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In Brief
The in-depth proteomic
platform quantifies more than
1000 proteins and classifies the
DLBCL patients into four
subtypes with distinct prognosis.
Among signature proteins of
PS-IV subtype with the worst
prognosis, TIMP-1 was identified
to be associated with poor
prognosis and validated in two
independent cohorts, which may
help improve the prognostic
ability of the IPI score for
R-CHOP treatment.
Highlights

• Proteomic platform combining DIA-MS and antibody array quantifies 1000+ plasma proteins.

• Plasma proteome classifies DLBCL into four subtypes with different prognosis.

• High TIMP-1 level shint poor prognosis, could complement IPI score for risk stratification.
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RESEARCH
Proteomics Identifies Circulating TIMP-1 as a
Prognostic Biomarker for Diffuse Large B-Cell
Lymphoma
Ning Lou1,‡ , Guibin Wang2,‡, Yanrong Wang3,‡, Meng Xu2, Yu Zhou3, Qiaoyun Tan3,
Qiaofeng Zhong3, Lei Zhang3, Xiaomei Zhang2, Shuxia Liu1, Rongrong Luo1,
Shasha Wang1, Le Tang3, Jiarui Yao3, Zhishang Zhang3, Yuankai Shi3,*, Xiaobo Yu2,*, and
Xiaohong Han4,*
Diffuse large B-cell lymphoma (DLBCL) is a heteroge- serum lactate dehydrogenase concentration, performance

neous disease, although disease stratification using in-
depth plasma proteomics has not been performed to
date. By measuring more than 1000 proteins in the plasma
of 147 DLBCL patients using data-independent acquisition
mass spectrometry and antibody array, DLBCL patients
were classified into four proteomic subtypes (PS-I-IV).
Patients with the PS-IV subtype and worst prognosis had
increased levels of proteins involved in inflammation,
including a high expression of metalloproteinase inhibitor-
1 (TIMP-1) that was associated with poor survival across
two validation cohorts (n = 180). Notably, the combination
of TIMP-1 with the international prognostic index (IPI)
identified 64.00% to 88.24% of relapsed and 65.00% to
80.49% of deceased patients in the discovery and two
validation cohorts, which represents a 24.00% to 41.67%
and 20.00% to 31.70% improvement compared to the IPI
score alone, respectively. Taken together, we demon-
strate that DLBCL heterogeneity is reflected in the plasma
proteome and that TIMP-1, together with the IPI, could
improve the prognostic stratification of patients.

Diffuse large B-cell lymphoma (DLBCL) is the most common
type of non-Hodgkin lymphoma, which is highly heteroge-
neous and accounts for the majority of newly diagnosed non-
Hodgkin lymphoma cases in the United States and China (1,
2). Currently, the international prognostic index (IPI) is imple-
mented widely in the clinic to predict 5-year overall survival
(OS). This scoring system based on age, Ann Arbor stage,
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status, and the number of extranodal disease sites is sepa-
rated into four risk categories: low (IPI = 0–1; 5-year OS =
73%), low intermediate (IPI = 2; 5-year OS = 51%), high in-
termediate (IPI = 3; 5-year OS = 43%), and high (IPI = 4–5; 5-
year OS = 26%). In the last 20 years, significant efforts have
been made to decode the molecular heterogeneity of DLBCL
using genomics and transcriptomics and to develop new
methods to predict clinical outcomes (3–8).
In 2000, Alizadeh et al. analyzed the gene expression of

lymphocyte subpopulations in 96 patients with DLBCL using
DNA microarrays. Two DLBCL molecular subtypes were identi-
fied, which included a germinal-center B-cell-like (GCB) subtype
that resulted in a better prognosis than the activated B-cell-like
subtype (3). Using the same technology to analyze 240 DLBCL
patients, Rosenwald et al. (6) identified three disease subtypes,
including GCB, activated B-cell-like, and type 3 diffuse large B-
cell lymphoma (type 3). The GCB subtype, which contains
oncogenic BCL-2 translocation and c-REL amplification, was
associated with the highest 5-year survival rate. Finally, a 17-
gene signature independent of the IPI was developed to predict
the prognosis of DLBCL patients after chemotherapy.
In 2020, Wright et al. developed a LymphGen algorithm that

classified DLBCL patients into seven genetic subtypes using
genomic and transcriptomic data from three sample cohorts
(National Cancer Institute; Harvard Medical School; BC Cancer
Agency) (4, 7, 9). Interestingly, the EZB subtype that had highly
expressed genes related to B-cell differentiation was associated
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Proteomics reveals new DLBCL prognosis stratification system
with a good prognosis. In contrast, the N1 subtype with highly
expressed genes involved in oncogenic signaling pathways and
tumormicroenvironmentwas associatedwith aworse prognosis
(8). These results highlight the value of genomics and tran-
scriptomics in identifying patients who would benefit the most
from the R-CHOP (rituximab plus cyclophosphamide, doxoru-
bicin, vincristine, and prednisone) treatment regimen. However,
previous studies of molecular subtypes using complementary
DNA microarrays and whole exome sequencing are time-
consuming (~11–16 weeks) (10), and the availability of suffi-
cient fresh tissue for RNA extraction was difficult.
To address this issue, Hans et al. (5) successfully repro-

duced the classification of GCB and non-GCB subtypes by
immunostaining five proteins (CD10, BCL-6, MUM1, cyclin D2,
BCL-2) in 152 DLBCL patients. Their work demonstrates the
possibility of using immunostaining to classify DLBCL and
predict patient outcomes. The above classification methods
are summarized in supplemental Table S1. While Hans clas-
sification system using immunostaining is easier (5), it is
expensive, not reproducible across laboratories, and not
commercially available (11). Thus, a new classification system
that is accurate and easy to use is needed.
Plasma (or serum) contains thousands of circulating pro-

teins that are produced by different organs and play important
roles in modulating humoral immunity, inflammation,
The reagents and tool

Reagent/resource Refe

Experimental models
Blood plasma samples (Homo sapiens) This study

Chemicals, enzymes, and other reagents
NHS-PEG4-Biotin Thermo Fisher Sc
Urea Sigma-Aldrich
DTT Sigma-Aldrich
Iodoacetamide (IAA) Sigma-Aldrich
Formic acid Sigma-Aldrich
Trypsin Promega
Acetonitrile Thermo Fisher Sc
Water, LC/MS Grade Thermo Fisher Sc

Software
GenePixPro7 Molecular Device
Spectronaut pulsar × 12.0 Biognosys
Human FASTA database https://www.unip
R(4.0.2) https://www.R-pr
PANTHER database http://pantherdb.o
Omicsbean http://www.omics
Cytoscape (3.7.2) http://www.cytos
ClueGO https://apps.cytos
Cytohubba https://apps.cytos
STRING https://cn.string-d
Hiplot https://hiplot.com
Real Statistics Using Excel https://www.real-

tests/mann-whitn
Other

Genepix 4300A microarray scanner Molecular Device
Thermo Q Exactive HF mass spectrometer Thermo Fisher Sc
Eppendorf refrigerated centrifuge Eppendorf
PGAM1 ELISA Kit mlbio
ENO1 ELISA Kit mlbio
TIMP-1 ELISA Kit Sino Biological
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coagulation, and metabolism. Moreover, the expression
changes of plasma proteins reflect the dynamism of human
physiology and pathology. As such, the comprehensive
profiling of plasma proteome is valuable in elucidating disease
mechanisms, identifying potential biomarkers for diagnosing
disease, and monitoring the response to treatment (12–15).
In thiswork,wesystematically characterizedDLBCLmolecular

heterogeneity of 147 DLBCL patients and 79 healthy controls
(HCs) by performing in-depth analyses of the plasma proteome
usingdata-independentacquisitionmassspectrometry (DIA-MS)
and customizable antibody microarrays (16, 17). Using non-
negative matrix factorization (NMF) analysis, the DLBCL pa-
tients could be classified into different proteomics subtypes with
distinct biological processes. Moreover, the clinical utility of
proteomics subtypes in predicting the prognosis of DLBCL pa-
tients treated with R-CHOP or R-CHOP–like regimens was
investigated. Predictive biomarkers of a poor prognosis such as
metalloproteinase inhibitor-1 (TIMP-1) in a particular DLBCL
subtypewere validated in two independent cohorts (n = 180) and
compared with the current IPI score classification system.
EXPERIMENTAL PROCEDURES

