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Abstract

Stochastic modeling has become an essential tool for studying biochemical reaction networks. 

There is a growing need for user-friendly and feature-complete software for model design and 

simulation. To address this need, we present GillesPy2, an open-source framework for building 

and simulating mathematical and biochemical models. GillesPy2, a major upgrade from the 

original GillesPy package, is now a stand-alone Python 3 package. GillesPy2 offers an intuitive 

interface for robust and reproducible model creation, facilitating rapid and iterative development. 

In addition to expediting the model creation process, GillesPy2 offers efficient algorithms to 

simulate stochastic, deterministic, and hybrid stochastic-deterministic models.
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1. Introduction

In 1976, Dan Gillespie first presented the Stochastic Simulation Algorithm (SSA) (Gillespie, 

1976, 1977), which allows for efficient and accurate simulation of discrete stochastic 

reaction systems. This method has gained wide popularity in the simulation of complex 

biological and biochemical systems, and is widely used in the field of computational systems 

biology. It has inspired a plethora of software packages which implement this method, 

and a family of algorithms that enhance and extend it. Our team has been part of the 

development of many of these algorithms and related software. In particular, we developed 

StochKit2 (Sanft et al., 2011) and later a Python 2 wrapper GillesPy (Abel et al., 2016), 
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which we named in honor of Dan Gillespie. We have continued our algorithm and software 

development with the next generation of simulation software, GillesPy2, which has been 

completely rewritten and is stand-alone. Our design goals are to provide software that is 

easy to use by novices but powerful enough in performance and features for even the most 

advanced users. GillesPy2 is distributed and used as a Python 3 (Van Rossum and Drake, 

2009) package, and the computationally expensive solvers are written in C++ (for maximum 

performance) and Python (for maximum compatibility). It provides simulation interfaces for 

stochastic and deterministic systems, as well as a novel hybrid method which can switch 

automatically between them. GillesPy2 aims to be a modeling and simulation package 

that can provide everything needed for building and solving any spatially homogeneous 

biochemical reaction system.

Stochastic modeling and simulation has become a powerful and impactful tool for the study 

of mathematical, biochemical, and biological systems (Gillespie et al., 2013; El Samad et al., 

2005; Elowitz et al., 2002). In addition, it has made an impact in the fields of conservation 

ecology (Drawert et al., 2017, 2022) and epidemiology (Jiang et al., 2021; Drawert et al., 

2017). The process of understanding such systems via modeling and simulation is iterative, 

akin to the scientific method: starting with observations and data, a user (modeler) first 

develops a mathematical model. Most biological and similar dynamic models, such as many 

ordinary differential equation (ODE) models, do not have analytical solutions and, therefore, 

are “solved” by simulation. These simulations are a form of experimentation that produce 

results and data that the modeler can compare to the original observations and data to 

further refine the model. This iterative process is captured in the schematic shown in Figure 

1(A). Software is an essential tool in this workflow. The software needs to be simple to 

use, computationally efficient, and it should provide features to accommodate studying a 

wide variety of systems. For example, Figure 1 shows simulation results from a discrete 

stochastic model (B), a model with events (C), and a model with coupled discrete stochastic 

and continuous components (D). GillesPy2 provides an integrated Python 3 platform that is 

designed to meet the needs of modelers. A brief summary of the GillesPy2 capabilities is 

shown in the boxes around the schematic in Figure 1(A).

A number of software packages are kindred to GillesPy2. These include COPASI (Hoops 

et al., 2006), GillespieSSA (Pineda-Krch, 2008), StochPy (Maarleveld et al., 2013), PySB 

(Lopez and Garbett, 2014), Biosimulator.jl (Landeros et al., 2018), BioNetGen (Harris 

et al., 2016), Tellurium and libRoadRunner (Choi et al., 2018; Somogyi et al., 2015), 

and others. While a complete feature review is beyond the scope of this paper, each of 

these packages provides mechanisms for defining or importing models and/or simulating 

models within a particular programming language, integrated development environment, 

or graphical user interface. For example, COPASI features a graphical user interface that 

allows users to define models with multiple compartments using a comprehensive set of 

rate laws. GillespieSSA and Biosimulator.jl allow users to build and simulate biochemical 

models in the R and Julia languages, respectively. PySB implements rule-based modeling 

and BioNetGen implements structure-based modeling in Python. StochPy and Tellurium 

and libRoadRunner provide text-based interfaces for defining biochemical models that 

can be simulated and visualized in Python. GillesPy2 aims to provide a comprehensive 

and flexible collection of simulation methods in an easy-to-use package. It provides an 
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intuitive object-oriented Application Programming Interface (API) for the development 

of well-mixed biochemical reaction models that can include stochastic, deterministic, or 

coupled components. GillesPy2 is designed to integrate with Jupyter notebooks. GillesPy2 

is also the computational engine for our powerful web-based IDE, StochSS (Drawert et al., 

2016).

The remaining sections of this manuscript are structured as follows. In Section 2 we 

discuss biological modeling and various methods of simulation. In Section 3 we present 

the Tau-Hybrid Simulation Algorithm. Section 4 describes how GillesPy2 was designed 

and implemented, including details on our novel hybrid simulation algorithm. Section 5 

provides several examples of building and simulating models with GillesPy2. In Section 6, 

we illustrate the performance of GillesPy2 and how it fits into the software ecosystem of 

StochSS (Drawert et al., 2016). We end with our conclusions in Section 7.

2 Background

Biological systems feature dynamics that operate on a range of spatial and temporal scales. 

This leads to many different types of mathematical models, each with their own modeling 

assumptions and approximations. Furthermore, most models require software to simulate or 

“solve” them, and it can be difficult to separate model development from simulation and 

software. For example, creating an ODE model implicitly makes assumptions about the 

continuity of the state variables. In this section we describe the classes of models and the 

simulation algorithms that are utilized in GillesPy2.

2.1 Biological modeling

While there are many classes of biological models, here we consider models where the 

system state is a time-dependent vector of populations. For example, the populations could 

be numbers of molecules of different types in a biochemical simulation or populations of 

different species in an ecological model. The models’ populations change in time due to two 

primary mechanisms: discrete events and differential equations.

To demonstrate these mechanisms, consider the Michaelis-Menten reaction set (Michaelis 

and Menten, 1913)

R1:A + B k1 C
R2:C k2 A + B
R3:C k3 B + D .

(1)

Reaction set (1) describes the enzyme-catalyzed conversion of substrate “A” into product 

“D” via enzyme “B”. The model state is the vector of the N = 4 species’ populations 

X t = A t , B t , C t , D t . The populations evolve via M = 3 reactions, denoted Rj. For 

example, R1 describes the binding of a molecule of A and a molecule of B into the complex 

C. Here, ki are rate constants that influence the rate at which the reactions are occurring. 

A complete model description requires values for the rate constants and initial populations 

defined at time t = 0. We assume that reactions occur instantaneously.

Matthew et al. Page 3

Lett Biomath. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The reaction set in (1) can be be formulated using reaction rate equations, as follows:

dA
dt = − k1AB + k2C
dB
dt = − k1AB + k2C + k3C
dC
dt = k1AB − k2C − k3C
dD
dt = k3C .

(2)

The model in (2) is deterministic and treats the populations as continuous quantities. This 

ODE model is appropriate if the effect of stochastic fluctuations is relatively small, which 

will generally be the case if all of the species populations are sufficiently large.

Alternatively, the reaction set in (1) could be formulated as a discrete stochastic system, 

where the populations are discrete and the reactions are random events. In the discrete 

stochastic representation, the evolution of the system state is probabilistic and can be 

described by the Chemical Master Equation (CME) (Gillespie et al., 2013):

∂P X, t
∂t ∑

j = 1

M
aj X − vj P X − vj, t X0, t0 − aj X P X, t X0, t0 , (3)

where vj is the stoichiometry vector that describes how the state variable X t  changes 

when reaction Rj occurs (or fires), and aj is the propensity function that describes the rate 

at which Rj is firing. The CME is huge. It contains one equation for each possible value 

of the population X. Thus, it cannot be solved directly for most models (Munsky and 

Khammash, 2006). Instead of solving the CME directly, the common alternative approach is 

to approximate the solution using Monte Carlo simulation.

The Systems Biology Markup Language (SBML) provides a way to describe many 

biological models such as the reaction set in (1) (Hucka et al., 2003). SBML uses tags 
to describe the Species and Reactions in a model. Reactions are comprised of Reactants 
(species that are consumed) and Products (species that are produced) and a KineticLaw, 

which may use Parameters, to describe differential equation or discrete stochastic state 

changes. SBML also defines other mechanisms such as rate rules and events. Rate rules 

describe additional differential equation state-change mechanisms, and events are state 

changes that happen when a condition known as a trigger occurs. For the purposes of this 

work, we will follow the SBML nomenclature and use the terms “reaction”, “rate rule”, and 

“event” to refer to the various state-change mechanisms in biological models.

We note that SBML includes several features that we will not consider. In particular, SBML 

defines Compartment components that define the region in which the species populations 

exist. Compartments can be used to describe spatially inhomogeneous models by tracking 

separate species populations within each compartment and by treating “diffusion” as a 

reaction that transfers populations between compartments. However, such spatial models 

can benefit from additional geometry information that SBML does not currently provide 
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(however, an SBML spatial package is in development). Other modeling and simulation 

software is better suited to modeling systems that require detailed geometry information. In 

this work we consider only spatially homogeneous models.

2.2 Deterministic simulation

The theory for simulating ODE models is well established and mature (Ascher and Petzold, 

1998). Numerically solving an initial value problem involves starting with the initial state, 

evaluating the derivatives, and repeatedly simulating over small, finite time intervals until 

an end time is reached. Algorithms exist that use dynamic step size selection to efficiently 

approximate the true solution. These algorithms can generally be categorized as explicit 
or implicit. Implicit methods perform better on models that exhibit stiffness, which arises 

in models that contain multiple timescales, as is common in biological systems. There are 

algorithms and software that can detect the presence of stiffness and choose an appropriate 

algorithm automatically (Petzold, 1983).

GillesPy2 uses the LSODA method (Petzold, 1983) for deterministic simulation. We use 

the implementation from the SciPy Python package (Virtanen et al., 2020) for the Python 

solvers, and the implementation from the SUNDIALS package (Hindmarsh et al., 2005) 

for the solvers implemented in C++. In addition, the Python solvers provide options for 

selecting other methods implemented by the SciPy package, which we recommend only for 

advanced users.

2.3 Stochastic simulation

Gillespie’s Stochastic Simulation Algorithm (SSA) generates statistically exact samples 

from the CME (3) (Gillespie et al., 2013). However, there are many variants of the SSA. 

The assumptions underlying the CME, namely the Markovian assumption and the spatially 

homogeneous assumption, require that each reaction type fires according to an exponential 

distribution. The original SSA direct method was derived naturally from the joint density:

Pr τ, j X, t = aj X e−∑i = 1
M ai X τ, (4)

where Pr τ, j |X, t  is the probability that reaction Rj will fire in the infinitesimal interval 

t + τ, t + τ + dt . Any algorithm that produces samples of the next reaction time τ and next 

reaction index j from Eq. (4) can be used to generate samples of the CME. Therefore, the 

SSA is better viewed as a family of algorithms. Many algorithms have been proposed that 

use various data structures to achieve different performance and scaling properties (Gibson 

and Bruck, 2000; Slepoy et al., 2008; Ramaswamy et al., 2009; Mauch and Stalzer, 2011; 

Sanft and Othmer, 2015).

It is important to note that the time step size is not an algorithm parameter in the SSA. 

However, if the values of the propensities do not change much in a time step τ = Δt, then the 

number of firings of reaction Rj can be well approximated as a Poisson random variable with 

mean aj X τ. This approximation is the basis for the Tau-Leaping simulation algorithm:
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X t + τ = X t + ∑
j = 1

M
Poisson aj X τ vj, (5)

where each Poisson is an independent Poisson random number. In practice, the step size τ
is determined adaptively to control the error in the simulation (Gillespie, 1977; Cao et al., 

2006).

When the populations are sufficiently large such that the mean of all the Poisson random 

variables in (5) is large, then the Poisson random variables can be approximated as Normal 

random variables. If one makes this approximation and replaces the finite step size τ with the 

infinitesimal dt, the resulting algorithm is

X t + dt − X t = ∑
j = 1

M
N μ = aj X dt, σ = aj X dt vj, (6)

where each N μ, σ  is an independent Gaussian random variate (Gillespie et al., 2013). 

Equation (6) is a stochastic differential equation known as the Chemical Langevin Equation 
(CLE). The CLE is often written as:

dX = va X dt + v a X NM μ = 0, σ = I dt, (7)

where ν is the stoichiometric matrix, a X  is the vector of propensities, and NM is an 

M-dimensional normal random variable. In moving from Tau-Leaping to the CLE, the state 

X transitions from a discrete population to a continuous population. It is interesting to 

note that as the population X increases, the noise term becomes negligible and the CLE 

(7) approaches the reaction rate equation ODE, hence the ODE model arises in the large 

population (thermodynamic) limit of the discrete stochastic model (Kurtz, 1972).

2.4 Hybrid simulation

In this context we define hybrid modeling and simulation to be the simulation of a 

reaction system that includes both deterministic and stochastic components. This involves 

partitioning a model into two subsystems, where one is simulated deterministically and the 

other is simulated stochastically (Pahle, 2009; Helms et al., 2018). The partitioning can be 

based on the populations (i.e., large and small) or the reaction rates (i.e., fast and slow). 

Reactions that involve only large population species may be approximated as continuous, 

while reactions that fire less often or involve small population species can be simulated 

via an SSA variant or Tau-Leaping. With a hybrid model, one may gain computational 

performance while still capturing the stochasticity of the system (Ahmadian et al., 2017). On 

the other hand, hybrid simulation introduces computational overhead to maintain additional 

data structures, in which case the performance will typically be slower than specialized 

solvers for models that do not include both deterministic and stochastic components. In 

these situations, the benefit of hybrid simulation is to allow modelers more flexibility 

when defining their models by specifying whether a species should be simulated as only 

continuous, only discrete, or be able to switch between the two.
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3 The Tau-Hybrid Simulation Algorithm

Here, we introduce our novel Tau-Hybrid simulation algorithm, which is a hybrid of 

ODE deterministic simulation of continuous species and the Tau-Leaping (Gillespie, 2001) 

method for stochastic simulation of discrete species. The Tau-Hybrid algorithm features 

two methods for combining continuous and discrete simulation: the coupling of discrete 

and continuous species in a reaction network, and the automatic switching of a species 

from discrete to continuous (and vice versa). It is important to note that in the case where 

all of the propensities of the system are dependent only on discrete state variables (no 

time-dependent propensities, or continuous species), this method is statistically equivalent to 

Tau-Leaping (note, it is not the same method).

3.1 Simulation of a coupled discrete-continuous system

We will first discuss the combined simulation method for coupled discrete and continuous 

species in a reaction network. We partition the reactions and species of the system. 

Reactions are either part of the deterministic (det) or stochastic (stoch) sets, species S
are either continuous Sc ∈ ℝ0

+  or discrete Sd ∈ ℤ0
+ . We evolve the state of the system 

X t = S1, ..., SN  forward by continuously integrating the deterministic reactions and firing 

discontinuous jump events for the stochastic reactions. Reactions are deterministic if 

they consume and produce only continuous species, otherwise they are stochastic. The 

partitioning of the species as discrete or continuous can be done a priori by the modeler or 

automatically by the method (see next section).

We define the time evolution of the system due to the deterministic reactions as

d
dtSi = ∑

j

j ∈ det
vijaj X t , t (8)

for all continuous species i. Note that in this formulation we are allowing propensity 

functions to be explicitly dependent on time. For stochastic reactions, we need to find 

the firing time tj for all reactions j ∈ stocℎ. We find this using the integral form of the 

next-reaction SSA as described in (Salis and Kaznessis, 2005):

∫
t0

t0 + tj

aj X t′ , t′ dt′ + log URN = 0, (9)

where t0 is the current time and URN is an independent uniform random number 

URN ∈ 0, 1 . Note that in the case where aj X, t  is constant over the interval t0, t0 + tj

(i.e., discrete stochastic systems), this is simplified to: tj = −log URN
aj X + t0, which is the time 

to the next reaction in the SSA method (Gillespie, 1976). Following the method in (Salis 

and Kaznessis, 2005) for solving (9), we define an indicator variable rj for each reaction 

j ∈ stocℎ. We forward integrate these variables to find the time tj at which rj = 0, which is 

the time at which the reaction fires. We do this by converting (9) to a differential equation 

initialized by an independent uniform random number:
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d
dtrj = aj X, t rj t = t0 = log URN . (10)

Note rj will always start negative since log URN < 0, and rj is monotonically increasing 

since aj > = 0. The time at which rj crosses zero is then a statistically exact sample of 

the firing time of reaction j for a jump process with time-varying intensity aj X, t . If the 

numerical method used is an ODE solver to integrate (8) and (10) simultaneously, and using 

a root-finder to determine the reaction event times, we then have the hybrid ODE-SSA 

method as described in (Salis and Kaznessis, 2005).

