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ABSTRACT High error rates of viral RNA-dependent RNA polymerases lead to diverse 
intra-host viral populations during infection. Errors made during replication that are 
not strongly deleterious to the virus can lead to the generation of minority variants. 
However, accurate detection of minority variants in viral sequence data is complicated 
by errors introduced during sample preparation and data analysis. We used synthetic 
RNA controls and simulated data to test seven variant-calling tools across a range of 
allele frequencies and simulated coverages. We show that choice of variant caller and use 
of replicate sequencing have the most significant impact on single-nucleotide variant 
(SNV) discovery and demonstrate how both allele frequency and coverage thresholds 
impact both false discovery and false-negative rates. When replicates are not available, 
using a combination of multiple callers with more stringent cutoffs is recommended. 
We use these parameters to find minority variants in sequencing data from SARS-CoV-2 
clinical specimens and provide guidance for studies of intra-host viral diversity using 
either single replicate data or data from technical replicates. Our study provides a 
framework for rigorous assessment of technical factors that impact SNV identification 
in viral samples and establishes heuristics that will inform and improve future studies of 
intra-host variation, viral diversity, and viral evolution.

IMPORTANCE When viruses replicate inside a host cell, the virus replication machinery 
makes mistakes. Over time, these mistakes create mutations that result in a diverse 
population of viruses inside the host. Mutations that are neither lethal to the virus 
nor strongly beneficial can lead to minority variants that are minor members of the 
virus population. However, preparing samples for sequencing can also introduce errors 
that resemble minority variants, resulting in the inclusion of false-positive data if not 
filtered correctly. In this study, we aimed to determine the best methods for identifica
tion and quantification of these minority variants by testing the performance of seven 
commonly used variant-calling tools. We used simulated and synthetic data to test their 
performance against a true set of variants and then used these studies to inform variant 
identification in data from SARS-CoV-2 clinical specimens. Together, analyses of our data 
provide extensive guidance for future studies of viral diversity and evolution.
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L arge population sizes, high replication rates, and error-prone polymerases all 
contribute to the generation of sequence diversity found in viral infections (1–5). 

Natural selection acts on this diversity, contributing to viral evolution. RNA viruses have 
some of the highest mutation rates among viruses (1, 6, 7). To replicate their genomes, 
RNA viruses must encode their own RNA-dependent RNA polymerases, which often 
lack proofreading capabilities. Coronaviruses are a notable exception, as they possess 
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a distinct protein with 3′–5′ exonuclease capability (1, 8, 9). Most errors made during 
replication—up to 40% in RNA viruses—are lethal (10, 11). Beneficial mutations 
make up a much smaller proportion, and these, along with neutral mutations, comprise 
the substitution rate. This substitution rate can be used to estimate the viral evolution
ary rate, an important calculation in considering viral spread, pandemic potential, and 
vaccine design (4, 12).

Due to the large population sizes of RNA viruses, intra-host bottlenecks, and genetic 
drift, genetic diversity within a host is dynamic, with frequencies of mutations constantly 
rising and falling (13). Mutations can lead to changes in the consensus sequence, e.g., 
where the allele frequency (AF) is greater than 50%, and these specific sets of muta
tions separate globally circulating virus populations into clades. Mutations in the virus 
genomes that are not the majority within an infected host (i.e., present at lower than 
50% frequency) represent minority variants. Deep sequencing enables the capture of 
intra-host variation, both at the majority and minority level, enabling the identification 
of variants and estimation of their frequency. Studying intra-host variation can help 
in tracking viral spread, estimating population bottleneck sizes, and identifying key 
amino acid changes that differentiate new viral strains (14–17). Additionally, minority 
variants can highlight regions of the genome under selection or regions with increased 
mutational tolerance, as well as allow for detection of subtle population shifts within 
the infected host and discovery of possible drug resistance mutations (18, 19). Thus, 
information gleaned from studying intra-host viral diversity has major implications for 
vaccine, monoclonal antibody, and drug development.

Given the many applications of studying intra-host viral diversity, accurately 
identifying and quantifying viral variants is essential. Precise identification of viral 
variants, especially those at low frequencies, is complicated by the fact that viral genome 
sequencing often requires reverse transcription and amplification, which, along with 
library preparation and the sequencing process, are error prone. Thus, distinguishing 
true sequence variation from technical and experimental noise is challenging. Typically, 
several ad hoc metrics are used to filter variants, such as applying frequency and 
coverage cutoffs to sequencing data; however, the frequency at which identified variants 
are considered valid can vary widely (20–26). Most studies using large sample cohorts, 
or performing analyses on publicly available data, generally use single replicate data, 
despite evidence suggesting that replicate sequencing may be essential for filtering 
false-positive minority variants (21). Despite the large number of studies analyzing 
minority variants in virus data, there is no consensus on what coverage cutoffs and 
AF cutoffs to use, and no large-scale studies have been performed to determine what 
thresholds lead to the highest confidence in variant identification.

In addition to the diversity of cutoffs used for single-nucleotide variant (SNV) 
identification, there is also great diversity in the variant-calling software available. Variant 
callers are often designed with specific functions in mind, such as identifying germline 
or somatic mutations in cancer genomes or SNVs in viral populations (27, 28). The 
function for which a variant caller is designed can have a significant impact on the 
statistics used and assumptions made by the software. Tools designed for detection 
of germline mutations, such as HaplotypeCaller (hc) and freebayes, must consider 
the very large reference genome, higher frequency variants, the diploid nature of the 
genome, the possibility of copy number variation, and long repetitive regions or large 
insertions or deletions (29–34). In these instances, local realignment of haplotypes may 
be most effective (27). By contrast, software used for somatic mutations in tumors, such 
as Mutect2 and Varscan, or for viral diversity, such as iVar and timo (a variant caller 
developed in our lab), use base-by-base comparisons, or a combination of this with 
haplotype-based alignment, to find lower frequency variants (21, 30, 32–35). These tools 
also may need alternative methods to reduce false-positive calls to account for PCR 
errors introduced during amplification of the viral genome (28). Due to the differences in 
bioinformatic and statistical approaches used by each variant-calling tool, identifying the 
tool that is the best fit for the specific research question being studied is essential. Some 
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tools have been tested in pairwise comparisons (21, 34); however, little work has been 
done to extensively test the performance of many available tools on different viruses, 
across sequence coverages, and at various allele frequencies in viral deep sequencing 
data.

Here, we tested seven variant callers on simulated, synthetic, and clinical deep 
sequencing data. We tested each tool across a range of coverages, allele frequencies, 
and experimental designs to determine the optimal parameters that should be used to 
decrease false-positive variant identification, without sacrificing true-positive data. To 
compare performance between a small RNA virus with a high mutation rate, and a large 
RNA virus with proofreading capability, we tested the variant callers on two viruses of 
particular interest in the viral diversity field, influenza virus and SARS-CoV-2. We find that 
choice of variant caller and use of replicate sequencing have the most significant impact 
on SNV discovery and demonstrate how both allele frequency and coverage thresholds 
impact both false discovery rate (FDR) and false-negative rate (FNR). We also provide 
guidance on best practices for leveraging deep sequencing data from public repositories 
for intra-host studies. These analyses provide a resource for studies aiming to assess 
intra-host viral diversity in SARS-CoV-2 or influenza virus, and lay the groundwork for 
similar studies in other viruses.

MATERIALS AND METHODS

Extended methods are available in the supplementary materials.

Generation of simulated data

Reads were simulated using NEAT (v2.0) by constructing a mutation, error, fragment 
length, and guanine-cytosine (GC) model for each viral type (36). The models were 
provided to NEAT gen_reads.py along with reference fasta files and a mutation rate 
of 0.009 (0.9%) for influenza virus and 0.0045 (0.45%) for SARS-CoV-2 to produce a 
“golden” variant call format (VCF) file containing a defined number of SNVs in each virus. 
Simulated random PCR errors were also added to each replicate using gen_reads.py 
(NEAT). Several copies of the replicate golden VCFs were made, each with the same 
variants but with differing allele frequencies. These VCFs were used to simulate paired 
end fastq libraries at 100,000× genome coverage, and downsampling was used to 
simulate lower coverages.

Sequences were trimmed using trimmomatic v0.36 (37), aligned to the respective 
reference genome with BWA mem v0.7.17 (38), and duplicate reads were marked using 
GATK MarkDuplicatesSpark v4.1.7.0 (39). Variants were called in each replicate with seven 
different tools, using multiple parameter configurations for each tool (Table S1). A VCF 
file containing the intersection of the two replicates was generated using bcftools isec 
(v1.9) (38). The nextflow pipeline used for data simulation, sequence processing, variant 
calling, and analysis is available at https://github.com/gencorefacility/MAD2.

Synthetic RNA generation, library preparation, and data processing

Synthetic influenza A/H1N1pdm, “wild type” (WT), and variant RNA (created by adding 
18, 14, and 14 nucleotide changes into the WT PB2, HA, and NA segments, respectively) 
were synthesized as double-stranded DNA (gBlocks) (sequences and details in Supple
mental Methods). In vitro transcription with the HiScribe T7 High Yield RNA Synthesis 
Kit (Invitrogen) was used to generate full-length synthetic negative-sense gRNA. RNA 
samples were diluted to approximately equal concentrations (~6 × 108 copies/µL). The 
three segments of WT and variant RNA were mixed at approximately equal molarity 
to generate a master-mix. This master-mix was then mixed at different proportions of 
variant to WT RNA (1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256) and serially diluted to 
6 × 103 copies/µL. Samples from 103 to 106 were sequenced and used for analyses. 
Comparison made across copy numbers was done from 106 to 104, which had the most 
complete data sets and is specified in the figure legends.
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cDNA was generated, and libraries were prepared using the Nextera XT library 
preparation kit (Nextera), with all volumes scaled down to 0.25× of the manufacturer’s 
instructions, cleaned with AMPure beads, and pooled at equal molarity. Libraries were 
sequenced on the Miseq 300 Cycle v2 using 2 × 75 pair-end reads. Samples were 
amplified and sequenced in duplicate and analyzed with the pipeline described above, 
with the addition of adapter trimming.

SARS-CoV-2 clinical sample preparation, processing, and variant calling

Total RNA was extracted from 300 µL of nasopharyngeal or mid-turbinate swabs 
collected at the National Institutes of Health (NIH) Clinical Center as part of diagnostic 
testing between 24 July 2020 and 31 March 2021 (Table S2). All samples were de-identi
fied and anonymized.

RNA from samples was extracted using the NucliSENS easyMAG automated nucleic 
acid extractor, and the viral genome was amplified using a modified version of the ARTIC 
protocol (https://artic.network/ncov-2019), and the methods are described at https://
github.com/GhedinSGS/SARS-CoV-2_analysis. All libraries were prepared as above and 
sequenced on either the Illumina MiSeq or the Illumnia NextSeq500 using either the 2 × 
150 bp or 2 × 300 bp paired end protocol. All samples were processed in duplicate.

Samples were processed with the pipeline available and described above, with the 
addition of merging the two SAM files (from A and B primer pools) for each biological 
sample into one alignment file using Picard Tools MergeSamFiles v2.17.11. Variants were 
called as above using the standard parameters for each tool (Table S1). To confirm 
our findings, replicate SARS-CoV-2 sequencing data used in a within-host diversity 
study were downloaded (PRJEB37886, PRJEB42623) (40) and aligned to the Wuhan-Hu-1 
reference genome (NC_045512.2) using Minimap2 (41). Minority variants were then 
called using iVar and timo with custom input parameters (Table S1).

RESULTS

Simulated and synthetic data provide a “true” set of minority variants to 
assess variant caller performance

To test the ability of each variant caller to accurately identify variants, it is essential to 
know the “true set” of variants within the data. With this in mind, we tested the ability 
of six popular variant-calling software packages (Freebayes, hc, iVar, Lofreq, Mutect2, 
and Varscan) and one in-house pipeline (timo) to accurately identify minority variants 
in simulated and synthetic sequencing data (Fig. S1) (21, 32–35). Single-nucleotide 
variants were simulated across three influenza virus genomes (A/H1N1, A/H3N2, and 
B/Victoria) and one coronavirus genome (SARS-CoV-2) at both defined and random allele 
frequencies and across a range of downsampled coverages (Fig. S1A and B). Furthermore, 
synthetic RNA controls of three influenza virus segments (PB2, HA, and NA) containing 
known SNVs (“variant”) were mixed with “wild-type” segments in varying amounts at 
various dilutions to create a range of allele frequencies and genome copy numbers 
(see Materials and Methods) (Fig. S1C and D). Combined, we used these synthetic and 
simulated data sets to test variant caller performance on a known set of SNVs.

We found that all callers performed poorly on the simulated data using their default 
parameters (Fig. S2). Therefore, to compare all callers equally, we used a standard set 
of permissive input parameters [min coverage = 1×, allele frequency cutoff = 0.01 (1%)] 
throughout our testing (Table S1). When assessing the F1 statistic across a range of 
simulated frequencies, most variant callers performed better at low frequencies [≤0.05 
(5%)] when the coverage was high (downsampling fraction ≥0.005 or ~500× expected 
read depth). Conversely, high frequencies were necessary for accurate variant detection 
at small downsampling fractions where the average coverage was low (Fig. 1A). A 
noticeable drop in performance was observed across most callers, particularly timo, 
at allele fractions of 0.01 (1%), even at the highest assessed coverage. A closer look 
at precision and recall for each tool at downsampling fractions 0.001 (~100× read 
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depth), 0.002 (~200×), and 0.003 (~300×) indicated that tools trade recall for precision at 
frequencies between 0.01 and 0.05 (1%–5%) (Fig. 1B). Varscan, iVar, and timo tended to 
be extremely conservative, especially at allele frequencies of 0.01 (1%). Decreasing the 
input frequency parameter from 0.01 (1%) to 0.001 (0.1%) decreased the stringency of 
timo, allowing for more input SNVs to be identified, while the performance of Varscan 
and iVar was not impacted (Fig. S2 custom input parameters, Table S1).

Simulated data lack the reverse transcription, amplification, and sequence library 
preparation steps involved in the generation of data from clinical specimens. To 
assess how these sample preparation steps, along with duplicate sequencing, and SNV 
thresholds may impact variant caller performance, we tested each tool on the synthetic 
influenza A virus (IAV) RNA data set (Fig. 1C; Fig. S1C and D). The mean and median 
read depth across gene segments were greater than 1,000× and had similar coverage 
distributions to our simulated data sets at downsampling fractions of 0.01 (~1,000×) and 
0.1 (~10,000×) (Fig. S1E). As observed in the simulated data, F1 statistics were highest 
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when the variant (var) gene segments were present at higher proportions (dilutions 
≥1:32) within the sample (Fig. 1C). Freebayes, Lofreq, HaplotypeCaller, and Mutect2 were 
the most influenced by copy number and had a notable drop in performance when used 
on the synthetic IAV data compared with the simulated data sets—demonstrating the 
importance of testing variant caller performance across multiple data types.

Frequency thresholds and sequencing replicates reduce false-positive SNVs

Previous studies have reported the necessity of establishing frequency and coverage 
thresholds as well as having replicate sequencing to decrease false-positive SNVs in 
a data set (27, 40). Given that most publicly available data consist of single replicate 
sequencing data, we aimed to establish coverage and frequency thresholds that would 
minimize the FDR and FNR to levels comparable with those observed using two 
replicates. To do this, we used both simulated and synthetic data sets with standard 
input parameters and ignored the “binocheck” requirement from timo (which requires 
variants to be found in both forward and reverse reads consistent with binomial 
sampling), allowing us to test the performance of timo on low frequency SNVs.

False-positive SNVs were found across a range of output read depths in both the 
synthetic (Fig. 2A, 40×–11,995×) and simulated (Fig. 2B; Fig. S3A, 1×–68,441×) data. 
Therefore, applying coverage cutoffs of 100×–300× did not drastically impact the 
number of false-positive calls in either the simulated or synthetic data sets (Fig. S3). 
However, coverage is important when considering SNV recall (Fig. 1B). Given that 
false-positive SNVs were primarily identified at allele frequencies less than 0.03 (3%) 
(Fig. 2A and B), applying frequency thresholds to single replicate data lowered the false 
discovery rate for all callers (Fig. 3A; Fig. S4A). However, using frequency thresholds did 
come at the cost of significantly increasing the FNR, especially when using 2% and 3% 
cutoffs, as true SNVs found at low frequencies were filtered from the data (Fig. 3B; Fig. 
S4B). In contrast, keeping only SNVs shared between the two replicates dramatically 
decreased the FDR while maintaining relatively low FNRs (Fig. 3A and B; Fig. S4A and 
B). The majority of false-positive SNVs that remained in the synthetic data after merging 
replicates was present at low frequencies (dilution factors 1:256, 1:128). Therefore, using 
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an allele frequency cutoff of 1% (0.01) on replicate sequencing data can further increase 
the confidence in SNV calls. Replicates also increased the accuracy of allele frequency 
estimation of true-positive variants found in the simulated data, especially for SNVs in 
low coverage data, where the percent error of allele frequency estimation is pointedly 
lower for all tools when using replicates (Fig. S5A). HaplotypeCaller, Lofreq, and Mutect2 
called notably higher numbers of false-positive SNVs in synthetic data, including many 
that were maintained even after merging replicates—indicating that these callers make 
consistently incorrect SNV calls (Fig. 1C; Fig. 2A; Fig. 3A). Furthermore, these three callers 
had multiple instances where true-positive SNVs were identified at high frequencies (AF 
>0.05) in one replicate and were entirely absent in the other (Fig. S5B).

The synthetic IAV data are especially well suited for testing the amount of variability 
associated with allele frequency estimation due to various experimental factors. As a 
property of the design, all variants on a segment are linked, and thus, the true allele 
frequencies are expected to be identical. By measuring the amount of variation in allele 
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frequency of the variants across each segment, we can determine which factors influence 
this estimation the most. We find that copy number does not affect the variation in 
allele frequency estimation (Fig. 3C). By contrast, the frequency of the variant has a 
pronounced effect on the accuracy of allele frequency estimation. The lower the allele 
frequency, the higher the variance in the estimation as determined by the coefficient of 
variation further justifying the use of an allele frequency cutoff of 1% (0.01) in variant 
analyses. Notably, variants located at the end of the gene segments (PB2 pos: 2280 and 
HA pos: 4), where coverage was low (Fig. S1E), or variants next to each other (PB2 pos: 
2266, 2267, HA pos: 515, 516, and NA pos: 282, 283, 284) were frequently missed by the 
tools or were found at aberrantly low frequencies when detected (Fig. S1E and S5C).

Together, these results highlight the factors that influence the accuracy of identifying 
and quantifying variants and indicate that using replicate sequencing with less stringent 
frequency cutoffs (AF ≥0.01, 1%) is the best combination to reduce the FDR while 
maintaining a low FNR (Fig. 3A and B) and for accurate allele frequency estimations 
(Fig. 3C; Fig. S5A). However, when replicate sequencing is unavailable, strict read depth 
(≥200×) and frequency (AF ≥0.03, 3%) cutoffs are necessary (Fig. 3A and B; Fig. S3A 
through D; Fig. S4A and B).

Choice of variant caller significantly impacts set and frequency of identified 
variants in real SARS-CoV-2 data using single replicate data

While simulated and synthetic data allow for testing minority variant callers and cutoffs 
in a controlled setting, real data will always be more unpredictable. Thus, after using 
simulated and synthetic data to assess variant caller performance across frequencies and 
coverages, we tested how the callers performed on SARS-CoV-2 sequence data from 
diagnostic samples. Based on the simulated and synthetic data testing, we determined 
that a coverage cutoff of 200× and an allele frequency cutoff of 0.03 (3%) in sin
gle replicate data minimized false-positive calls without sacrificing large amounts of 
true-positive data with most variant-calling tools (Fig. 3A and B; Fig. S3A through D; 
Fig. S4A). To test the variant-calling tools on high-quality data, we used only samples 
where at least 80% of the genome had a read depth over 200× coverage cutoff in both 
sequencing replicates (Fig. S6A). We used each variant-calling tool to identify minority 
variants in these samples and filtered them using a read depth cutoff of 200× and an 
allele frequency cutoff of 0.03 (3%).