Reagents and Tools table
s used in this study

rence or source Identifier or catalog number

N/A

ientific Cat #21330
U5378-500G
A620058-0025
A600539-0005
Cat # 64-18-6
20210810C

ientific 185439
ientific 0000250623

s N/A
N/A

rot.org/ N/A
oject.org/. N/A
rg/ N/A
bean.cn/ N/A
cape.org N/A
cape.org/apps/cluego N/A
cape.org/apps/cytoHubba N/A
b.org/ N/A
.cn/ N/A
statistics.com/non-parametric-
ey-test/mann-whitney-power/

N/A

s 141095
ientific Cat # IQLAAEGAAPFALGMBFZ

5810R
ml901164
ml038486
KIT10934

http://www.uniprot.org/
http://www.R-project.org/
http://pantherdb.org/
http://www.omicsbean.cn/
http://www.cytoscape.org
https://apps.cytoscape.org/apps/cluego
https://apps.cytoscape.org/apps/cytoHubba
https://cn.string-db.org/
https://hiplot.com.cn/
http://www.real-statistics.com/non-parametric-tests/mann-whitney-test/mann-whitney-power/
http://www.real-statistics.com/non-parametric-tests/mann-whitney-test/mann-whitney-power/


Proteomics reveals new DLBCL prognosis stratification system
Methods and Protocols

Clinical Samples–The clinical samples were collected between
2010 and 2019 (discovery cohort: 2010–2016, validation cohorts:
2010–2019, HCs: 2015–2018). All plasma samples collected in this
study underwent the same procedure according to the Clinical Diag-
nosis and Management by Laboratory Methods [John Bernard Henry,
SAUNDERS Company (20th Edition), 2001]. Blood was drawn into a
vacutainer tube with a lavender cap that contained the anticoagulant
EDTA. Preprocessing holding time was within 12 h, and the temper-
ature was maintained at 4 ◦C to ensure minimal effects on the plasma
proteome when compared to samples that are processed immediately
after collection (18). Tubes were centrifuged for 10 min at 2000g,
20 ◦C, and then transferred to a sterile 2 ml conical tube. The samples
were stored at −80 ◦C prior to proteomics measurement without
repeated freeze-thaw cycles. Totally, 200 μl plasma was used for DIA-
MS and antibody array experiments. All samples from DLBCL patients
were collected prior to treatment.

There were three patient cohorts in this study. The discovery cohort
was comprised of 147 DLBCL patients and 79 HCs (supplemental
Table S2). The validation cohort #1 consisted of 93 DLBCL patients
and the validation cohort #2 contained 87 DLBCL patients
(supplemental Table S2). All patient samples were collected before
CHOP, CHOP-like, R-CHOP, or R-CHOP–like chemotherapy treat-
ment where “R” represents the monoclonal antibody rituximab.
Immunohistochemistry results for CD10, bcl-6, and MUM1 were used
to determine GCB and non-GCB groups. If CD10 alone was positive,
cases were assigned to the GCB group or if both bcl-6 and CD10 were
positive. If both bcl-6 and CD10 were negative, the case was assigned
to the non-GCB subgroup. If bcl-6 was positive and CD10 was
negative, the expression of MUM1 determined the group; if MUM1
TABLE

Clinical characteristics of patients wh

Clinical characteristics
Discovery coho

DLBCL (n = 147) H

Chemotherapy
R-CHOP/R-CHOP-like treatment 129 (87.8)
CHOP/CHOP-like treatment 17 (11.5)
hyper-CVAD 1 (0.7)

Gender
Female, n (%) 68 (46.3）
Male, n (%) 79 (53.7）

Age, years
≤60, n (%) 94 (63.9）
>60, n (%) 53 (36.1）

Cell of origin (Hans classification)
GCB, n (%) 36 (24.5）
Non-GCB, n (%) 111 (75.5）
Unknown, n (%) 0 (0.0)

Extranodal involvement
≤1, n (%) 98 (66.7）
>1, n (%) 41 (27.9）
Unknown, n (%) 8 (5.4）

Ann Arbor stage
I/II, n (%) 74 (50.3）
III–IV, n (%) 73 (49.7）

IPI score
0～2, n (%) 101 (68.7）
3～5, n (%) 46 (31.3）
Not reported, n (%) 0 (0.0)

Abbreviation: n, number of patients.
was negative, the case was assigned to the GCB group; if MUM1 was
positive, the case was assigned to the non-GCB group (5). Patients
who met any of the following criteria were excluded from the study:
primary central nervous system lymphoma; patients who received less
than three chemotherapy cycles of standard CHOP, CHOP-like, R-
CHOP, or R-CHOP-like regimen; or patients with a history of another
primary malignancy within 5 years of DLBCL diagnosis. Participants in
the HC group did not have any malignant tumors or history of ma-
lignant tumors. Any participants classified as an HC were excluded
from this study if their tumor markers, liver function, or routine blood
tests (e.g., C-reactive protein, CRP) were flagged as outside the
normal "healthy" range. The assembled HC cohort included 79 HCs
who matched in age and gender with 147 DLBCL patients. In addition,
the liver and kidney functions of DLBCL patients and HCs did not
differ (supplemental Fig. S1).

The baseline characteristics of the three patient cohorts are shown
in Table 1. The treatment efficacy was defined as complete response
(CR), partial response, stable disease, or progressive disease ac-
cording to the Response Evaluation Criteria in Solid Tumours version
1.1 for lymphoma. Responder (R) was defined as CR to front-line
treatment without disease progression, and non-responder (NR) was
defined as disease progression after a CR or not reaching CR to front-
line treatment. The follow-up visit was performed annually by a call-
back to inquire about the progression and survival of DLBCL patients
from the time of the first treatment to December 31, 2019. This study
was approved by the Ethics Committee of the Cancer Hospital of the
Chinese Academy of Medical Sciences (19-019/1804). The study was
executed according to the principles of the Declaration of Helsinki,
and since the plasma samples used in this study were leftovers of
routine clinical tests, so waivers of informed consent were requested.
1
o provided samples for this study

rt Validation cohort 1 Validation cohort 2

Cs (n = 79) DLBCL (n = 93) DLBCL (n = 87)

/ 93 (100) 87 (100)
/ 0 (0.0) 0 (0.0)
/ 0 (0.0) 0 (0.0)

36（45.6） 36 (38.7) 43 (49.4)
43（54.4） 57 (61.3) 44 (50.6)

56（70.9） 32 (34.4) 52 (59.8)
23（29.1） 61 (65.6) 35 (40.2)

/ 39 (41.9) 30 (34.5)
/ 44 (47.3) 45 (51.7)
/ 10 (10.8) 12 (13.8)

/ 57 (61.3) 64 (73.6)
/ 28 (30.1) 23 (26.4)
/ 8 (8.6) 0 (0.0)

/ 54 (58.1) 51 (58.6)
/ 39 (41.9) 36 (41.4)

/ 70 (75.3) 66 (75.9)
/ 19 (20.4) 21 (24.1)
/ 4 (4.3) 0 (0.0)

Mol Cell Proteomics (2023) 22(9) 100625 3



Proteomics reveals new DLBCL prognosis stratification system
Experimental Design and Statistical Rationale–The workflow is
illustrated in Figure 1. The proteome of the samples was studied by
DIA-MS combined with antibody arrays. The reproducibility of DIA-
MS and antibody microarray measurements were measured using
20 replicates of HeLa cell lysates and four replicates of quality
control plasma samples from HCs, respectively. Pearson's correla-
tion was used to evaluate the repeatability of protein quantification.
The analysis of DIA-MS and AA is based on false discovery rate
(FDR) value <0.05 as the significant threshold. Protein annotations
were analyzed by gene ontology (GO) and Kyoto Encyclopedia of
LDH Above Normal

R-CHOP/R-CHOP-like

Ann Arbor Stage

IPI Score
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Age Above 60 Years
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B
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FIG. 1. Plasma protein profiling of DLBCL patients using in-depth
included 147 DLBCL patients. Clinical parameters are indicated in th
dehydrogenase.
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Genes and Genomes (KEGG) databases. NMF was applied to
explore the plasma heterogeneity of DLBCL. Metaproteins were
identified by NMF algorithm, and prognostic biomarkers were
selected from metaproteins by Cox and Kaplan–Meier analysis (p ≤
0.05). The random forest algorithm was performed to identify the
proteomics subtype-IV (PS-IV) with the worst prognosis, and deci-
sion tree analysis provided a formula that combines TIMP-1 with IPI
score.