However, integrating (8) and (10) with root-finding to find the reaction event times is 

quite computationally expensive. Following the idea from Tau-Leaping that tolerating a 

small amount of error can result in a large computational gain, instead of using root 

finding to determine the time of each reaction event, we take larger simulation steps by 

aggregating multiple firings of each stochastic reaction channel into a single event. All 

stochastic reaction channel firing events are processed at the end of each time step τ. Over 

the time period t, t + τ , deterministic reactions evolve the system using (8), and the reaction 

indicator variables rj evolve using (10) (however, the rj variables may now have positive 

values). At the end of each time step τ we examine each rj. If it is positive, we determine the 

number of reaction events that have fired in the time step by finding the smallest number n
such that

arg min
n

rj + ∑
1

n
log URN < 0, (11)

i.e., the sum of the log of n samples of URN until the value of rj becomes negative. Since 

the initial condition (10) after each firing is log URN , and we assume that aj X, t  is constant 

over t, t + τ , Eq. (11) can be efficiently implemented using the Poisson distribution:

n = 1 + Poisson rj , (12)

for all reaction indicators rj that are positive at the end of an integration step. Once we 

know that reaction j has fired n times, we update the state: X + = n νj, and then re-initialize 

rj = log URN . In this way, the simulation continues time-discontinuously, integrating (8) 

and (10) from t to t + τ and using (12) to update the state of the system at the end of the step. 

We call this hybrid Tau-Leaping/ODE simulation method the Tau-Hybrid Algorithm.

Figure 2 shows a visual representation of a simulation using the Tau-Hybrid algorithm. The 

populations of the two species are shown, along with the values of the reaction indicator 

variables. Note that the value of r3 moves in straight lines between the discontinuous jumps 

that arise due to stochastic reactions firing. This is due to the propensity function being 

constant. In contrast, the value of r1 moves in curved lines, with a positive second derivative. 

This is because the propensity function a1 X  depends on the population of A, which is 

continuously increasing. In this example, the value of r2 is ignored, as it is a deterministic 
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reaction. Thus, the value of A changes continuously using the ODE integration over the step 

t, t + τ , and then discontinuously (discretely) at the end of each step.

3.2 Automatic switching between discrete and continuous species

Gillespie described how the different simulation regimes (e.g., stochastic vs. deterministic) 

relate to each other, and the assumptions at each level in Gillespie (2009). Using this 

as a foundation, we make the observation that for many discrete stochastic systems, it is 

important to keep track of the exact stochastic variations when the populations are relatively 

low. However, when the population of a discrete species is high, and the stochastic variation 

from the mean field trajectory is low, we can utilize the law of large number assumption and 

transition the discrete species into a continuous species with minimal loss of accuracy in the 

solution.

The Tau-Hybrid algorithm has two different methods for detecting when a species should be 

switched between discrete and continuous. The first is a simple population threshold value, 

where above this threshold the species is considered continuous and below the threshold 

the species is considered discrete. The second method uses the relative noise in the species 

simulation trajectory to determine whether the stochastic variation about the mean is more or 

less than an error tolerance. For this calculation we use an approximation of the coefficient 

of variation CV = σ/μ, where σ and μ are the standard deviation and mean value respectively. 

Related auxiliary quantities σ and μ are approximated as part of the τ step size selection step 

outlined above, and as defined in (Cao et al., 2006), thus we use

μi = − ∑
j

M
∑

k

N
aj X ∗ Reactants k, j + ∑

j

M
∑

k

N
aj X ∗ Products k, j (13)

σi
2 = − ∑

j

M
∑

k

N
aj X ∗ Reactants k, j 2 + ∑

j

M
∑

k

N
aj X ∗ Products k, j 2

(14)

CV i = σi
2/ Si + μi (15)

where Reactants k, j  is the number of species k that are consumed by reaction j (i.e., 2 for 

a bimolecular reaction, 0 if not involved). Similarly, Products k, j  is the number of species 

k that are produced by reaction j. If CV i for species Si is less than the specified per-species 

tolerance, we mark the species continuous. We then examine each reaction j. If all of the 

reactants and products are marked as continuous then the reaction is marked deterministic, 

otherwise it is marked stochastic.

We also use the values from (13) and (14) in our implementation of the τ step size selection 

method (Cao et al., 2006)

τ = min
i ∈ Reactants

max εiSi, 1
μi

, max εiSi, 1 2

σi
2 (16)
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where Reactants is all species k where Reactants k, j > 0 for any reaction j, and ε is the 

error control parameter. We refer the reader to (Cao et al., 2006) for the complete derivation.

In the implementation of the τ step size selection method (Cao et al., 2006), to prevent 

species from going negative it is sometimes necessary to take a single SSA step (Step 9 in 

Algorithm 1). In our implementation, we check to see if any species are negative after all 

stochastic reactions have been processed for a given step. If a negative state is detected, then 

the system is restored to the state prior to the step and a new τ and the reaction j′ to fire is 

determined using the next-reaction SSA methodology by calculating

τj = −rj t
aj X t , t (17)

j′ = arg min
j

τj (18)

for all j ∈ stocℎ. Using (18) we find j′, integrate the ODE system over t, t + τj′ , then fire a 

single j′ reaction. A complete description of the methods is given in Algorithm 1.

