: 26085503]

Tyson JJ (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the
National Academy of Sciences 88(16), 7328–7332. 99

Van Rossum G and Drake FL (2009). Python 3 Reference Manual Scotts Valley, CA: CreateSpace. 87

Vilar JMG, Kueh HY, Barkai N, and Leibler S (2002). Mechanisms of noise-resistance in genetic
oscillators. Proceedings of the National Academy of Sciences 99(9), 5988–5992. 99, 100

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods 17 (3), 261–272. 90, 95, 96 [PubMed: 32015543]

Volterra V (1926). Fluctuations in the abundance of a species considered mathematically. Nature
118(2972), 558–560. 97

Whitmarsh J and Covindjee (1999). The photosynthetic process. In Singhal G, Renger G,
Sopory S, Irrgang K-D, and Govindjee (Eds.), Concepts in Photobiology: Photosynthesis and
Photomorphogenesis Narosa Publishing House, New Dehli, India. 98, 99

Matthew et al. Page 20

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
(A) Diagram representing the GillesPy2 workflow, and the three major components: Model,

Simulation, and Result. (B) Simulation of the classic Michaelis-Menten model (Michaelis

and Menten, 1913). (C) Simulation of Covid-19 infections in a population with lockdown

and re-opening events. (D) Simulation of a discrete stochastic birth-death process coupled

to a time-varying continuous variable. Visualizations of simulations were all performed with

GillesPy2.

Matthew et al. Page 21

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Visualization of the Tau-Hybrid simulation of a coupled discrete-continuous system. The

model features three reactions: R1:A + B ∅, R2: ∅ A, R3: ∅ B. The values of the

reaction indicator variables, r1, r2, and r3 are shown along with the populations of species A,

which is set to be continuous, and species B, which is set to be discrete. The population of

B changes discretely when r1 or r3 fire, which occurs when their value crosses the y = 0
axis and becomes positive. We then use (11) to determine the number of times the reaction is

fired and then reset the reaction indicator value to log URN (a negative value). The reaction

R2 is simulated as deterministic because it depends only on species marked as continuous.

Therefore, the indicator variable r2 is ignored and the population of A changes continuously.

The population of A also changes discretely when R1 fires. The simulation τ step size is

calculated adaptively, and the state of the simulation is sampled for output every 0.1 time

units. All other options use the defaults (e.g., LSODA integrator).

Matthew et al. Page 22

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Simulations of the Predator-Prey model, as defined in (19) and (20). (A) deterministic

(ODE) simulation from a non-equilibrium initial condition. (B) deterministic (ODE)

simulation from the equilibrium initial condition. Note that the values never change. (C)

stochastic simulation from the ODE equilibrium initial condition.

Matthew et al. Page 23

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
An example model showing hybrid ODE/SSA simulation. This model of photosynthesis,

adapted from Whitmarsh and Covindjee (1999), couples an external time-varying input

(sunlight, green) with a reaction network. Diffusion in and out of the volume of interest

is simulated deterministically, while the reaction that creates sugars (carbohydrates, red)

is stochastic when the population of carbohydrates is low (time < 17) and switches to

deterministic after time ≈ 17 because the calculated noise crosses below the tolerance

threshold.

Matthew et al. Page 24

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Comparison of solver performance for SSA, Tau-Hybrid, Tau-Leaping, and ODE solvers,

for both the C++ implementations (A) and Python implementations (B). Performance is

measured using a birth-death model across a range of steady-state conditions. This shows

how performance of each solver changes as the system size increases. Note that the C++

solvers are significantly faster than the Python implementations, thus we compare them

separately. Also note that the Tau-Leaping and Tau-Hybrid solvers are nearly flat with

respect to system size, as expected since their performance scales with number of reaction

channels. This is in contrast to the SSA which scales linearly with population size.

Matthew et al. Page 25

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Performance analysis of GillesPy2 running the Vilar Oscillator (Vilar et al., 2002) model,

showing (A) Total simulation time, (B) Compile time, and (C) Run time versus number of

trajectories. Note that for the C++ solvers (solid lines), the compile time is a large fraction of

the total time for fast-running simulations. The C++ solvers are all faster than their Python

counterparts (dashed lines), however the relatively large compile time must be taken into

account when considering the performance trade-offs of each solver.

Matthew et al. Page 26

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Matthew et al. Page 27

Table 1:

List of available Solvers in GillesPy2 as of version 1.7.0.

Algorithm Implementation / Reference Class Name Language Advanced Features

SSA Direct Method / Gillespie, 1977 NumPySSASolver Python

SSA Direct Method / Gillespie, 1977 SSACSolver C++

Tau-Leaping Cao et al., 2006 TauLeapingSolver Python

Tau-Leaping Cao et al., 2006 TauLeapingCSolver C++

ODE LSODA∗ / Petzold, 1983 ODESolver Python∗

ODE LSODA∗ / Petzold, 1983 ODECSolver C++∗

CLE Euler-Maruyama / McCauley, 2013 CLESolver Python

Tau-Hybrid see Section 3 TauHybridSolver Python Event, RateRule, AssignmentRule,
FunctionDefinition

Tau-Hybrid see Section 3 TauHybridCSolver C++ Event, RateRule

∗
The ODE solvers are wrappers to SciPy (Virtanen et al., 2020) (Python) and SUNDIALS (Hindmarsh et al., 2005) (C++) solvers. The ODE

solvers use LSODA by default but other integrators can be chosen.

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Matthew et al. Page 28

Table 2:

Total simulation time (in seconds) comparison for GillesPy2 Solvers and StochKit2 (Sanft et al., 2011) for

popular biochemical models. Times reported are the total time (compile + simulation) for a single trajectory.

See Figure 6 for an example of performance versus ensemble size.

Model SSA SSA C++ Tau-Hybrid Tau-Hybrid C+
+ Tau-Leaping Tau-Leaping C+

+ StochKit2 (SSA)

Decay 0.00312 3.893 0.0610 16.292 0.00605 8.015 0.0406

Dimerization 0.00338 3.829 0.125 13.464 0.0132 7.493 0.0764

Michaelis-Menten 0.0654 4.573 0.797 17.010 0.0711 7.861 0.0743

Genetic Toggle Switch 0.0876 3.085 1.457 16.22 0.0885 6.800 7.623

Tyson 2-state Oscillator 21.16 3.164 303.1 14.29 22.16 6.807 6.984

Vilar Oscillator 15.29 3.167 299.5 14.42 31.72 8.301 0.223

Multi-Event model N/A N/A 0.246 16.22 N/A N/A N/A

SBML features model N/A N/A 0.586 N/A N/A N/A N/A

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

	Abstract
	Introduction
	Background
	Biological modeling
	Deterministic simulation
	Stochastic simulation
	Hybrid simulation

	The Tau-Hybrid Simulation Algorithm
	Simulation of a coupled discrete-continuous system
	Automatic switching between discrete and continuous species

	GillesPy2 Design and Implementation
	Model class
	Solvers
	Simulation output and visualization

	Examples
	Predator-prey model
	Epidemic model with events
	Hybrid simulation of photosynthesis

	Discussion
	Performance
	Availability

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:

