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Summary
Background Adolescent idiopathic scoliosis (AIS) affects up to 5% of the population. The efficacy of school-aged
screening remains controversial since it is uncertain which curvatures will progress following diagnosis and
require treatment. Patient demographics, vertebral morphology, skeletal maturity, and bone quality represent
individual risk factors for progression but have yet to be integrated towards accurate prognostication. The
objective of this work was to develop composite machine learning-based prediction model to accurately predict
AIS curves at-risk of progression.

Methods 1870 AIS patients with remaining growth potential were identified. Curve progression was defined by a
Cobb angle increase in the major curve of ≥6◦ between first visit and skeletal maturity in curves that exceeded 25◦.
Separate prediction modules were developed for i) clinical data, ii) global/regional spine X-rays, and iii) hand X-rays.
The hand X-ray module performed automated image classification and segmentation tasks towards estimation of
skeletal maturity and bone mineral density. A late fusion strategy integrated these domains towards the prediction of
progressive curves at first clinic visit.

Findings Composite model performance was assessed on a validation cohort and achieved an accuracy of 83.2%
(79.3–83.6%, 95% confidence interval), sensitivity of 80.9% (78.2–81.9%), specificity of 83.6% (78.8–84.1%) and an
AUC of 0.84 (0.81–0.85), outperforming single modality prediction models (AUC 0.65–0.78).

Interpretation The composite prediction model achieved a high degree of accuracy. Upon incorporation into school-
aged screening programs, patients at-risk of progression may be prioritized to receive urgent specialist attention,
more frequent follow-up, and pre-emptive treatment.
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Introduction
Adolescent idiopathic scoliosis (AIS) is a complex
three-dimensional spinal deformity diagnosed when
coronal angulation of the spine (Cobb angle) exceeds
10◦ upon standing spinal radiographs.1 AIS has an
overall population prevalence of up to 5%,2 and dete-
rioration of the curve following presentation occurs in
as many as two-thirds of patients.3 Severe curves >50◦
are recommended to receive surgery as they tend to
*Corresponding author. Department of Orthopaedics and Traumatology, Th
E-mail address: gkshea@hku.hk (G.K.-H. Shea).
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progress beyond skeletal maturity.4 Skeletally imma-
ture patients with curves ≥25◦ are prescribed bracing
to prevent or delay curve progression. As there is
prognostic uncertainty in minor curvatures <25◦ and
remaining skeletal growth, doctors adopt a strategy of
watchful waiting.5 Patients with minor curvatures
comprise the majority of referrals in countries with
school-aged screening programs.6 The cost-
effectiveness of universal screening for AIS has been
e University of Hong Kong, China.
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Research in context

Evidence before this study
We searched PubMed on May 5, 2023, using the search terms
“deep learning” OR “machine learning” AND “adolescent
idiopathic scoliosis curve progression” without language or
date restrictions. Previous studies applying artificial
intelligence to predict curve progression were predominantly
limited to single predictive modalities which included spinal
radiographs, 3D spinal parameters, demographic or clinical
characteristics, and molecular biomarkers. Approaches
utilising information fusion of readily available radiological
and clinical parameters had yet to be reported.

Added value of this study
This study applied machine learning techniques upon multiple
clinical and radiological domains representing risk factors for

scoliosis curve progression. All included parameters were
readily available, and automated analysis of hand X-rays
provided a means to estimate both bone mineral density as
well as skeletal age. The resultant composite deep learning
model achieved performance figures surpassing that of
comparable single and bimodal prediction platforms.

Implications of all the available evidence
Our platform promises point-of-care prognostication of AIS
curvatures. The potential for pre-emptive treatment and a
customized surveillance plan, particularly in locales with
population-wide screening, represents a substantial
advancement in personalized medicine.
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challenged when accurate prognostication following
diagnosis remains elusive.3

Machine learning approaches have been utilised to
predict AIS curvature progression. A random forest
regression method applied upon reconstructed 3D
models predicted for changes in spinal morphology over
time.7 Others have incorporated biomechanical analysis8

and dynamic patient-specific parameters9 together with
imaging features to predict curve progression. Com-
puter vision has the advantage of automating extraction
of imaging features for modeling via big data-driven
training approaches. As such, we previously utilised
an attention-based capsule neural network (Efficient-
CapsNet) upon the major curve apex of spinal radio-
graphs of AIS patients to classify progressive (P) and
non-progressive (NP) curves at first clinic visit.10 Model
prediction performance resulted from the recognition of
increased vertebral rotation and torsion as indicators of
progression risk.10,11 Similarly, a deep convolutional
neural network (DCNN) has been applied upon whole
spinal X-rays for AIS prognostication.12 Nevertheless in
these prior paradigms, point-of-care application remains
hindered by the necessity for 3D reconstruction, and by
mediocre performance when models fail to incorporate
risk features for progression beyond spinal radiographic
features, which include age, gender, skeletal maturity,
and bone mineral density.2,13,14

We hypothesized that improved prediction of curve
trajectory at first clinic visit following scoliosis screening
would result from the development of a composite
fusion model accounting for such diverse risk factors.
Hand X-rays convey information relevant to the esti-
mation of skeletal maturity as well as bone mineral
density. Distal radius and ulna (DRU) grading is an
ordinal system that has excellent sensitivity in prog-
nosticating skeletal growth and AIS progression risk,15

and may be tackled as an image classification prob-
lem. Additionally, the 2nd metacarpal cortical index
(2MCI) has been validated to be a simple estimate of T-
scores when routine DXA scanning is infeasible for AIS
prognostication.16,17

To formulate a composite prediction platform, we
generated an automated pipeline for DRU grading and
2MCI quantification upon left hand X-rays. These were
fused to selected clinical data and attention-based
convolution neural networks (Attention-ResNet), the
latter trained to recognize imaging features upon whole
spine X-rays and the major curve apex. Accurate prog-
nostication of scoliosis curvatures is essential towards
the formulation of a patient-specific management plan
following presentation.
Methods
Ethical statement
Ethical approval was obtained from the Institutional
Review Board (IRB) of The University of Hong Kong/
Hong Kong West Cluster (Reference number UW22-
691). Informed consent was waived as anonymised
retrospective patient data was utilised.

Patient recruitment
Three patient cohorts were identified for this study
(Supplementary Figure S1). The first cohort (‘curve
progression cohort’) contained 710 patients receiving
follow-up in 3- to 6-month intervals, enabling labelling
of major curve trajectories from first clinic presentation
until skeletal maturity. Additional inclusion criteria
consisted of (1) diagnosis of AIS, (2) Cobb angle be-
tween 11◦ and 30◦ upon standing posteroanterior X-rays
at first visit, (3) DRU grading ≤ R9U8 to demonstrate
growth potential, and (4) regular follow-up concluding at
skeletal maturity (R11U9) or upon receiving surgery.
This cohort was utilised to develop the spinal X-ray
radiomics modules and identified from amongst scoli-
osis clinic attendees between October 2015 and
www.thelancet.com Vol 95 September, 2023
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September 2021, of which more than 90% were referrals
from a two-tiered school-aged screening program.18 We
measured the Cobb angle upon standing whole spine
radiographs of the largest coronal curvature by deter-
mining the upper and lower end vertebras and drawing
a line parallel to the respective upper and lower end-
plates, as has been described in the Spinal Deformity
Study Group radiographic manual. Curve progression
(P) was defined by an increase ≥ 6◦ between first visit
and skeletal maturity, as well as a Cobb angle ≥25◦ at
skeletal maturity. Non-progression (NP) was defined
by < 6◦ of curvature increase or a Cobb angle <25◦ at
skeletal maturity. Patients with NP curves according to
these definitions who received bracing were also
excluded. With a 7:3 division ratio, 490 patients who
presented to the clinic before 15 October 2019 were
designated for model training and 5-fold cross-
validation, while the remaining 220 patients served as
an independent testing set.

The second cohort (‘hand X-ray cohort’) consisted of
1160 patients aged 8–15 with left hand X-rays utilised
for training and testing of the automated DRU grading
and 2MCI calculation pipelines. These patients were
divided 6:1:3 into a training set (n = 696), validation set
(n = 116) and testing set (n = 348). Hand X-rays of poor
quality (over/underexposure) or exhibiting bony de-
formities were excluded. A third cohort (‘hand X-ray/
DXA cohort’) consisted of 326 adult patients with DXA
scans and left-hand X-rays obtained within a 1-month
period. Similarly, patients with hand X-rays of poor
imaging quality (over/underexposure) or exhibiting
bony deformities/fractures were excluded. After exclu-
sion, 193 patients remained to validate the correlation
between DXA T-scores and automated 2MCI.

Data pre-processing
Conventionally, 2nd metacarpal index (2MCI) and DRU
grading are manually measured (Fig. 1A and B). In
preparation for automated hand X-ray analysis, an
experienced orthopaedic researcher used Roboflow to
label regions of interest (ROIs) corresponding to i) the
2nd to 4th metacarpals, and ii) distal radial and ulnar
physis. Pixel-level segmentation labels of the second
metacarpus and the corresponding intramedullary mid
diaphysis were subsequently labelled. Skeletal maturity
indices (DRU and Sanders staging) from both the hand
X-ray cohort as well as curve progression cohort were
labelled by two experienced orthopaedic researchers.

Features contained within the major curve apex of
posteroanterior (PA) spinal radiographs predict curve
progression due to their capacity to convey rotation and
torsion. On the other hand, whole spine X-rays facili-
tate assessment of global spinal imbalance as a risk
factor for curve progression.12 Therefore, we extracted a
regional spinal X-ray ROI (300 × 200-pixel fixed win-
dow) centred upon the apical vertebrae/disc of the
www.thelancet.com Vol 95 September, 2023
major curve as a, together with at least two adjacent
vertebras above and below with lateral rib articulations
(Fig. 1C). We also extracted a global spinal X-ray ROI
(300 × 300-pixel fixed window) covering T1 to the
sacrum together with clavicles, ribs, and pelvis. All ROI
images were saved as single channel grayscale image in
JPG formatting.

Information related to the clinical parameter-based
prediction module (age, gender, menarche status,
Sanders stage) was retrieved from electronic patient
records (EPR), whilst Cobb angles and coronal shift (C7
plumb line to central sacral vertical line; C7PL-CSVL)
were measured by two orthopaedic surgeons.

Pipeline for automated analysis of hand X-rays
Automated calculation of second metacarpal index (2MCI)
The first step was automated extraction of the 2nd to
4th metacarpals (Supplementary Figure S2A) upon pre-
labelled left-hand X-rays via an open-source object
detection framework (Yolov5, ultralytics.com/yolov5).
We then implemented an attention mechanism-based
encoder-decoder deep structure (Attention U-Net) to
achieve pixel-level segmentation of the second meta-
carpal (Supplementary Figure S2B), containing both
cortical and intramedullary regions. The encoder con-
sisted of five convolution layers followed by a pooling
dimension reduction operation. Multi-scale feature-
maps captured contextual information and were
merged through skip connections to combine coarse-
and fine-level dense predictions. Attention gating was
introduced before the concatenation operation to
disambiguate irrelevant responses and preserve acti-
vations salient to second metacarpal segmentation. The
decoder increased feature map dimensions through
up-sampling operations to extract semantic informa-
tion from combined feature maps and generated a
segmented mask.

Quantification of 2MCI (Supplementary Figure S2C)
proceeded from the outputted mask via a zero-padding
resize operation of metacarpal crops to generate
400 × 400-pixel inputs. The optimized Attention-U-
Network generated segmentation results of the second
metacarpal with zero-pixel value black backgrounds.
Rule-based image rotation was applied so the diaphyses
were orientated vertically. The middle-third of the 2nd
metacarpal was extracted and resized into a 128 × 128-
pixel ROI. Another pretrained Attention-U-Net
received the mid-diaphyseal ROIs to predict segmenta-
tion masks of the intramedullary portion. 2MCI could
then be calculated as a ratio of mid-metacarpal total and
intramedullary area according to the formula:

2MCI= 1−

number of pixels in mid−diaphysis intramedullary segment

number of pixels in total mid−diaphysis segment
3
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Fig. 1: Definition of 2nd metacarpal index (2MCI) and X-ray regions of interest (ROI).

Articles

4

Automated grading of distal radius and ulna physeal
maturity
We first trained an open-source object detection frame-
work (Yolov5, ultralytics.com/yolov5) to automatically
extract the distal radius and ulna regions upon pre-
labeled left-hand X-rays (Supplementary Figure S2A),
and thereafter, applied a Residual Convolutional Neural
Network (ResNet) for assessment of DRU grading
(Fig. 2A). This was approached as a regression problem
with continuous output since X-ray changes were grad-
uated. After feature mapping by fully connected layers,
distal radius and ulna grading estimates were attained as
numerical outputs rounded to the nearest integer.

Composite model architecture
Automated assessment of 2MCI and DRU was achieved
as described previously. With regards to spinal
radiographs, two residual attention networks (Attention-
ResNet-56)19 were implemented to receive the whole
spine and major curve apex ROIs of P and NP curva-
tures (Fig. 1C). Image encoding blocks in the pretrained
Attention-ResNet models were extracted with individual
network weights generated for both the whole spine and
curve apex ROIs (Fig. 2C–E).

With regards to the composite model, values ach-
ieved for 2MCI and DRU (Fig. 2A) were integrated
with clinical variables (Fig. 2F) and then encoded by a
multilayer perceptron (MLP). A late fusion strategy
was employed to transfer pretrained weights (see
below) from global and regional spine X-rays. High
dimensional features from global and regional spinal
X-rays as well as MLP-encoded variables were flattened
and catenated into a single vector. Fully connected
neural networks with attention activation were
www.thelancet.com Vol 95 September, 2023
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Fig. 2: Overview of composite prediction model architecture. PA = posteroanterior; P = progressive; NP = non-progressive; DRU = distal radius
and ulnar; MCI = metacarpal index; MLP = Multilayer perceptron.
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subsequently employed to prognosticate progression/
non-progression.

Composite model training and validation
A three-stage training/validation/testing scheme was
implemented on the object detection model, 2MCI
calculation model, and DRU staging model. Further-
more, a two-stage transfer learning strategy was pro-
posed for training upon the attention-ResNet-based
spinal radiograph module. Global or regional ROIs of
spine X-rays taken upon skeletal maturity (NP group) or
immediately prior to treatment (P group) were compiled
to pre-train the attention-ResNets, followed by fine-
tuning of pre-trained weights on the dataset of skele-
tally immature patients with X-rays taken at first clinic
visit. Five-fold cross-validation was employed for
optimal hyperparameter searching. There were 3136
paired data for training in each fold of cross-validation,
which included original images and those generated by
modification of brightness, contrast, sharpness, as well
as flip horizontal images. Regarding composite model
training, image feature encoding weights were retained
from pretrained values, and only MLP weights for
feature fusion were optimized for under the data
augmentation and 5-fold cross-validation strategy
described above. The proposed model was implemented
by Tensorflow and Keras frameworks and based upon
Python 3.8. The training process was conducted on a
www.thelancet.com Vol 95 September, 2023
server equipped with two NVIDIA Tesla T4 GPUs and
128 GB RAM. In order to assess erroneous predictions,
3D reconstruction was conducted by a, orthopaedic
researcher using sterEOS software (v1.6) upon biplanar
X-rays obtained at first clinic visit.20

Statistical analysis
Wilcoxon rank sum test was conducted upon continuous
and ordinal variables, whilst Chi-squared test was con-
ducted upon categorical variables. Logistic regression
was performed for covariate adjustment towards prog-
nostication of curve trajectory using 2MCI. Spearman
correlation test was conducted upon estimated 2MCI
and the manually measured ground truth amongst the
adult population. SPSS (version 28.0.1) was used for
statistical analysis. All statistical tests were two sided and
a P-value <0.01 was determined as the threshold for
statistical significance relating to model performance,
which was relaxed to <0.05 for analysis of clinical pa-
rameters resulting erroneous trajectory predictions.

The segmentation model for 2MCI calculation was
evaluated by IoU measures (Intersection Over Union) in
comparison to manually measured ground truths. The
DRU grading model was evaluated by mean absolute
percentage error in comparison to manually graded
ground truths. Single modality and composite model
prediction performance was evaluated via measures of
accuracy, sensitivity, specificity, and area under the
5
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curve (AUC) upon receiver operator characteristic
(ROC) curves. Five-times repeated model training using
optimized hyper-parameters together with bootstrap
sampling (n = 10,000) on the independent testing set
was employed to generate 95% confidence intervals.

Role of funders
Funding provided by The Society for the Relief of
Disabled Children enabled for the recruitment of grad-
uate students and research assistants to perform the
research. The funders had no role in study design, data
collection, data analyses, interpretation, nor writing of
report.

Results
Demographics of the study cohort
Clinical details regarding the ‘curve progression’ cohort
are summarized in detail upon Table 1. Average age at
first clinic presentation was 12.82 ± 1.44 and the cohort
was female dominant (72.5%). According to our study
criteria, 307 out of 710 patients (43.2%) demonstrated
Variable Combined Cohort

Number of patients 710

Age 12.82 ± 1.44

Gender

Male 195

Female 515

Skeletal Maturity

Distal radius grade 7.76 ± 0.92

Distal ulna grade 6.48 ± 0.86

Sanders score 4.52 ± 1.89

Risser sign 1.47 ± 0.77

Menarche status

Pre (at first visit) 162

Post (at first visit) 353

Months post menarche 13.73 ± 9.59

Second metacarpal index

Manually measured 0.49 ± 0.12

Automated 0.48 ± 0.06

Coronal deformity

Initial Cobb angle (◦)a 20.54 ± 4.08

Final Cobb angle (◦)b 26.67 ± 9.49

C7PL-CSVL (mm) 13.3 ± 6.9

Types of scoliotic curve RT (253)

RTL (75)

LL (50)

LTL (134)

RT-LL (103)

LT-RL (39)

Triple (14)

Other (42)

Bold indicates P < 0.01. RT: right thoracic curve; RTL: right thoracolumbar; LL: left lum
right lumbar. aInitial Cobb angle of the major curve. bFinal Cobb angle of the major cur
surgery for P cases.

Table 1: Characteristics of the patient cohort recruited for composite model
curve progression, and final Cobb angles differed by
more than 14◦ (35.12◦ ± 7.58◦ in progressors vs. 20.24◦
± 4.39◦ in non-progressors, P < 0.001, Wilcoxon rank
sum test). The NP group was significantly more skele-
tally mature than the P group in accordance with DRU
and Sanders grading (P < 0.001, Wilcoxon rank sum
test) but not Risser score (P = 0.052, Wilcoxon rank sum
test). The P group was more likely to be pre-menarchal
at first clinic visit (P < 0.001, Chi-squared test),
demonstrated lower values for manually measured
2MCI (P < 0.001, Wilcoxon rank sum test), and exhibi-
ted greater coronal shift (P < 0.001, Wilcoxon rank sum
test) than the NP group.

Performance of automated hand X-ray pipeline
Quantification of 2MCI
The pretrained Attention-U-Net achieved an IoU of
94.7% (94.2–95.5%; 95% CI) for second metacarpal
segmentation in comparison to the ground truth. An
IoU of 98.6% (97.6–98.9%, 95% CI) and 97.7% (96.5%–

98.2%) was respectively attained in segmenting the mid-
P group NP group P value

307 403

12.23 ± 1.34 13.27 ± 1.30 <0.001

0.048

72 123

235 280

7.4 ± 0.94 8.0 ± 0.81 <0.001

6.15 ± 0.8 6.73 ± 0.8 <0.001

3.49 ± 1.56 5.22 ± 1.77 <0.001

1.39 ± 0.79 1.71 ± 0.6 0.052

<0.001

130 32

105 248

10.43 ± 7.84 14.42 ± 9.8 0.045

0.47 ± 0.09 0.51 ± 0.11 <0.001

0.47 ± 0.06 0.50 ± 0.06 <0.001

21.95 ± 4.08 19.46 ± 3.74 <0.001

35.12 ± 7.58 20.24 ± 4.39 <0.001

13.6 ± 7.7 12.8 ± 4.2 <0.001

RT (107) RT (146) 0.558

RTL (34) RTL (41)

LL (23) LL (27)

LTL (56) LTL (78)

RT-LL (44) RT-LL (59)

LT-RL (17) LT-RL (22)

Triple (7) Triple (7)