Algorithm 1:Hybrid Tau − Leaping algorithm (hybrid of ODE and Tau − Leaping)
1: Initialize state X t = 0 and each rj = log URN
2: while current time < simulation end time do
3: Evaluate propensities aj X at current state .
4: Find μi, σi   & CV i for each species as in Eqs . (13) – (15) .
5:   Select the step size τ according to Eq . 16 .
6:   Identify continuous/discrete species and deterministic/stochastic reaction sets .
7: Integrate stochastic reaction indicator variables rj, and deterministic species from t to t + τ using Eqs . 8 and 10 .
8: Update state based on number of stochastic reaction firings using Eq . 12 .
9: if no species have a negative population then
10:             Store state X t + τ = X, t = t + τ
11:   else
12:             Reset state X = X t , the state at the beginning of the step .
13:             Using 17 and 18 , Update state by firing a single j′ reaction:X t + τj′   = vj′ + X t , and set t = t + τj′ .
14:     end if
15: end while

4 GillesPy2 Design and Implementation

GillesPy2 is a Python 3 package that uses an object-oriented approach that provides 

an intuitive API for working with models, simulations, and results. In object oriented 

programming, classes describe the components of an object. GillesPy2 users create and 

manipulate objects via well documented methods (or “functions”). The primary classes in 

GillesPy2 are the Model, Solver, and Results classes, which are described in the subsections 

below.
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4.1 Model class

A Model object consists of three primary components: species, parameters, and reactions. A 

GillesPy2 user can build a model by creating Species, Parameter, and Reaction objects and 

adding them to a Model object. This process is best described via a concrete example.

Consider the Michaelis-Menten reaction set from Eq. (1). A user can create the Species 

objects with the following simple Python 3 code snippet:

A = Species(name="A", initial_value=301)

B = Species(name="B", initial_value=120)

C = Species(name="C", initial_value=0)

D = Species(name="D", initial_value=0)

Similarly, one can define Parameters:

rate1 = Parameter(name="rate1", expression=0.0017)

rate2 = Parameter(name="rate2", expression=0.5

rate3 = Parameter(name="rate3", expression=0.1)

Species and Parameters are used to build the Reaction objects:

r1 = Reaction(name="r1", reactants={A: 1, B: 1}, products={C: 1}, rate=rate1)

r2 = Reaction(name="r2", reactants={C: 1}, products={A: 1, B: 1}, rate=rate2)

r3 = Reaction(name="r3", reactants={C: 1}, products={B: 1 , D: 1}, 

rate=rate3)

A user can then instantiate a Model object and add the Species, Parameters, and Reactions 

components to it:

michaelis_menten = Model()

michaelis_menten.add_species([A, B, C, D])

michaelis_menten.add_parameter([rate1, rate2, rate3])

michaelis_menten.add_reaction([r1, r2, r3])

Finally, to facilitate simulation, we define a TimeSpan that specifies the time points at which 

to keep data from a simulation:

michaelis_menten.timespan(TimeSpan(numpy.linspace(0, 100, 101)))

GillesPy2 models can include several additional features of the SBML Level 3 standard 

(Hucka et al., 2003), including rate rules, assignment rules, function definitions, and events.

4.2 Solvers

The base class for all GillesPy2 simulation algorithms is GillesPySolver, which provides an 

abstract “run” method that all subclasses (“Solvers”) must implement. However, GillesPy2 

users are not required to have knowledge of particular Solvers or algorithms in order to 
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run a simulation. GillesPy2 intelligently uses the properties of the Model and the user’s 

system to automatically select the appropriate Solver. Therefore, running a simulation of the 

Michaelis-Menten model defined above is as simple as:

results = michaelis_menten.run()

The above code will run a single stochastic simulation (or trajectory) using the SSA. To run 

an ensemble of several trajectories the code is:

results = michaelis_menten.run(number_of_trajectories=20)

The above code will generate a Results object containing simulation data similar to that 

shown in Figure 1(B).

GillesPy2 includes Solver classes for the SSA, Tau-Leaping, ODE, CLE, and Tau-Hybrid 

algorithms. Specifically, the SSA uses the direct method (Gillespie, 1977), Tau-Leaping uses 

the adaptive step-size algorithm from (Cao et al., 2006), ODE uses Sundials (Hindmarsh 

et al., 2005) or SciPy.integrate’s ode function (Virtanen et al., 2020), CLE uses an Euler-

Maruyama method (McCauley, 2013) with dynamic step size chosen as in the Tau-Leaping 

method, and the Tau-Hybrid is implemented as described in Section 3. The default algorithm 

when a user calls the run() method will be the SSA unless the model includes Species 

designated as “dynamic” or “continuous” or if the model contains one or more of the 

following SBML features: rate rules, events, assignment rules, or function definitions, in 

which case the selected algorithm will be the Tau-Hybrid. The user can also manually select 

an algorithm, for example:

results = michaelis_menten.run(algorithm="Tau-Leaping")

Each algorithm (except the CLE) is implemented in two Solver classes, one written in 

Python and one written in C++. The rationale is that code written in C++, a compiled 

language, is faster than Python code. However, running C++ code requires a compiler. 

Therefore, GillesPy2, when selecting the particular Solver for a given algorithm, checks for 

an available C++ compiler and uses the C++ Solver if a compiler is accessible, otherwise it 

uses the Python implementation. A list of the available Solvers is shown in Table 1.

Users can override the default by instantiating a Solver object directly to have total control 

over the Solver. For example, a user with a C++ compiler could manually choose to use the 

Python SSA implementation to run an ensemble of the Michaelis-Menten model:

python_ssa = NumPySSASolver(model=michaelis_menten)

results = python_ssa.run(number_of_trajectories=20)

4.3 Simulation output and visualization

The GillesPy2 Solvers’ simulations return a Results object. A Results object contains a 

Python list of Trajectory objects, where each Trajectory contains a Python dictionary of the 

time array specified by the model’s timespan object and an array of values corresponding 
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to those time points for each Species in the Model. The Results object is convenient for 

conducting analysis directly in Python.

The Results class provides several methods to facilitate common analysis tasks, including 

plotting and generating descriptive statistics. To plot a Results object, the syntax is:

results.plot()

If the results variable contained an SSA ensemble from the Michaelis-Menten model, 

the above statement will generate a plot similar to that in Figure 1(B). The default 

plot method uses the Python Matplotlib (Hunter, 2007) library. Users can generate a 

Plotly (Plotly Technologies Inc., 2015) graph with the plotplotly method. The methods 

average_ensemble and stddev_ensemble create a Trajectory object containing the means and 

standard deviations, respectively. The methods plot_mean_stdev and plotplotly_mean_stdev 

compute these statistics and plot them in a single call. Finally, users can export their Results 

by writing them to a file using the to_csv method.