Analysis of DLBCL Plasma Proteome Using Antibody Microarrays–
The antibody microarray targeting 551 unique human proteins in
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Proteomics reveals new DLBCL prognosis stratification system
duplicate was prepared by ProteomicsEra Medical Co, Ltd as previ-
ously described (16, 17, 19). The biotin labeling of plasma proteins
was performed as previously described (16, 17). Prior to the assay, the
glass-based antibody microarrays were blocked with 500 μl of 5%
milk (w/v) in each well for 1 h. After removing the milk, the antibody
microarrays were incubated with biotinylated plasma proteins at 4 ◦C
overnight (8 h). After washing the slide three times with PBS con-
taining 5% Tween-20, the array was incubated with 2 μg/ml
streptavidin-Cy3 for 1 h at room temperature and then washed three
times with PBS containing 5% Tween-20. The fluorescent readout
was detected using a GenePix 4300A microarray scanner at a wave-
length of 532 nm (Molecular Devices). The signal intensity was
extracted with GenePixPro7 software (Molecular Devices) (https://
www.moleculardevices.com/products/additional-products/genepix-m
icroarray-systems-scanners). The median pixel intensity of each spot
was subtracted by the median pixel intensity of the adjacent back-
ground to remove the effect of nonspecific binding or spatial hetero-
geneity across the array with GenePixPro7 software (Molecular
Devices). The average of each protein was then calculated across
duplicate spots. If the median pixel intensity of a spot was below the
median pixel intensity of the adjacent background, the spot was
assigned as the missing value.

Analysis of the DLBCL Plasma Proteome Using DIA-MS–Sample
Preparation. One microliter (1 μl) per sample was mixed with lysis
buffer containing 8 M urea; 100 mM Tris–HCl, pH 8.5 (Sigma-Aldrich);
and 10 mM DTT, then reduced at 37 ◦C for 60 min, and alkylated with
50 mM iodoacetamide at room temperature for 30 min in the dark.
Protein digestion was performed by the filter-aided sample prepara-
tion method with trypsin (Promega) in 50 mM NH4HCO3 (Sigma-
Aldrich) (20). The peptide concentration was detected by a NanoDrop
(Thermo Fisher Scientific) at an absorbance of 280 nm.

LC MS/MS Analysis. First, a spectral library by data-dependent
acquisition (DDA) was constructed for DIA analysis, and mixed
peptides from each sample were separated into ten fractions by
RIGOL L-3000 HPLC (Puyuan Jingdian Science and Technology
Ltd) (21). A total of 1.5 μg peptides were loaded onto a C18 trap
column (100 μm I.D. × 2 cm) equilibrated with 12 μl solvent A (0.1%
formic acid in water) and separated by an analytical column
(150 μm I.D. × 15 cm, C18, 1.9 μm, 120 Å, Dr Maisch GmbH) with
an EASY-nLC 1200 system (Thermo Fisher Scientific) using solvent
A and solvent B (0.1% formic acid, 80% acetonitrile in water). The
gradient was set as follows: 10% to 14% solvent B for 12 min,
14% to 26% solvent B for 45 min, 26% to 42% solvent B for
10 min, and 42% to 95% solvent B for 1 min. The peptides were
then scanned on a Q Exactive HF mass spectrometer in DDA
mode. Spectronaut pulsar × 12.0 (Biognosys) was performed for the
construction of a spectral library by using BGS default parameter.
The MS1 scan was set as 300 to 1400 m/z at a resolution of
60,000. The top twenty precursor ions were selected for MS2 by
HCD fragmentation at a normalized collision energy of 28 with a
resolution of 15,000. The automatic gain control was set to 3e6 for
full MS1 and 5e4 for MS2, with maximum ion injection times of 80
and 100 ms, respectively. MS1/MS2 tolerance was fixed by using
spectronaut default settings with software built-in automatic mass
accuracy recognition and calibration algorithm.

Spectronaut pulsar × 12.0 (Biognosys) was used for quantification
and DIA analysis. The MS1 was set at a resolution of 60,000 ranging
from 350 to 1400 m/z. MS1/MS2 tolerance, retention time calibration,
and window around the predicted time were both fixed by using
spectronaut default settings with software built-in automatic mass
accuracy recognition and calibration algorithm. None of the modifi-
cation sites were used for analysis. The proteins, peptides, and pep-
tide spectral matches levels were all set as 1% FDR. The DIA scans
parameter was set with a resolution of 30,000; normalized collision
energy: 28; automatic gain control target: 3e6; and maximal injection
time: auto. Forty-five variable DIA windows were set for DIA acquisi-
tion. The sequential precursor isolation window setup was as follows:
374 to 412, 412 to 436.5, 436.5 to 457, 457 to 471.5, 471.5 to 483.5,
483.5 to 494.5, 494.5 to 507, 507 to 520.5, 520.5 to 533.5, 533.5 to
545, 545 to 554.5, 554.5 to 563.5, 563.5 to 573.5, 573.5 to 583.5,
583.5 to 593.5, 593.5 to 604, 604 to 615, 615 to 626, 626 to 636, 636
to 646, 646 to 657, 657 to 668.5, 668.5 to 680, 680 to 691, 691 to 702,
702 to 714, 714 to 726.5, 726.5 to 739.5, 739.5 to 753, 753 to 767, 767
to 781, 781 to 796, 796 to 812, 812 to 828.5, 828.5 to 846.5, 846.5 to
866, 866 to 887, 887 to 910, 910 to 935.5, 935.5 to 964, 964 to 998,
998 to 1040.5, 1040.5 to 1101, 1101 to 1269 m/z (supplemental
Table S3). The DDA raw files were searched against the human
FASTA database (downloaded on Jan 15, 2020, from UniProt) to
generate a spectral library using the BGS factory setting. Carbami-
domethyl (C) was set as fixed modification; oxidation (M) and acetyl
(Protein N-term) were set as variable modifications. All results were
filtered by a Q value cutoff of 0.01 [corresponding to a FDR of 1%].
The p value estimator was performed by Kernel Density Estimator.
Proteins were removed from the mass spectrometry data if they were
not detected in at least 80% of the samples. The identified proteins
used in the spectral library construction and DIA analysis were shown
in supplemental Tables S4 and S5, respectively.

Enzyme-Linked Immunosorbent Assay–The concentrations of
PGAM1 and ENO1 were quantified by enzyme-linked immunosorbent
assay with kits from mlbio following the manufacturer’s instructions.
TIMP-1 concentration was determined with an ELISA kit from Sino
Biological according to the manufacturer’s instructions. The samples
were incubated on the plate for 2 h at room temperature and, once the
stop solution was added, the optical density of each well was deter-
mined immediately using a microplate reader set to 450 nm by Vari-
oskan Flash (Thermo Fisher Scientific).

Bioinformatics–The functional annotation of plasma proteins was
executed using the PANTHER database (http://pantherdb.org/) (22).
Since the data had a non-normal distribution, we analyzed the cor-
relation between proteins and clinical variables (age, gender, Hans
classification, IPI score) by Spearman correlation analysis using
normalized data which was conducted by the R package “Hmisc”
(https://CRAN.R-project.org/package=Hmisc), and correlation heat
map clusters were calculated based on the Euclidian distance. Cor-
relations were further assessed using a mixed effects model that
adjusted for the four clinical factors and storage time using the “lmer”
package (https://cran.r-project.org/web/packages/lme4/index.html).
The normalized data was transformed to a Z-score (row-wise) prior to
the hierarchical clustering analysis, and the heat map analysis was
performed using R package “pheatmap” (https://cran.r-project.org/
web/packages/pheatmap/). Prior to principal component analysis
(PCA) analysis, the normalized data was scaled to 0 to 1 for further
analysis by R package “factoextra” (https://cran.r-project.org/web/
packages/factoextra/index.html). Differentially expressed proteins
between DLBCL patients and HCs were subjected to GO and KEGG
enrichment analyses using Omicsbean (http://www.omicsbean.cn/),
Cytoscape, and ClueGO (23). The protein-protein network analysis
was executed using STRING database (https://cn.string-db.org/). The
hub proteins were identified by cytoHubba (24). Protein clustering and
the Venn plot were calculated by the website Hiplot (https://hiplot.
com.cn/). Protein lists generated from the four DLBCL subtypes
were also subjected to enrichment analyses as described above.

Statistical Analysis–Prior to the statistical analysis, the missing
values were imputed with the minimum value of each batch as pre-
vious described (17). To address batch-to-batch differences, protein
data from antibody microarray and DIA-MS were normalized using the
quantile method by the R statistical package limma (http://www.
bioconductor.org/packages/release/bioc/html/limma.html).
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Proteomics reveals new DLBCL prognosis stratification system
The quartile-quartile plot and Shapiro–Wilk test showed that 94% of
the proteins were not normally distributed (supplemental Fig. S2). To
assess the reliability of sample size for the discovery phase, the power
analyses were performed using Real Statistics Using Excel (https://
www.real-statistics.com/non-parametric-tests/mann-whitney-test/mann-
whitney-power/) to determine adjusted sample size and the pwr
package (https://cran.r-project.org/web/packages/pwr/index.html).
The majority (80%) of the proteins achieved a statistical power more
than 0.8. All two-group comparisons were performed using the Wil-
coxon rank-sum test (two-sided and unpaired) in this study. FDR
adjusted by the Benjamini–Hochberg method was employed to esti-
mate the probability of a false-positive finding with a threshold of 0.05
(25, 26).

We obtained 251 and 58 differentially expressed proteins (FDR <
0.05) from DIA-MS and antibody array, separately. Sixteen differen-
tially expressed proteins were identified by both platforms
(supplemental Table S6), in which we selected the data with the
smaller p value for further statistical analysis as previously described
(17). When comparing early-stage DLBCL patients and HCs, we ob-
tained 197 and 21 differentially expressed proteins and six overlapped
proteins were removed following the same strategy (supplemental
Table S7).

For the NMF analysis, we calculated the fraction of total to remove
the potential effects of dimensions. NMF is a general and robust
method and is considered more precise than other unsupervised
learning algorithms (27). To prove the robustness of the plasma pro-
teomics subtypes revealed by the NMF analysis using the NMF
package (https://cran.r-project.org/web/packages/NMF/index.html) in
R, we also employed k-means and hierarchical clustering to cluster
the DLBCL patients using the factoextra package (https://cran.r-
project.org/web/packages/factoextra/index.html) in R https://www.R-
project.org/. The kappa test was calculated by the irr package
(https://CRAN.R-project.org/package=irr) to evaluate the similarity of
the three algorithms.

Given a factorization rank k (where k represents the number of
clusters), the NMF algorithm factorizes a non-negative target matrix
“X” of dimension “n × p” into two non-negative matrices, “W” and “H,”
where X≈WH. Matrix “W” is an n×k matrix representing the weights of
samples (1 to n) in each cluster (1 to k), whereas matrix “H” is a k × p
matrix representing the contribution of features (1 to p) in each cluster
(1 to k). Using the method proposed by Kim et al. (28), matrix “W,”
which contains the weights of each feature within a certain cluster,
was used to derive a list of representative features separating the
clusters. The resulting matrix was then subjected to NMF analysis
using the NMF R package, which uses the “brunet” algorithm (29), and
the stability of the clusters obtained from NMF was measured using
the method proposed by Brunet et al. (27).

To determine the optimal factorization rank k (number of clusters)
for the omic data matrix, a range of clusters between k = 2 and 6 was
tested. For each k, we factorized matrix “V” using 50 iterations with
random initializations of matrices “W” and “H.” By computing the
cophenetic coefficient, the optimal k was determined to be k = 4
because it maximized the coefficient score. A consensus matrix with
k = 4 appeared to have the clearest separation between clusters with
the maximum cophenetic coefficient. To achieve robust factorization
of the omics data from matrix “V,” we repeated the NMF analysis
using 200 iterations with random initializations of matrices “W” and
“H” and performed sample partitioning into clusters as described
above.

To perform the survival analysis, OS was calculated from the start of
the initial treatment until the time of death of any cause or until the last
follow-up time point. Progression-free survival (PFS) was defined from
the first day of treatment to the time of disease progression, recur-
rence, or death due to any cause. All OS and PFS calculations used
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the Kaplan–Meier method (log-rank test), which is a nonparametric
method used for the survival analysis. The cut-off value of each
candidate prognostic biomarker was determined by the R package
‘survminer,’ which was utilized to divide the cohort into two groups
(high or low) for Kaplan–Meier analysis in validation cohorts. The
hazard ratio was calculated from Cox proportional hazards regression
analysis. Molecular features analyzed with a p value <0.05 using Cox
regression univariate analysis were considered as significant and were
included in the Cox regression multivariate analysis. The R package
“survival” (https://cran.r-project.org/web/packages/survival/index.
html) was used for the statistical tests of survival. The receiver oper-
ating characteristic curve analysis was drawn by R package “pROC”
(https://cran.r-project.org/web/packages/pROC/index.html).
RESULTS

Analysis of the DLBCL Plasma Proteome Using In-Depth
Proteomics

A schematic illustration of this study is shown in Figure 1A.
We enrolled 147 DLBCL patients and 79 HCs in the discovery
cohort (Table 1). One hundred twenty-nine were treated with
R-CHOP or R-CHOP–like chemotherapy regimens, one pa-
tient was treated with hyper-CVAD (hyper-fractionated
cyclophosphamide, vincristine, doxorubicin, and dexametha-
sone), and the remaining patients were treated with CHOP
(cyclophosphamide, doxorubicin, vincristine, and prednisone)
or CHOP-like regimens (Fig. 1B).
The in-depth measurement of the plasma proteome was

achieved by combining data from DIA-MS and customizable
antibody microarray technologies due to their complementary
detection: DIA-MS detects high- and middle-abundance pro-
teins, whereas antibody microarrays can detect low-
abundance proteins (17, 19, 30). A total of 1016 proteins
were detected by DIA-MS and antibody microarray with 879
nonredundant proteins spanning ~11 orders of magnitude
based on information obtained from the human plasma pro-
teome database (http://www.plasmaproteomedatabase.org/)
(Fig. 2A) (31). We performed a Venn diagram analysis, which
indicated that 140 proteins were detected with both DIA-MS
and antibody array (supplemental Fig. S3). Functional anno-
tation analyses revealed that plasma proteins detected by
DIA-MS and the antibody microarray were enriched in the
classes of defense/immunity and intercellular signaling,
respectively (supplemental Fig. S4). The reproducibility of DIA-
MS and antibody microarrays measurements was assessed
using 20 replicates of HeLa cell lysates and four replicates of
quality control plasma samples from HCs, respectively, with
correlation coefficients of 0.9 to 1.0 (supplemental Fig. S5, A
and B), demonstrating that our in-depth proteomics platform
is reproducible.
In addition, we tested the influence of pre-analytical vari-

ables on the proteomics results. PCA of sample storage time
indicated that the sampling year did not affect the data
(supplemental Fig. S6, A–C), which is in accordance with a
previous study of serum proteins using LC MS and Luminex
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FIG. 2. Proteomic landscape of the plasma proteome in DLBCL patients. A, distribution of protein concentrations in plasma detected by
in-depth proteomics was ordered according to the reference concentrations in the human plasma proteome database (http://www.
plasmaproteomedatabase.org/). B, heat map of 293 differentially expressed proteins between DLBCL patients (n = 147) and HCs (n = 79).
The signal densities of proteins were Z-scored across individuals. C, PCA plot of the 226 samples in the discovery cohort, demonstrating distinct
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bead-based immunoassays (32). Moreover, the storage tem-
perature (−80 ◦C) and sample preprocessing time (<12 h) were
consistent across all samples. Notably, according to previous
reports, preprocessing times within 12 h have a minimal effect
on serum or plasma proteins (18, 32).