Other (19) Other (23)

bar; LTL: left thoracolumbar; RT-LL: right thoracic-left lumbar; LT-RL, left thoracic-
ve upon post-maturity follow-up in NP cases, and prior to initiating of bracing or

development.
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diaphyseal region and intramedullary portion of the
mid-diaphysis. Pixel segmentation error predominantly
occurred over the metacarpal head and base regions. As
a proof-of-principle that automated 2MCI calculations
approximated BMD, we compared automated 2MCI
results to DXA scores in an adult population. Spearman
correlation testing (Supplementary Figure S3) revealed
moderate correlation with T-scores at the left femoral
neck (n = 189, r = 0.460; P < 0.001), left total hip
(n = 190, r = 0.470; P < 0.001) and left trochanter
(n = 103, r = 0.400; P < 0.001). Subsequently, 2MCI
scores were ascertained for P and NP patients. 2MCI
scores adjusted by logistic regression for gender, age
and DRU staging indicated that it was an independent
factor for curve progression (0.47 ± 0.06 in P group,
0.50 ± 0.06 in NP group; P = 0.002, Wilcoxon rank sum
test), with an adjusted odds ratio of 0.01 (0.001–0.19,
95% CI).

Distal radius and ulna physeal grading
Classification performance of the ResNet DRU assess-
ment model was evaluated in the curve progression
cohort compared to the manually labelled ground truth.
The model achieved an accuracy of 86.1% (84.3–87.0%;
95% CI), specificity of 81.8% (80.1–82.9%), and sensi-
tivity of 85.2% (83.9–86.1%) for radius staging, and an
accuracy of 85.4% (84.7–87.0%; 95% CI), specificity of
75.6% (74.3–76.4%), and sensitivity of 91.25%
(89.6–92.4%) for ulnar staging. This corresponded to a
mean absolute percentage error of 5.35 ± 2.83 and
5.92 ± 3.9 for distal radius and ulna grading respectively.
Confusion matrices of automated DRU grading in
comparison to manual labels are shown in
Supplementary Figure S4.

Evaluation of composite prediction model
performance
Prediction task performance was evaluated upon the
composite platform in comparison to single and
bimodal prediction domains. Mean values for model
performance following five repeated experiments are
Prediction platform Accuracy (95% CI)

Single modality prediction

Clinical parameters 69.5% (66.2–71.9%)

Atte-ResNet upon whole spine 73.4% (71.3–74.8%)

Atte-ResNet upon curve apex 77.6% (74.5–78.2%)

Efficient-CapsNet 71.8% (70.1–72.7%)

Bimodal prediction

Atte-Resnet (whole spine) + clinical parameters 77.8% (75.7–78.2%)

Atte-Resnet (Whole spine + curve apex) 76.4% (74.3–77.6%)

AtteResnet (curve apex) + clinical parameters 80.1% (78.6–81.2%)

Composite prediction

Definitive composite model 83.2% (79.3–83.6%)

Table 2: Performance comparison between single, bimodal, and composite p
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summarized in Table 2, with corresponding receiver
operator characteristic (ROC) curves shown in Fig. 3.

Regarding single modality prediction, performance
of a logistical regression model utilising clinical data
alone (age, gender, menarche status, Sanders stage,
automated DRU grading/2MCI) demonstrated an accu-
racy of 69.5% (66.2–71.9%; 95% CI), sensitivity of 68.8%
(66.5–72.1%), specificity of 71.4% (69.5–73.2%), and
AUC of 0.65 (0.63–0.69). Attention ResNet applied upon
the whole spine ROI achieved an accuracy of 73.4%
(71.3–74.8%; 95% CI), sensitivity of 68.7% (64.6–69.2%),
specificity of 74.0% (72.6–76.7%), and AUC of 0.74
(0.69–0.77). Attention Resnet applied upon the major
curve apex achieved an accuracy of 77.6% (74.5–78.2%;
95% CI), sensitivity of 78.4% (74.0–76.2%), specificity of
75.2% (75.8–79.6%) and AUC of 0.78 (0.75–0.79). We
also evaluated the performance of our previously
described Efficient CapsNet model,10 which achieved an
accuracy of 71.8% (70.1–72.7%; 95% CI), sensitivity of
70.2% (69.1–72.4%), specificity of 72.7% (70.7–73.8%)
and AUC of 0.73 (0.71–0.74) upon the dataset.