We were interested in how similar the sets of identified variants were across each 
caller. As a proof of principle, we filtered the set of variants for those present above an 
allele frequency of 0.5 and at read depths greater than 5× to identify consensus changes 
(AF ≥ 50% or major variants) within the data. As expected, the tools largely agreed on the 
consensus changes within the data (Fig. S6B). There was a small set of major variants that 
the callers did disagree on; however, most of which were a result of differences in the 
way some callers identify indels or handle variant at consecutive nucleotide positions. 
For the purposes of this study, indels were excluded from the analysis. These data 
indicate that even at high allele frequencies, the variant callers disagree to some extent 
on the set of variants present in clinical data, an important consideration when choosing 
how to define consensus sequences from SARS-CoV-2 data.

We then analyzed the intersection of the minority variants (AF between 3% and 49%) 
identified by each tool. The total number of variants identified varied greatly between 
the callers, with Varscan calling the fewest variants, followed by timo and Lofreq, in line 
with the more conservative nature of these callers observed in the previous analyses 
(Fig. 4A). Of note, we found that replicate 2 data had much higher numbers of minor
ity variants, particularly at very low frequencies, regardless of the cycle threshold (Ct) 
value or date of sequencing. This suggests that freeze thawing samples may impact 
minor variant numbers (Fig. S6C) (42, 43). When comparing the set of minority variants 
identified by each of the seven tools, there was significant disagreement between the 
variants. Mutect2 and HaplotypeCaller identified many variants that other callers did 
not, particularly in replicate 1, and missed several variants identified by the other callers 
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(Fig. S6D). This was similar to the performance of these callers on the synthetic data 
sets. Given the high number of false positives identified by HaplotypeCaller, Mutect2, 
and Lofreq in the simulated and synthetic data sets, we focused on the intersection 
of minority SNVs found in just the other four variant callers: Freebayes, iVar, Varscan, 
and timo. Of all the minority variants found in the data, 104 from replicate 1 and 142 
from replicate 2 were identified by all four of the variant callers (Fig. 4B). Overall, choice 
of variant caller appears to have a significant impact on the set of minority variants 
identified in SARS-CoV-2 data from clinical specimens.

Many studies of minority variants investigate the frequency of minority variants to 
calculate selection, bottleneck size, and potential for transmission (22, 44). We were 
interested in how well the variant callers agreed on the frequency at which variants 
were identified. We plotted the frequency of a variant in one caller against the frequency 
in each other caller and found that most of the minority variant callers were strikingly 
similar in their frequency calls of shared variants. Timo, Freebayes, and iVar all showed 
almost complete agreement on the frequency of shared variants (Fig. 4C), with Freebayes 
and iVar having the best agreement of SNVs found ≥20%. Varscan showed more variation 
in frequency, generally calling variants at a lower frequency than the other three tools 

FIG 4 Effect of variant caller on identification and allele frequency estimation of SNVs in SARS-CoV-2 data from clinical samples. (A) Bar plot showing raw 

number of minor variants identified by each variant caller in replicate 1 (left bar) or replicate 2 (right bar) using a 3% allele frequency cutoff. (B) UpSetR plot 

showing agreement of minority variants in each replicate across Freebayes, iVar, timo, and Varscan using an allele frequency cutoff of 0.03 (3%) and coverage 

cutoff of 200×. Vertical bars indicate the size of the shared set of variants, while dots and connecting lines show which callers share a given set of identified 

variants. (C) Scatter plot showing the output frequency of minority variants identified by two different variant callers. Color represents replicate. Variants with 

frequency of 0 were not identified by that variant caller.
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(Fig. 4C). Of interest, variants called by one caller but not another spanned a frequency 
range of 0.03 (3%) all the way to 0.5 (50%), indicating that even high-frequency minority 
variants were often not agreed upon by variant callers. These data show that choice of 
variant caller not only affects the set of the minority variants that are identified in a data 
set, but also the frequency of those variants.