5 Examples

In the following examples, we will look at the process of creating, simulating, 

and visualizing models with GillesPy2. All of the examples demonstrate the core 

benefit of GillesPy2’s object-oriented implementation: that of compartmentalization. 

Compartmentalization makes GillesPy2 easy to use by splitting the composition of a 

model into separate “building blocks”. Section 5.1 demonstrates the core components 

of a GillesPy2 model, Section 5.2 demonstrates events using an epidemic model, and 

the photosynthesis model in Section 5.3 demonstrates GillesPy2’s hybrid solver. All of 

the examples in this section are available in notebooks posted here: https://github.com/

GillesPy2/GillesPy2_paper.

5.1 Predator-prey model

Lotka-Volterra models are a class of predator prey models often represented as ODEs 

(Lotka, 1920; Volterra, 1926). For example, the following set of ODEs can be used to 

described the population dynamics of a predator F  and prey R (e.g., foxes and rabbits):

dF
dt = k2FR − k3F
dR
dt = − k2FR + k1 .

(19)

These ODEs can be converted into mechanistic reaction format:

R1: ∅ k1 R
R2:F + R k2 2F
R3:F k3 ∅ ,

(20)
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where the empty set symbol is used when there are no reactants or products. In GillesPy2, 

these reactions are described with the following code:

R1 = Reaction (reactants={}, products={R: 1}, rate=k1

R2 = Reaction(reactants={R: 1, F: 1}, products={F: 2}, rate=k2)

R3 = Reaction(reactants={F: 1}, products={}, rate =k3)

For the parameter set k1 = 10, k2 = 0.01, k3 = 10, the ODE model has an equilibrium point at 

F = 1000, R = 1000 (see Figure 3(B)). For non-zero populations away from the equilibrium 

point, the ODE system exhibits oscillations, as seen in Figure 3(A). Simulated stochastically, 

an initial population at the ODE equilibrium F = 1000, R = 1000  does not remain constant, 

as stochasticity pushes the system away from equilibrium and the system exhibits noisy 

oscillations as seen in Figure 3(C).

5.2 Epidemic model with events

Next we consider a variation of the standard SEIR epidemic model inspired by the early 

Covid-19 pandemic (Jiang et al., 2021). The species S, E, and R correspond to susceptible, 

exposed, and recovered individuals, respectively. The total infected population is split into 

two categories: I1 and I2 corresponding to asymptomatic and symptomatic, respectively. 

Population C are individuals who were silently cleared, meaning they were infected but 

never became symptomatic. Finally, D is the number of deaths. The basic reaction set is as 

follows:

R1:S + I1
ke I1 + E

R2:S + I2
ke I1 + I2

R3:E ki I1

R4:I1
kp I2

R5:I1
kS C

R6:I2
kr R

R7:I2
kd D .

(21)

In this example we consider the effect of a societal “lockdown” to reduce virus transmission, 

as was common in the early months of the Covid-19 pandemic. To model a lockdown, we 

introduce two events. The first event triggers at time t = 20 and modifies parameter ke by a 

value q between 0 and 1 corresponding to the reduction in exposure due to the lockdown. 

The second event ends the lockdown at t = 70 by modifying parameter ke by a value between 

q and 1, where a value of 1 would simulate the population fully returning to pre-lockdown 

behaviors. An Event object is composed of an EventTrigger and an EventAssignment object. 

For example, the first event is added to the model as follows:

e1trigger = EventTrigger(expression="t >=20")

e1action = EventAssignment(variable=self.listOfParameters["k_e"], 

expression="q∗k_e0")
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lockdown = Event(name="lockdown_start", trigger=e1trigger, 

assignments=[e1action])

self.add_event(lockdown)

Here “k_e0” is the nominal value of ke. The Event’s trigger will become true at t = 20, 

then the EventAssignment will be executed. The Event for ending the lockdown is defined 

similarly. This model was used to create part (C) in Figure 1.

5.3 Hybrid simulation of photosynthesis

To demonstrate the Tau-Hybrid solver, we have created an example model of photosynthesis 

based on (Whitmarsh and Covindjee, 1999). This model demonstrates the two major features 

of the Tau-Hybrid solver. The first feature is the ability to couple stochastic reactions 

to continuously changing variables. In this model, a RateRule is assigned to the variable 

“photons” to set its continuous value based on a derivative proportional to sin tπ/12  to 

mimic the daily cycle of the sun. The domain of interest is a cell of a plant, though we do 

not explicitly model this. Instead, we simulate the diffusion of carbon dioxide, water, and 

oxygen into and out of the cell using purely deterministic reactions, with the steady-state 

being the initial condition of those quantities. The second feature we illustrate with this 

model is the ability for a reaction to be simulated stochastically at low populations and 

automatically switch the reaction to a continuous mode when the relative noise of the 

reactants and products falls below the threshold level. In this case, we have specified that the 

variable representing the carbohydrates in the model will switch when its relative noise is 

less than the default threshold of 0.03, using the following code:

Species(name="Carbohydrate", initial_value=0, mode="dynamic")

Alternatively, switching behavior can also be specified by a minimum population level 

parameter that changes the type from continuous to discrete when the species population 

drops below the specified threshold.

Figure 4 shows the results of the simulation of this model. The photons (green) change 

continuously with time. The carbohydrates (red) increase when Photons are high, and 

change discretely (taking only integer values) until t ≈ 17. Each reaction event can be seen 

as a step increase in this variable. After t ≈ 17, the Carbohydrates variable is simulated 

deterministically, and thus has smooth changes, though the qualitative behavior remains 

the same. Carbon dioxide (blue) and water (orange) are consumed in the photosynthesis 

reaction and oxygen (purple) is produced. Before t ≈ 17 discontinuous jumps in their values 

correspond to reaction events. During this same time, the deterministic diffusion in/out 

reaction also changes the values continuously between reaction events.