Alterations in the Plasma Proteome During DLBCL
Pathogenesis

Using hierarchical clustering analysis (Fig. 2B) and PCA
(Fig. 2C), two distinct clusters were made using 293 differ-
entially expressed proteins (FDR < 0.05) identified with the
Wilcoxon rank-sum test, with each cluster primarily DLBCL
patients or HCs (supplemental Table S8). Ceruloplasmin (CP),
a liver-secreted protein, drove the largest difference in the
PCA plot, followed by the coagulation proteins and transport
proteins, such as complement component C9 (C9), plasma
protease C1 inhibitor (SERPING1), asparagine-tRNA ligase
(NARS1), and transthyretin (supplemental Fig. S7).
Among the 293 proteins, the expression levels of 147 pro-

teins were higher [Fold change (FC) ≥ 1)] and 146 proteins
were lower (FC < 1) in DLBCL patients than in HCs
(supplemental Fig. S8A). The three most increased proteins
[(progranulin (GRN), vesicular integral-membrane protein
VIP36 (LMAN2), and C-C motif chemokine 18 (CCL18)] are
closely related to cell proliferation, glycoproteins transport,
and B-cell migration, respectively (supplemental Fig. S8B).
Some plasma functional proteins like serum albumin (ALB),
complement C1r subcomponent (C1R), and complement C1q
subcomponent subunit A (C1QA) (supplemental Fig. S8C) and
proteins involved in the inflammatory response [e.g., serum
amyloid A-1 protein (SAA1), TIMP-1, CRP] (supplemental
Fig. S8C) were also significantly increased.
GO enrichment analysis revealed that the 293 differentially

expressed proteins were enriched in complement activation,
inflammation response, plasma lipoprotein particle organiza-
tion, cell chemotaxis, and response to cytokine (Fig. 2D).
KEGG analysis indicated that upregulated proteins in DLBCL
were enriched in complement and coagulation cascades,
extracellular matrix-receptor interactions, the HIF-1 signaling
pathway, and NF-kappa B signaling pathways (supplemental
Fig. S9). However, the downregulated proteins in DLBCL
were enriched in metabolism-associated pathways, including
the PPAR signaling pathway and cholesterol metabolism
(supplemental Fig. S9).
To elucidate the relationship between the plasma proteome

and DLBCL progression, the DLBCL patients were separated
into early (Ann Arbor stages I and II) or advanced stage (Ann
protein profiles between DLBCL patients (n = 147) and HCs (n = 79). D
differentially expressed proteins between DLBCL patients and HCs in
regulation trends from HCs to advanced stage DLBCL. F, significantly en
DLBCL, diffuse large B-cell lymphoma; GO, gene ontology; HC, health
analysis; PPV, positive predictive value.
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Arbor stages III and IV) groups. Two hundred twelve proteins
were differentially expressed (FDR < 0.05) in early-stage
DLBCL patients compared to HCs. Using Hiplot (https://
hiplot.com.cn/), these proteins represented six clusters with
different protein profiles (Fig. 2E and supplemental Table S9).
The expression of plasma proteins in clusters 4 and 6 was
higher in early-stage DLBCL than in advanced-stage DLBCL.
Cluster 3 proteins had the lowest expression in early-stage
DLBCL than HCs and advanced-stage DLBCL.
The protein expression in clusters 1 and 2 was lowest in the

HCs and then continually increased from early to advanced
DLBCL, while the exact opposite was observed in cluster 5.
The enriched biological processes of patient groups within
clusters 1, 2, and cluster 5 were analyzed. Interestingly,
upregulated proteins in early-stage DLBCL patients were
enriched in humoral immunity processes, including B-cell re-
ceptor signaling pathway and humoral immune response
mediated by circulating immunoglobulin (Fig. 2F). However,
upregulated proteins in advanced-stage DLBCL patients were
enriched in inflammation and cellular immunity processes,
including cellular response to cytokine stimulus, cytokine-
mediated signaling pathway, cytokine production, neutrophil
activation, neutrophil-mediated immunity, cellular response to
interferon-gamma, and toll-like receptor signaling pathway,
etc. (Fig. 2F). These results reveal that different signaling
pathways might be involved during the progression of DLBCL
(33–35).

DLBCL Subtyping Using In-Depth Plasma Proteomics

Using NMF-based unsupervised clustering (Fig. 3, A and B)
(27, 36), the DLBCL patients were clustered into two to six
clusters, in which the optimal classification was k = 4 using
cophenetic correlation coefficient and average silhouette
width algorithms (supplemental Fig. S10A). Moreover, the rank
of 4 generated the most stable classification in which the
majority of the matrices correlation equals 0 or 1
(supplemental Fig. S10B).
Furthermore, we employed different unsupervised clus-

tering methods, k-means and hierarchical clustering, to verify
the clusters revealed by NMF. Like NMF, the DLBCL patients
were consistently classified into four subtypes by k-means
and hierarchical clustering (supplemental Fig. S11, A and C).
Next, the kappa test was performed to determine how the
proteomics classifications identified by these three clustering
methods (NMF, k-means, hierarchical) correlated with each
other. The kappa coefficient of k-means and NMF was 0.87,
and the kappa coefficient of hierarchical clustering and NMF
, significantly enriched GO biological processes (p < 0.05) of the 293
the discovery cohort. E, six clusters representing different protein
riched biological processes (p < 0.05) of clusters 1, 2, and 5 from (E).
y control; NPV, negative predictive value; PCA, principal component
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FIG. 3. Signature proteins and pathways in four DLBCL subtypes. A, heat map of the NMF consensus matrix. The x and y axes represent
patients. B, NMF analysis of proteomic profiling identified four proteomic subtypes (DLBCL samples, n = 147): PS-I (green, n = 53), PS-II (orange,
n = 40), PS-III (blue, n = 30), and PS-IV (red, n = 24). The associations of proteomic subtypes with clinical characteristics (IPI, Hans classification,
and clinical stage) are annotated in the middle panel. C, representative biological process (p < 0.05) of the four subtypes. D, protein-protein
interaction network of PS-IV proteins identified by STRING analysis and manual curation. The enrichment analysis was executed using
STRING database in Cytoscape (version 3.7.2). E, cellular localization and biological signaling pathways of signature proteins representing the
PS-IV subtype. The variations of signature proteins among four subtypes were defined as log2 (ratio of average protein abundance in each
proteomic subtype versus HCs). Red and blue represent upregulated and downregulated proteins, respectively. The lightning symbols in green
highlight proteins targeted by available drugs (approved, experimental, or investigational drugs). Straight lines, direct interaction; dotted lines,
indirect interaction; TAM, tumor-associated macrophage; Treg, regulatory T cells. DLBCL, diffuse large B-cell lymphoma; HC, healthy control;
IPI, international prognostic index; NMF, non-negative matrix fractionization; PS-IV, proteomics subtype IV.
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was 0.78 (supplemental Fig. S11D). These data indicate that
different clustering methods similarly classified the four
DLBCL subtypes, thus demonstrating the robustness of
DLBCL subtyping via proteomics classification.
Twenty-nine proteins were metaproteins with same or

similar expression patterns identified by NMF algorithm of the
four proteomic subtypes (PS-I-IV) (supplemental Fig. S12).
The tissue specificity and subcellular location of metaproteins
were shown in supplemental Table S10. Notably, functional
analysis revealed that the PS-I subtype contains proteins that
are mainly enriched in immunity and regulation of immune
system pathways, while the PS-II and PS-III subtypes contain
proteins mainly enriched in the regulation of immune system
and homeostasis pathways (Fig. 3C). Unlike the other prote-
omic subtypes, the PS-IV subtype contains ten proteins that
are enriched in inflammatory and cell proliferation pathways,
including those involved in the acute phase response, in-
flammatory response, and response to stress (Fig. 3C).
STRING analyses indicate that nine proteins [TIMP-1, alpha-
enolase (ENO1), CCL18, CRP, macrophage mannose receptor
1 (MRC1), phosphoglycerate mutase 1 (PGAM1), SAA1, serum
amyloid A-2 protein (SAA2), 14-3-3 protein zeta/delta
(YWHAZ)] that are expressed in liver tissue (supplemental
Fig. S13) are highly associated with each other through
direct and indirect interactions. Five (TIMP-1, CRP, MRC1,
SAA1, SAA2) of these nine proteins are involved in the in-
flammatory process, while three proteins (PGAM1, ENO1,
YWHAZ) are associated with cell proliferation (Fig. 3D) (37).
TIMP-1 is ametalloproteinase inhibitor of metalloproteinases