Incorporation of an additional prognosticative
domain improved upon model performance. The com-
bination of global spine ROI and clinical data with a late
fusion strategy achieved an accuracy of 77.8%
(75.7–78.2%; 95% CI), sensitivity of 75.1% (76.2–78.6%),
specificity of 79% (77.1–79.7%) and AUC of 0.78
(0.74–0.81). The combination of the regional spine ROI
(major cure apex) together with clinical data achieved an
accuracy of 80.1% (78.6–81.2%; 95% CI), sensitivity of
78.1% (76.2–78.6%), specificity of 82.2% (80.4–82.7%)
and AUC of 0.81 (0.78–0.83). Multiscale performance
(combination of global and regional spine ROIs) did not
result in much improvement compared to the prior
combination of clinical and radiological domains, and
only achieved an accuracy of 76.4% (74.3–77.6%; 95%
CI), sensitivity of 74.3% (72.7–75.1%), specificity of
78.1% (77.2–79.6%) and AUC of 0.79 (0.75–0.81).

The composite prediction model combining multi-
scale spinal X-rays, hand X-rays, and clinical data ach-
ieved the best performance figures. Model accuracy was
Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

68.8% (66.5–72.1%) 71.4% (69.5–73.2%) 0.65 (0.63–0.69)

68.7% (64.6–69.2%) 74.0% (72.6–76.7%) 0.74 (0.69–0.77)

75.2% (74.0–76.2%) 78.4% (75.8–79.6%) 0.78 (0.75–0.79)

70.2% (69.1–72.4%) 72.7% (70.7–73.8%) 0.73 (0.71–0.74)

75.1% (76.2–78.6%) 79.0% (77.1–79.7%) 0.78 (0.74–0.81)

74.3% (72.7–75.1%) 78.1% (77.2–79.6%) 0.79 (0.75–0.81).

78.1% (76.2–78.6%) 82.2% (80.4–82.7%) 0.81 (0.78–0.83)

80.9% (78.2–81.9%) 83.6% (78.8–84.1%) 0.84 (0.81–0.85)

rediction models.
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Fig. 3: ROC curves for composite prediction model in comparison to single modal and bimodal prediction models.
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83.2% (79.3–83.6%; 95% CI), sensitivity was 80.9%
(78.2–81.9%), specificity was 83.6% (78.8–84.1%) and
AUC was 0.84 (0.81–0.85). ROC (receiver operator
characteristic) curves upon 5-fold cross validation ach-
ieved an AUC of 0.87 (0.83–0.91).

Analysis of improved prediction performance upon
the composite model
We identified false positive (FP) and false negative (FN)
results based on three single modality prediction models
(clinical parameters, global spine X-ray ROI and
regional spine X-ray ROI) which were correctly labelled
by composite prediction. The top 15% of corrected
predictions (with greatest variation in output estimators
between single modal and composite model) were
identified from the independent testing dataset as well
as each validation fold. Clinical parameters were
retrieved from these patients, and 3D reconstruction of
the spinal column was performed to facilitate analysis of
radiological variables.

As shown in Supplementary Table S1, FN results
from the clinical parameters-based model differed from
the NP group in apical vertebral rotation and torsion.
Correct labelling by the composite model indicated the
capacity of an additional radiomics-based module to
recognize and weigh these imaging factors towards ac-
curate prognostication. When attention ResNet alone
was applied upon global spine ROIs, FNs resulted when
imaging features failed to account for significantly lower
age and skeletal maturity (reflected by DRU and Sanders
scores). Upon ResNet analysis of the curve apex alone,
FNs exhibited a significant reduction in 2MCI, impli-
cating osteopenia as an unrecognized risk factor. As
summarized in Supplementary Table S2, the analysis of
FPs similarly demonstrated the capacity of the com-
posite predictive model to identify and weigh multiple
discordant prediction domains and in so doing improve
upon overall performance.
Discussion
AIS is a complex disease with genetic, metabolic,
biomechanical, and environmental theories having been
proposed to explain its aetiology.2 The objective of our
present work was to utilise machine learning upon
multiple clinical and radiological risk factors towards
accurate prediction of AIS curve trajectories at first
clinic visit. Our platform facilitates point-of-care prog-
nostication to direct the management of AIS in skele-
tally immature patients. At-risk patients may receive
urgent referral to specialist centres for close radiological
surveillance or pre-emptive treatment. On the contrary,
patients with NP trajectories may receive less frequent
clinical surveillance towards safe and efficient allocation
of healthcare resources.