Most minority variants in data from SARS-CoV-2 clinical specimens are not 
reproducible across sequencing replicates

In our sequencing data, the number of variants identified in each replicate by each 
tool was markedly different, suggesting that many of the identified minor variants may 
not be true variants introduced through viral replication but instead technical artifacts 
(Fig. 4A; Fig. S6C and D). As was shown with our simulated and synthetic data, errors 
introduced through PCR, library preparation, and sequencing are mostly random and 
therefore less likely to reappear and be identified across multiple sequencing replicates, 
particularly when using Freebayes, iVar, timo, or Varscan (Fig. 3A). To find highconfi
dence minority variants, we looked at the intersection of variants between the two 
replicates using each caller and a 0.01 (1%) allele frequency threshold, as established 
in synthetic data for merged replicates (Fig. 3A and B). iVar and Freebayes called 
the highest number of reproducible variants, while timo called the fewest number of 
reproducible variants (Fig. 5A). However, out of the total variants identified between the 
two sequencing replicates, timo had the highest percentage of reproducible variants 
(18.45%) suggesting that being conservative may lead to increased reproducibility 
between replicates and an increased confidence in SNV calls when used on single 
replicate data. It is, however, important to note that the relatively low percentages of 
reproducible variants are likely skewed by the high numbers of low-frequency variants 
found in replicate 2 (Fig. 5A; Fig. S6C). When we looked at the intersection of only the 
variants found by the tools in both replicates, less than a third were found by the callers 
across replicates, suggesting again that variant callers do not agree on the set of minority 
variants present (Fig. 5B). Together, these data suggest that most minority variants are 
not reproducible across replicates and support the idea that more than any other criteria, 
sequencing replicate has the highest impact on the set of minority variants identified 
(Fig. 5B; Fig. S6C and D).

Variants identified by all variant callers show the most reproducible frequen
cies

Using synthetic data, we showed that in a controlled setting, SNVs that were found in 
both sequencing replicates generally showed reproducible frequencies (Fig. S5B). Given 
that the frequency is an important metric in most analyses performed using minority 
variant data, we wanted to test if this held true in clinical samples. While some variants 
showed consistent frequencies, others differed drastically—identified at 5%–10% in one 
replicate and as high as 45%–50% in the other replicate (Fig. 5C). These data were 
striking as they reveal that averaging frequency across replicates, or performing only one 
sequencing replicate, could drastically alter downstream analyses performed using these 
numbers. Interestingly, when we looked at the variants that were reproducible across 
replicates and found by most, or all the variant callers, frequency tended to be much 
more consistent than those identified only in a single replicate, or by a single caller (Fig. 
5C, dark red points). Together, these data suggest that confidence in each variant and 
its frequency is increased with replicate sequencing and identification by many variant 
callers.

Since replicate sequencing data are not always available, we investigated what 
frequency cutoff could be applied such that single replicate data closely resembled the 
merged replicate data. To do this, we looked at the intersection of SNVs called in both 
replicates by Freebayes, iVar, timo, and Varscan (80 variants out of 382 shown in Fig. 
5B) and compared those with the intersection of SNVs called by the same four callers 
in each individual replicate (Fig. 4A). We then applied allele frequency cutoffs between 
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0.01 and 0.1 (1%–10%) to determine the best cutoff for use on single replicate data. 
Here, we identify a true positive as a variant present in the reproducible set and a false 
positive as any other variant found in a single replicate. As was noted previously, we find 
that replicate 2 data show an increased number of SNVs, perhaps due to freeze/thawing 
of samples between preparations (Fig. 5D; Fig. S6C). As such, replicate 1 is likely more 
representative of what single replicate data may typically look like. At an allele frequency 
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cutoff of 0.01 (1%), all true positives were found, but the number of false positives 
was very high, while a frequency cutoff of 0.05 or 0.1 (5%–10%) removed an outsized 
number of true positives from the data set (Fig. 5D). Based on these data, we suggest 
an allele frequency cutoff of 0.03 (3%) when only single replicate data are available, a 
cutoff that was also confirmed in the simulated and synthetic data sets (Fig. 2A and B; 
Fig. 3A; Fig. S4A and B). We further suggest using the intersection of multiple variant 
callers to increase confidence in the data, especially when estimating SNV frequency 
(Fig. 5C). Using all variant callers for analysis would likely be tedious and unrealistic, thus 
we looked at the intersection of just two callers, iVar and timo, and we found a similar 
tradeoff in true-positive and false-positive data when using a single replicate and a 
cutoff of 0.03 (3%) (Fig. 5E).