This example demonstrates that the Tau-Hybrid solver allows the modeler to couple 

stochastic reactions with deterministic reactions and continuously time-varying inputs. It 

allows the modeler to specify whether a set of reactions should be stochastic, deterministic, 

or to switch between the two options based on specified thresholds. These features are 

applicable to a large class of models, as it is important to capture stochastic dynamics, 
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however it is difficult to a priori determine which species and which reactions need to 

be simulated discretely, and which ones can be accurately simulated deterministically. 

GillesPy2’s Tau-Hybrid solver switches between these two modes automatically, giving the 

modeler an accurate and efficient simulation without requiring any extra knowledge.

6 Discussion

6.1 Performance

In GillesPy2 we provide a variety of solvers to our users, so that we may address as 

many different computational requirements as possible. GillesPy2 includes logic to choose 

the correct solver for the user automatically, by inspecting the features used in the 

model construction and testing if the C++ solver can be used in the current computation 

environment. This logic is contained in the “get_best_solver()” method. This method will 

return a C++ implementation over the Python counterpart, if supported. It will inspect 

the model for any advanced features (e.g., Event, Assignment Rules, Rate Rules, or 

Function Definitions) and returns the Tau-Hybrid solver if so, otherwise it returns the SSA 

Solver. These heuristics are appropriate for many situations, however we suggest that our 

users specify the solver that most closely fits their computational situation to maximize 

productivity. The SSA solvers have been optimized for performance in simulating stochastic 

systems, and as such does not support as many features. The ODE solvers have similarly for 

deterministic systems. However, the Tau-Hybrid solvers have been developed to simulate the 

most complex biochemical models by simultaneously solving ODE and SSA systems, thus it 

must do more work than either of them alone.

Understanding all of the performance characteristics of a simulation is a complex and 

multifaceted endeavor. To assist our readers in understanding the performance of GillesPy2, 

we present three analyses. In Figure 5, we compare the performance of the SSA, Tau-

Hybrid, Tau-Leaping, and ODE solvers as a function of increasing system size by increasing 

the steady-state population, X0
∗   = X t = 0 , in the birth-death model where ∅ X at rate 

k ∗ X0
∗, and X ∅ at rate k (e.g., a1 X = k ∗ X0

∗ and a2 X = k ∗ X). Both the C++ (A) and 

Python (B) implementations are analyzed. In Figure 6 we show separately total time (in 

A), initialization and compilation time (in B), and simulation run time (in C) as a function 

of the number of simulated trajectories. We see that in some fast-running simulations, 

the compilation time dominates the total time. In Table 2 we compare a set of common 

biochemical models with the GillesPy2 solvers, and additionally show the time for the 

simulation with StochKit2 (Sanft et al., 2011), for external comparison. Some entries are 

marked “N/A” if the solver does not possess the capabilities to correctly simulate the model. 

The models compared are: Decay S ∅ , S 0 = 100 , Dimerization 2S1 S2, S1 0 = 30 , 

Michaelis-Menten (Michaelis and Menten, 1913), Genetic Toggle Switch (Gardner et al., 

2000), Tyson 2-state Oscillator (Tyson, 1991), Vilar Oscillator (Vilar et al., 2002), a Multi-

Event model (a test model with events), and an All-SBML-Features model (a test model that 

includes all supported SBML features: Event, Assignment Rules, Rate Rules, and Function 

Definitions).
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6.2 Availability

GillesPy2 is open source software, available under the GNU General Public License 

(Version 3) (https://github.com/GillesPy2/GillesPy2/blob/main/LICENSE). Like many 

Python 3 packages, stable versions of GillesPy2 can be installed from PyPI via the 

Python “pip” command. It is also available on conda-forge.org for those using the Conda 

package manager. The source code and documentation can be downloaded from http://

www.github.com/gillespy2/gillespy2. Users are encouraged to report bugs and request new 

features through the github repository’s web interface.

GillesPy2 is part of the StochSS ecosystem (Drawert et al., 2016). The StochSS organization 

encompasses multiple projects, including: StochSS Live (Jiang et al., 2021), SCIOPE 

(Scalable inference, optimization and parameter exploration) (Singh et al., 2020), and 

SpatialPy. GillesPy2 is the engine for all spatially homogeneous modeling and simulation 

services in StochSS. Through StochSS live, a Software-as-a-Service platform, users can 

create, simulate, and analyze models in a web browser.

7 Conclusion

GillesPy2 is an open source Python 3 package that provides biological modelers a set of 

user-friendly tools to facilitate their workflows. GillesPy2’s object-oriented design allows 

users to build, simulate, analyze, and improve their models using an intuitive set of classes 

and methods. The core solvers are written in C++ and Python for high performance and 

accessibility. The novel Tau-Hybrid implementation is compatible with several SBML 

model features, including events and rate rules. Additionally, GillesPy2 works well with 

Jupyter notebooks, facilitating open and reproducible science. In fact, all of the examples 

and code in this paper are available in notebooks posted at https://github.com/GillesPy2/

GillesPy2_paper. All figures and data in this paper are based on GillesPy2 version 1.7.0.