with antiproteolytic and proinflammatory cytokine activity that
can regulate inflammation, cell differentiation, and migration
(38). It also promotes angiogenesis following the infiltration of
tumor-associated macrophages (39). SAA1, SAA2, and CRP
participate in the acute phase response (40). The upregulation
of CRP is associated with a poor prognosis in follicular lym-
phoma patients undergoing rituximab-containing chemo-
therapy (40) and may indicate immunochemotherapy-related
interstitial lung disease in B-cell lymphoma (41). CCL18 is
mainly secreted by macrophagocytes, monocytes, and den-
dritic cells and may have functional roles in humoral and cell-
mediated immunity responses. High expression of serological
CCL18 is associated with significantly poor prognosis in pa-
tients of cutaneous T-cell lymphomas (42).
PGAM1 and ENO1 are important glycolytic enzymes that

catalyze the conversion of 3-phosphoglycerate to phospho-
enolpyruvate and coordinate glycolysis and biosynthesis that
are important in cancer progression. PGAM1 and ENO1 are
overexpressed in different cancers, while their inhibition may
result in decreased tumor growth and metastasis (43, 44).
Moreover, ENO1 and TIMP-1 supply tumors with energy for
proliferation via the HIF-1α signaling pathway (45, 46). YWHAZ
is an adapter protein implicated in a large spectrum of signaling
pathways (i.e., PI3K-AKT) (47), and it is upregulated in DLBCL
patients with the activated B-cell–like subtype (48) (Fig. 3E).
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DLBCL Prognosis Based on Proteomic Subtypes

Regardless of the treatment regimens, the relationship be-
tween proteomic subtypes and the PFS and OS in DLBCL
patients was ascertained (Fig. 4A). Patients with PS-I-III sub-
types had more favorable outcomes, whereas those with the
PS-IV subtype had unfavorable outcomes (Fig. 4A and Table 2).
More specifically, the predicted 1-year PFS rates for the PS-I-IV
subtypes were 77.4%, 67.5%, 66.7%, and 33.3%, respectively,
while the predicted 4-year OS rates for the PS-I-IV subtypes
were 78.2%, 65.4%, 72.8%, and 39.5%, respectively (Fig. 4A
and Table 2). Next, the DLBCL patients were separated into four
groups using IPI classification, with predicted 1-year PFS rates
of 85.5%, 64.1%, 42.9%, and 33.3%, respectively, and pre-
dicted 4-year OS rates of 84.1%, 65.4%, 52.2%, and 37.3%,
respectively (Fig. 4B and Table 2). The significant prognostic
stratification based on the IPI score suggests that the sample
cohort is heterogeneous. However, no statistical significance
between GCB and non-GCB patient groups was found using
the Hans classification system (Fig. 4C).
The association between proteomic subtypes and the IPI

score classification system was compared. The PS-I and PS-II
subtypes were primarily classified as low-risk IPI. The PS-IV
subtype included mostly high intermediate or high-risk IPI
groups, whereas the PS-III subtype included all four IPI sub-
groups (Fig. 5A). Among low-risk IPIs, patients with the PS-IV
subtype had significantly inferior 1-year PFS rates than pa-
tients with PS-I and PS-III subtypes (p = 0.008) (Fig. 5B). Pa-
tients with either PS-II or PS-IV subtypes had significantly
inferior 4-year OS rates than PS-I–subtyped patients (Fig. 5C).
Notably, we found that predicting DLBCL patients’ relapse
and death was significantly improved by combining the pro-
teomic subtype with IPI score (41.2% and 39.0%, respec-
tively) than relying on the proteomic subtype (31.4% and
31.7%, respectively) or IPI score (23.5% and 24.4%, respec-
tively) alone (Fig. 5D).
The association between proteomic subtypes and the Hans

classification was also determined. Of the 147 cases, 36
(24.5%) were considered GCB, and 111(75.5%) were
considered non-GCB by the Hans classification system
(Table 1). The 1-year PFS and 4-year OS rates were not
significantly different between the two groups. All four prote-
omic subtypes included GCB and non-GCB cases
(supplemental Fig. S14A). Of the GCB cases, PS-I accounted
for 38.89%, PS-II for 19.44%, PS-III for 22.22%, and PS-IV for
19.44% (supplemental Fig. S14B). Of the non-GCB cases,
35.13% were classified as PS-I, 29.73% were PS-II, 19.82%
were PS-III, and 15.32% were PS-IV (supplemental Fig. S14B).
Within non-GCB DLBCL patients, the 1-year PFS rates (p =
0.011) and 4-year OS rates (p = 0.02) of the four proteomic
subtypes were distinct from each other (supplemental
Fig. S14, C and D). The PS-IV subtype was associated with
a significantly inferior prognosis than the PS-I-III subtypes
(supplemental Fig. S14, C and D).
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FIG. 4. Association of DLBCL proteomic subtypes with progression-free survival and overall survival. A, Kaplan–Meier models of 1-year
PFS and 4-year OS according to DLBCL plasma proteomic subtypes. p value was calculated from log-rank test. B, Kaplan–Meier models of 1-
year PFS and 4-year OS according to IPI score. p value was calculated from log-rank test. C, Kaplan–Meier models of 1-year PFS and 4-year OS
according to Hans classification. p value was calculated from log-rank test. DLBCL, diffuse large B-cell lymphoma; High int, high intermediate;
IPI, international prognostic index; low int, low intermediate; OS, overall survival; PFS, progression-free survival.
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TABLE 2
One-year PFS and 4-year OS estimates for risk groups defined by three subtyping methods

Model 1-year PFS estimate (95%CI) 4-year OS estimate (95% CI)

Hans classification
Non-GCB 66.7% (58.5%–76.0%) 69.5% (60.6%–79.8%)
GCB 61.1% (47.1%–79.3%) 61.3% (45.8%–82.0%)

IPI score
Low (0–1) 85.5% (77.2%–94.7%) 84.1% (75.1%–94.2%)
Low intermediate (2) 64.1% (50.7%–94.7%) 65.4% (50.8%–84.1%)
High intermediate (3) 42.9% (27.9%–65.7%) 52.2% (33.8%–80.7%)
High (4–5) 33.3% (17.3%–64.1%) 37.3% (19.4%–72.0%)

Plasma proteomic subtype
PS-I 77.4% (66.9%–89.5%) 78.2% (66.8%–91.6%)
PS-II 67.5% (54.4%–83.7%) 65.4% (50.7%–84.5%)
PS-III 66.7% (51.7%–85.9%) 72.8% (56.8%–93.3%)
PS-IV 33.3% (18.9%–58.7%) 39.5% (22.5%–69.4%)

Proteomics reveals new DLBCL prognosis stratification system
These results indicate that the prognostic value of proteo-
mic subtypes is independent of the IPI score and Hans clas-
sification system. However, using the proteomic subtypes, IPI
score, and Hans classification system together may help
identify DLBCL patients with poor prognosis. As such, these
patients could be treated with alternative options that may be
more effective for them.
Next, we conducted a multivariate analysis to test the influ-

ence of inflammation (white blood cell, lymphoma count,
neutrophil, CRP), renal (creatinine, blood urea nitrogen), and
liver (aspartate aminotransferase, alanine aminotransferase)
functions on the proteomic subtypes in DLBCL prognosis using
appropriate clinical variables (supplemental Fig. S15). The PS-
IV was still significantly associated with a poor prognosis, with
a hazard ratio higher than 2 after adjusting for the clinical vari-
ables associated with inflammation, renal, and liver functions.
Lastly, we investigated whether proteomics subtyping was

associated with clinical phenotypes. Patients with the worst
prognosis that were classified as PS-IV with proteomics
analysis had advanced stage (66.67%) as well as the the
highest number of extranodal involvement and abnormal
lactate dehydrogenase expression (supplemental Fig. S16).
Interestingly, the ability to accurately predict patient prognosis
could not be performed based on the clinical data alone (sex,
extranodal involvement, bone marrow involvement, B symp-
tom, lactate dehydrogenase above normal, Ann Arbor Stage,
age) (supplemental Fig. S17, A–D). These results demonstrate
the usefulness of proteomics subtyping in helping to predict
the prognosis of DLBCL patients.