The latest recommendation statement from The
United States Preventive Services Task Force (USPST)
in 2018 upgraded the evidence for scoliosis screening
from “D” (discouraged) to “I” (uncertainty about the
balance of benefit and harms of the service).3 Literature
supporting the diagnostic accuracy of simple screening
tests as well as the efficacy of brace treatment or
scoliosis-specific exercises was tempered by lack of
direct evidence regarding the cost-effectiveness and
long-term beneficial outcomes for AIS treated in
adolescence.21 In response to these findings, many have
indicated a pressing need for further research on scoli-
osis prognostication towards guiding treatment initia-
tion.22 To the best of our knowledge, this is the first
study to apply advances in digital medicine for scoliosis
prognostication that has achieved performance figures
that may facilitate triage and direct early intervention. In
the context of screening programs, at-risk patients may
next receive pre-emptive bracing21 or exercise treat-
ment23 as evidence-based interventions, and surveillance
intervals may be adjusted such that patients at low-risk
of progression are scheduled for longer follow-up in-
tervals due to concerns about the hazards of regular
www.thelancet.com Vol 95 September, 2023
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radiation exposure.24 Conversely in locales that lack
screening and where experience in managing scoliosis
may be lacking, our prognostic platform guides the non-
specialist as to whether urgent attention is required.
These amount to providing personalized care across a
variety of healthcare contexts.

Introducing attention mechanisms to convolution
neural networks (CNN) represents a recent advance-
ment in computer vision model architectures to sup-
press irrelevant regions in an input image while
highlighting salient features.25 Both attention-based
CNNs and deep neural networks were employed in
our prediction modules. The radiomics component of
the composite model was achieved by integration of
multiple pretrained feature extraction networks followed
by fine-tuning. Hand X-rays provided an additional
dimension for analysis in estimating skeletal maturity as
well as bone mineral density. Whilst osteopenia has
been associated with AIS progression risk,14 2MCI had
not previously been utilised towards AIS prognostica-
tion. Our composite model achieved an accuracy,
sensitivity, and specificity that outperformed single
modal and bimodal prediction models, as well our pre-
viously described CapsuleNet-based architecture.10

Compared to CapsuleNet, ResNet is more favourable
towards composite integration26 whilst avoiding over-
fitting. In contrast to other imaging-based prognostica-
tion systems, there was no need to rely upon biplanar
imaging systems,27 3D reconstruction,27 DXA scanning14

and operator-dependent ultrasonography.28 Despite
extensive work performed on the genetics of AIS,29–31

this has failed to yield loci of sufficient reproducibility
and penetrance for clinical prognostication.

Our model would benefit from external validation
since training was performed on a predominantly
Southern Chinese population. Fine-tuning would likely
be required upon patients of other ethnicities due to
differences in body build and pubertal development.32

Prospective studies would consolidate findings and
have important ramifications as to whether population-
wide screening should be more widely adopted. An
underlying assumption towards pre-emptive interven-
tion in response to model prediction is that curves
deemed to be progressive would respond to bracing or
exercise; whilst intuitive, this needs to be demonstrated.
Our findings are also specific to AIS alone, as the
pathophysiology and natural history of early onset
scoliosis, for example due to congenital and neuro-
muscular causes, is distinct.33 In future model re-
iterations, an objective should be to reveal the timing,
magnitude, and rate of curve deterioration.

Conclusion
We demonstrated that a composite machine learning
model could achieve accurate prediction of AIS curve
trajectories. This promises to facilitate point-of-care
prognostication to guide management. The potential
www.thelancet.com Vol 95 September, 2023
for pre-emptive treatment and a personalized surveil-
lance plan represents a substantial advancement in
disease management.
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