For biological modelers who would like to use GillesPy2, a great place to start is the 

“Start_Here.ipynb” Jupyter notebook in the GillesPy2/examples folder. Users can start with 

a provided working example and then modify the code to develop their own model. The 

examples folder contains additional notebooks that showcase several different biochemical 

models and notebooks that demonstrate many GillesPy2 features. Users can also consult the 

extensive documentation on the web at https://gillespy2.readthedocs.io/. The documentation 

provides everything from a “Basic usage” page that walks through the basic workflow, 

to a complete API reference of all GillesPy2 classes and public methods. Through the user-

friendly API, example notebooks, and extensive documentation, users can progress quickly 

from GillesPy2 beginners to experts who can utilize the powerful range of biochemical 

modeling, simulation, and analysis tools that are available in GillesPy2.
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Figure 1: 
(A) Diagram representing the GillesPy2 workflow, and the three major components: Model, 

Simulation, and Result. (B) Simulation of the classic Michaelis-Menten model (Michaelis 

and Menten, 1913). (C) Simulation of Covid-19 infections in a population with lockdown 

and re-opening events. (D) Simulation of a discrete stochastic birth-death process coupled 

to a time-varying continuous variable. Visualizations of simulations were all performed with 

GillesPy2.
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Figure 2: 
Visualization of the Tau-Hybrid simulation of a coupled discrete-continuous system. The 

model features three reactions: R1:A + B ∅, R2: ∅ A, R3: ∅ B. The values of the 

reaction indicator variables, r1, r2, and r3 are shown along with the populations of species A, 

which is set to be continuous, and species B, which is set to be discrete. The population of 

B changes discretely when r1 or r3 fire, which occurs when their value crosses the y   =   0
axis and becomes positive. We then use (11) to determine the number of times the reaction is 

fired and then reset the reaction indicator value to log URN  (a negative value). The reaction 

R2 is simulated as deterministic because it depends only on species marked as continuous. 

Therefore, the indicator variable r2 is ignored and the population of A changes continuously. 

The population of A also changes discretely when R1 fires. The simulation τ step size is 

calculated adaptively, and the state of the simulation is sampled for output every 0.1 time 

units. All other options use the defaults (e.g., LSODA integrator).
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Figure 3: 
Simulations of the Predator-Prey model, as defined in (19) and (20). (A) deterministic 

(ODE) simulation from a non-equilibrium initial condition. (B) deterministic (ODE) 

simulation from the equilibrium initial condition. Note that the values never change. (C) 

stochastic simulation from the ODE equilibrium initial condition.
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Figure 4: 
An example model showing hybrid ODE/SSA simulation. This model of photosynthesis, 

adapted from Whitmarsh and Covindjee (1999), couples an external time-varying input 

(sunlight, green) with a reaction network. Diffusion in and out of the volume of interest 

is simulated deterministically, while the reaction that creates sugars (carbohydrates, red) 

is stochastic when the population of carbohydrates is low (time < 17) and switches to 

deterministic after time ≈ 17 because the calculated noise crosses below the tolerance 

threshold.
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Figure 5: 
Comparison of solver performance for SSA, Tau-Hybrid, Tau-Leaping, and ODE solvers, 

for both the C++ implementations (A) and Python implementations (B). Performance is 

measured using a birth-death model across a range of steady-state conditions. This shows 

how performance of each solver changes as the system size increases. Note that the C++ 

solvers are significantly faster than the Python implementations, thus we compare them 

separately. Also note that the Tau-Leaping and Tau-Hybrid solvers are nearly flat with 

respect to system size, as expected since their performance scales with number of reaction 

channels. This is in contrast to the SSA which scales linearly with population size.
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Figure 6: 
Performance analysis of GillesPy2 running the Vilar Oscillator (Vilar et al., 2002) model, 

showing (A) Total simulation time, (B) Compile time, and (C) Run time versus number of 

trajectories. Note that for the C++ solvers (solid lines), the compile time is a large fraction of 

the total time for fast-running simulations. The C++ solvers are all faster than their Python 

counterparts (dashed lines), however the relatively large compile time must be taken into 

account when considering the performance trade-offs of each solver.
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Table 1:

List of available Solvers in GillesPy2 as of version 1.7.0.

Algorithm Implementation / Reference Class Name Language Advanced Features

SSA Direct Method / Gillespie, 1977 NumPySSASolver Python

SSA Direct Method / Gillespie, 1977 SSACSolver C++

Tau-Leaping Cao et al., 2006 TauLeapingSolver Python

Tau-Leaping Cao et al., 2006 TauLeapingCSolver C++

ODE LSODA∗ / Petzold, 1983 ODESolver Python∗

ODE LSODA∗ / Petzold, 1983 ODECSolver C++∗

CLE Euler-Maruyama / McCauley, 2013 CLESolver Python

Tau-Hybrid see Section 3 TauHybridSolver Python Event, RateRule, AssignmentRule, 
FunctionDefinition

Tau-Hybrid see Section 3 TauHybridCSolver C++ Event, RateRule

∗
The ODE solvers are wrappers to SciPy (Virtanen et al., 2020) (Python) and SUNDIALS (Hindmarsh et al., 2005) (C++) solvers. The ODE 

solvers use LSODA by default but other integrators can be chosen.
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Table 2:

Total simulation time (in seconds) comparison for GillesPy2 Solvers and StochKit2 (Sanft et al., 2011) for 

popular biochemical models. Times reported are the total time (compile + simulation) for a single trajectory. 

See Figure 6 for an example of performance versus ensemble size.

Model SSA SSA C++ Tau-Hybrid Tau-Hybrid C+
+ Tau-Leaping Tau-Leaping C+

+ StochKit2 (SSA)

Decay 0.00312 3.893 0.0610 16.292 0.00605 8.015 0.0406

Dimerization 0.00338 3.829 0.125 13.464 0.0132 7.493 0.0764

Michaelis-Menten 0.0654 4.573 0.797 17.010 0.0711 7.861 0.0743

Genetic Toggle Switch 0.0876 3.085 1.457 16.22 0.0885 6.800 7.623

Tyson 2-state Oscillator 21.16 3.164 303.1 14.29 22.16 6.807 6.984

Vilar Oscillator 15.29 3.167 299.5 14.42 31.72 8.301 0.223

Multi-Event model N/A N/A 0.246 16.22 N/A N/A N/A

SBML features model N/A N/A 0.586 N/A N/A N/A N/A
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