Identification of Protein Biomarkers of Poor Prognosis
Since the PS-IV subtype is associated with a poor prog-

nosis in DLBCL patients, further evaluation of proteins within
this subtype was performed to identify specific protein bio-
markers with the highest predictive power. To address this
concern, the expression of PS-IV subtype proteins between R
and NR patients to R-CHOP/R-CHOP–like treatment in the
discovery cohort was first compared. Four dysregulated
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proteins were identified, including TIMP-1, CRP, PGAM1, and
ENO1 (Wilcoxon rank-sum test, p < 0.05) (Fig. 6A). Although
marginally significant (p = 0.053) in the discovery cohort, SAA2
was selected due to its function as an indicator of special
humoral immune responses in B-cell lymphoma induced by
germinal center–associated lymphoma (HGAL) genes (49).
Next, the individual capability of each biomarker in pre-

dicting clinical outcomes was evaluated in the discovery
cohort using the univariate Cox regression analysis. All five
proteins (TIMP-1, CRP, PGAM1, ENO1, SAA2) were signifi-
cantly associated with 1-year PFS and 4-year OS, with TIMP-1
having the highest hazard ratio (Fig. 6B). The multivariable Cox
analyses of time-to-event endpoints further indicate that high
levels of three proteins (TIMP-1, PGAM1, ENO1), independent
of the IPI score, were significantly associated with worse 1-
year PFS and 4-year OS (p < 0.05) (Fig. 6C and
supplemental Table S11).

Validation of Biomarkers in Two Independent Cohorts

Using validation cohort #1 comprised of 93 DLBCL patients
treated with R-CHOP or R-CHOP–like regimens, we validated
three biomarkers (TIMP-1, PGAM1, ENO1) using ELISA tech-
nology. The results indicated that the expression levels of
three proteins were significantly elevated in NR patients (n =
43) than in R patients (n = 50) (p < 0.001, p = 0.011, p = 0.017,
respectively) (Fig. 7A), demonstrating the capability of these
biomarkers in predicting the response of R-CHOP treatment.
We built a subtyping model based on the random forest al-
gorithm to predict PS-IV based on TIMP-1, PGAM1, and
ENO1. We divided the discovery cohort into a training (n =
103) and test dataset (n = 44), with validation cohort #1 as the
external validation cohort (n = 71). The area under the curves
of the subtyping model in training and test datasets could
reach 0.83 and 0.80 for predicting the PS-IV subtype
(supplemental Fig. S18A). In the external validation cohort, the
predicted PS-IV subtype had significantly shorter PFS than
the non-PS-IV subtype (Fig. 7B).
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Proteomics reveals new DLBCL prognosis stratification system
TIMP-1 expression was significantly associated with patient
survival (p = 0.0028) via Kaplan–Meier analysis when the pa-
tients were divided into ‘TIMP-1 high’ and ‘TIMP-1 low’
groups by cut-off value 180.636 pg/ml (Fig. 7C and
supplemental Table S12). No statistical difference in patient
survival was identified for either PGAM1 or ENO1
(supplemental Fig. S18B). Meanwhile, the expression of TIMP-
1 was consistently elevated in DLBCL patients than in HC
(supplemental Fig. S18C). Using a second validation cohort #2
comprised of 87 DLBCL patients, a high level of TIMP-1 (cut-
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FIG. 6. Selection of protein biomarkers in the discovery cohort. A, boxplots showing significant differences (p < 0.05) in signature proteins
between R (n = 56) and NR (n = 73) patients by Wilcoxon rank-sum test (two-sided, nonpaired) in the discovery cohort. The central line is the
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R (n = 50) and NR (n = 43) patient groups in validation cohort #1. The three proteins were significantly expressed (p < 0.05) between R (n = 50)
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off value = 180.636 pg/ml) was also significantly associated
with poor 1-year PFS (p = 0.0067) and 4-year OS (p = 0.0074)
(Fig. 7D and supplemental Table S12). In addition, high levels
of TIMP-1 mRNA were also associated with a poor prognosis
in a Western cohort (GSE31312) from the Gene Expression
Omnibus database (50, 51). These results indicate that TIMP-1
could serve as a prognostic biomarker of DLBCL patients in
Asian and Western populations (supplemental Fig. S19).
We gathered post-treatment samples from 27 patients

classified as NR. These samples included 17 patients who
collected samples at progression and ten patients who were in
remission at the fourth cycle of treatment. Our findings indi-
cated that TIMP-1 levels were elevated during progression
and reduced after remission (supplemental Fig. S20).

TIMP-1 can Stratify Low-Risk IPIs and Increase the
Predictive Sensitivity of the IPI Scoring System

Some patients (15%) classified by the IPI scoring system as
having low or low-intermediate risk still had poor outcomes
(Fig. 5, A–C), thus it is of great significance to identify such
patients. Of the 89 DLBCL patients with low or low-
intermediate IPI scores in the discovery cohort treated with
R-CHOP/R-CHOP–like therapy, 29.2% (26/89) of the patients
had high TIMP-1 expression levels (above the third quartile)
while 70.8% (63/89) had low TIMP-1 expression levels (below
the third quartile). These two patient groups had significant
differences in outcome (Fig. 8A and supplemental Fig. S21A).
Similar results were obtained with validation cohorts #1 and
#2, in which 22.5% (14/62) and 25.7% (17/66) of patients
misclassified by IPI score were correctly identified by TIMP-1
expression level, respectively (Fig. 8, B and C and
supplemental Fig. S21A). Meanwhile, early-stage DLBCL
could also be classified by TIMP-1 into high- or low-risk
groups with significantly distinct prognoses (supplemental
Fig. S21B).
Additionally, we investigated whether the TIMP-1 and IPI

score could predict which patients would relapse or not sur-
vive using three independent patient cohorts (i.e., discovery,
validation cohort #1, validation cohort #2). Notably, TIMP-1
expression level had higher accuracy than the IPI score in all
three cohorts in predicting patients who will relapse (discov-
ery: 66.7% versus 54.9%, validation cohort #1: 66.7% versus
25.0%, validation cohort #2: 48.0% versus 40.0%, respec-
tively) or not survive (discovery: 63.4% versus 48.8%, vali-
dation cohort #2: 50.0% versus 45.0%, respectively) (Fig. 8,
D–F). No survival data were available for validation cohort #1.
and NR (n = 43) groups using Wilcoxon rank-sum test (two-sided, nonpa
and third quartiles, and the upper and lower whiskers represent the co
equals the third quantile minus the first quantile. B, Kaplan–Meier models
validation cohort #1. p value was calculated from log-rank test. C, Kapla
log-rank test. D, Kaplan–Meier models of PFS and OS between patient
levels of TIMP-1 in validation cohort #2. p value was calculated from log
OS, overall survival; PFS, progression-free survival; PS-IV, proteomics s
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Combining TIMP-1 expression levels with the IPI score
improved the predictive power, increasing the accuracy to
88.2%, 66.7%, and 64.0% for relapsed patients across the
discovery cohort, validation cohort #1, and validation cohort
#2, respectively (Fig. 8, D–F). These values represent a
24.00%-41.67% improvement compared to the IPI score
alone. For decease prediction, the TIMP-1/IPI score combi-
nation reached 80.5% and 65.0% in the discovery cohort and
validation cohort #2, respectively, which improved the pre-
dictive power of the IPI score alone by 20.00%-31.70%
(Fig. 8, D–F). In order to apply TIMP-1 in clinics, we developed
a decision tree model by combining TIMP-1 and IPI score for
DLBCL risk stratification (Fig. 8G). Specifically, the patients
can be classified as the high risk for shorter PFS by a high IPI
score (3–5) or a low IPI score (0–2) with TIMP-1 expression
higher than the cut-off value (180.636 pg/ml).
DISCUSSION

Knowledge about DLBCL pathogenesis and heterogeneity
remains limited. However, understanding such information is
important to improve patient care since 40% to 60% of
DLBCL patients have unfavorable outcomes (e.g., relapse,
poor survival) after receiving traditional R-CHOP/R-CHOP–like
therapy (34). While the availability of clinical biopsy samples is
challenging, minimally invasive sample types like plasma or
serum containing circulating proteins would be easier to
obtain for studying the disease and identifying biomarkers for
diagnosis and therapy (15, 52–55).
In this work, a proteome-wide analyses of plasma in 147

DLBCL patients and 79 HCs was performed using DIA-MS
and customizable antibody microarrays. The data revealed
that the DLBCL is associated with potentially upregulated
biological processes, such as acute phase response, humoral
immune response, inflammation response, hemostasis, pro-
tein activation cascade, and blood coagulation in DLBCL
patients (Figs. 1 and 2). While early-stage DLBCL patients
might have upregulated humoral immunity, advanced-stage
DCBCL patients may have increased inflammation and
cellular immunity (Fig. 3, A and B).
Using in-depth plasma proteomics, the DLBCL patients

were classified into four proteomic subtypes. Three subtypes
(PS-I-III) were associated with a good prognosis and were
associated with the regulation of the immune response and
homeostasis. The PS-I, PS-II, and PS-III subtypes did not
exhibit different significantly PFS and OS which may be
ired). The central line is the median, bounds of box represent the first
nsidering outliers within the 1.5× interquartile range (IQR) where IQR
of PFS between patient groups with PS-IV and non-PS-IV subtype in

n–Meier models of 1-year PFS of TIMP-1. p value was calculated from
groups with high (“TIMP-1 high”) and low (“TIMP-1 low”) expression
-rank test. DLBCL, diffuse large B-cell lymphoma; NR, non-responder;
ubtype IV; R, responder.



FIG. 8. TIMP-1 can stratify low-risk IPIs and increase the predictive sensitivity of the IPI scoring system. A–C, Kaplan–Meier models of
1-year PFS within low-risk IPIs (IPI=0, 1, 2) based on serological TIMP-1 expression levels in the discovery cohort, validation cohort #1, and
validation cohort #2. p value was calculated from log-rank test. D, comparison of accuracy of using TIMP-1 expression levels and the IPI score in
identifying relapsed and deceased patients within the discovery cohort. E, comparison of accuracy of using TIMP-1 expression levels and the IPI
score in distinguishing relapsed patients in the validation cohort #1. F, comparison of accuracy of using TIMP-1 expression levels and the
IPI score in distinguishing relapsed and deceased patients among validation cohort #2. G, the decision tree was constructed using TIMP-1 and
IPI score. Using the decision tree, the patients can be classified as the high risk for shorter PFS by the high IPI score (3–5) and low IPI score (0–2)
with TIMP-1 expression higher than the cut-off (180.636 pg/ml). IPI, international prognostic index; PFS, progression-free survival.
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caused that the three subtypes have similar biological func-
tions in these patients that were determined by proteomics
analysis. Specifically, the PS-I, PS-II, and PS-III subtypes
contain proteins that are commonly enriched in the regulation
of immune system pathways (Fig. 3C). The results are in
accordance with transcriptomics data obtained in previously
studies, which showed that patients with a good prognosis
had an overexpression of genes in germinal center B cells in
the GCB subtype (3, 6). Moreover, two genetic subtypes
(clusters 1 and 4) with a good prognosis were identified.
Differentially expressed transcripts (e.g., CD70, BCL10, BCL-
6, HLA-B) in cluster 1 are involved in the adaptive immune
response, while gene transcripts differentially expressed in
cluster 4 regulate lymphocyte and T cell differentiation, gene
expression, and primary metabolic process (4). In another
study, Wright et al. (8) classified DLBCL patients into seven
genetic subtypes using the LymphGen algorithm, including
MCD, BN2, N1, EZB/MYC+, EZB/MYC-, A53, and ST2.
Interestingly, the ST2 subtype with the highest 5-year OS in
three cohorts (National Cancer Institute, Harvard, BC Cancer
Agency) had upregulated gene transcripts in GCB cells. The
subtype PS-IV with a poor prognosis (Fig. 4A) is characterized
by differentially expressed proteins involved in the inflamma-
tory response, acute phase response, and response to stress;
however, correlated genes were not found in genomic and
transcriptomic studies (3, 4, 6, 8). Notably, the potential utility
of proteomic subtypes in the prognosis of DLBCL patients
was demonstrated when used in conjunction with the IPI and
Hans classification systems (Figs. 4 and 5; supplemental
Fig. S21). This study provides new proteomic insights into
the molecular heterogeneity of DLBCL patients.
To demonstrate the translational potential of our proteomics

results in the clinic, it is necessary to validate potential bio-
markers in an independent cohort using a different technol-
ogy, such as ELISA, that can quantify the biomarker in a large
number of clinical samples easily (17, 30, 56). To address this
concern, three differentially expressed proteins (TIMP-1,
PGAM1, ENO1) between NR and R groups following R-CHOP/
R-CHOP–like regimens were identified in the discovery cohort.
These potential biomarkers could help predict the therapeutic
response of R-CHOP/R-CHOP–like regimens in the clinic. We
found proteins that differ hugely between DLBCL and HCs
may not be suitable for prognostic prediction. For example,
based on supplemental Fig. S6, we selected the top two
proteins CP and C9 and we also included GRN which has the
highest fold change when comparing DLBCL and HC. We
found that C9 and GRN did not differ between R and NR.
Though CP is differently expressed between R and NR, it did
not show prognostic value for PFS and OS. Importantly, a high
expression level of TIMP-1 in PS-IV was ranked as the top risk
factor of a poor prognosis (i.e., poor 1-year PFS and 4-year
OS) (Fig. 6) for all three patient cohorts. Moreover, TIMP-1
can complement the IPI score classification system (Fig. 8),
improving the accuracy of prediction of relapsed and
18 Mol Cell Proteomics (2023) 22(9) 100625
deceased DLBCL patients compared to using the IPI score
alone (Fig. 8, D–F).
TIMP-1 contributes to cancer progression and pathogen-

esis in a complex way due to its versatile impact on cellular
functions stemming from its two-domain structure (57). Both
TIMP-1 immunohistochemistry staining and serological TIMP-
1 levels have prognostic values in lung, melanoma, breast,
colon, and several other cancers (58–61). While it is known
that TIMP-1 promotes DLBCL progression by regulating cell
migration and the Wnt signaling pathway (62), the prognostic
value of TIMP-1 in DLBCL has not been fully studied, espe-
cially in patients treated with CHOP. This study investigated
the prognostic value of TIMP-1 in DLBCL patients treated with
R-CHOP. The roles of TIMP-1 in this disease will be con-
ducted in future studies. Furthermore, the prognostic value of
TIMP-1 expression levels in tissue is still controversial, with
two studies concluding its relevance while another study did
not. In this study, we demonstrate that serological TIMP-1 can
be an independent biomarker of prognosis in patients
receiving R-CHOP. In addition, measuring TIMP-1 in plasma
can be easily performed using conventional immunoassays
(e.g., ELISA) that are highly sensitive, simple to perform, cost-
effective, and can be easily automated in a clinical laboratory.
There are several limitations in this study. First, the number

of clinical samples used in this study was limited, and the
candidate biomarkers should be validated in a larger cohort in
the future. Second, genomics and transcriptomics analyses
were not performed in this study due to the unavailability of
peripheral blood mononuclear cells of these cohorts. Third,
although the TIMP-1 showed promising results in DLBCL
prognosis (Figs. 7 and 8), however, the capability of TIMP-1 to
serve as the diagnostic biomarker might be limited to
discriminate the DLBCL patients from healthy control and
other disease patients which remain to be investigated in the
future (supplemental Fig. S18A). In addition, only patients
being treated with R-CHOP/R-CHOP–like treatment regimens
were studied. Thus, the prognostic value of TIMP-1 may not
apply to other treatments. Finally, other health conditions that
could affect the prognosis of DLBCL patients, such as the
healthy history and Epstein-Barr virus infection, were not
investigated in this study.
CONCLUSION

In this work, we demonstrated the utility of plasma prote-
omics. In addition to showcasing DLBCL heterogeneity,
plasma proteomics enabled the identification of circulating
biomarkers that could be used for risk stratification in DLBCL
patients receiving R-CHOP treatment. Our proteomics pipe-
line could serve as a paradigm for translational studies of
different cancers in the future. Moreover, we identified TIMP-1
as a prognostic biomarker that could be used in conjunction
with the current IPI scoring system to accurately identify pa-
tients who would benefit from R-CHOP treatment accurately.
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