To determine if the discordance between replicate SARS-CoV-2 sequencing data is 
a common issue, we expanded our analyses to 1,181 SARS-CoV-2 samples that were 
sequenced in duplicate and used in a within-host diversity study (40) (Supplemental 
Methods). Samples used for SNV analyses were required to have at least 200× read 
depth across 80% of the genome in both sequencing replicates (Fig. S7A), which left 227 
samples for minority variant analyses (Fig. S7A, inset). In addition, we limited our analyses 
to only timo and iVar outputs using custom input parameters (Table S1). Sequencing 
replicates shared anywhere from 0% to 40% of identified SNVs (Fig. S7B), with timo 
comparisons often having higher fractions of shared SNVs.

Using the Tonkin-Hill et al. (40) data set, we tested the impact of filtering using 
our suggested thresholds for single replicate data (output by both timo and iVar, ≥3%, 
≥200×) and replicate data (in both replicates, ≥1%, 200×). The number of identified SNVs 
in the single replicate comparisons (replicate 1: 762 SNVs, replicate 2: 515 SNVs) was 
lower than when taking the intersection of both replicates (timo: 2,682, iVar: 3,108) (Fig. 
S7C). The decrease in total SNVs is likely due to our stringent 3% frequency requirement 
for single replicate data. However, approximately 84% (643/762) and 95% (487/515) of 
SNVs in replicates 1 and 2, respectively, were also found when taking the intersection of 
sequencing replicates (Fig. S7C).

Based on these data, it is clear that there are many considerations necessary when 
performing minority variant analyses, and parameters and cutoffs should thus be chosen 
carefully and thoughtfully, depending on the data available. In general, using replicate 
data and multiple callers provides the highest confidence set of SNVs and the most 
accurate frequency estimates.

DISCUSSION

It has long been understood that intra-host viral populations are heterogeneous in 
nature; however, capturing and measuring this viral diversity is complicated due to 
errors introduced during preparation and sequencing. We set out to identify the optimal 
tools, parameters, and filtering methods necessary for accurate variant identification. To 
accomplish this goal, we used a combination of simulated and synthetic sequence data 
to test the technical and experimental challenges and limitations of minority variant 
analyses. We found that sequencing depth and choice of variant caller have a significant 
impact on sensitivity of minor variant calls. Additionally, our results show that replicate 
sequencing allows for the use of lower frequency thresholds, and this combination 
provides the best results, keeping the false discovery rate low, without sacrificing 
true-positive data. Using replicates also decreases the error associated with estimating 
allele frequency in both simulated and synthetic data, although very low-frequency 
variants may still elude highly accurate estimates.

Using a standardized set of parameters, most callers performed relatively similarly 
on high coverage simulated data, having both high precision and high recall. The main 
differences in caller performance were seen in lower coverage data or at low frequen
cies. As many minority variants are found at low frequencies, understanding how tools 
perform under these conditions is more relevant to analyses of real sequencing data. 
Timo had the lowest recall at lower coverages and simulated frequencies due to its 
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rigid requirements for SNVs to be above the 0.01 threshold parameter, while many other 
callers found SNVs at or below this frequency, regardless of setting a 0.01 AF cutoff. 
Timo, iVar, and Varscan all have the functionality to drop the input frequency parameter 
down to 0.001 (0.1%). Decreasing this parameter did not change the accuracy of iVar 
and Varscan but did increase the recall of timo. These data highlight the importance of 
optimizing bioinformatic tools to one’s own data.

As previously observed by our group and others, the best method for filtering out 
errors generated during sample processing is to sequence each sample twice and 
only keep the SNVs found in both replicates. Sequencing replicates removed nearly all 
false-positive calls in simulated data and significantly reduced the number of false-posi
tive SNVs in the synthetic data sets. However, for the synthetic data sets, the number 
of false-positive SNVs was highly dependent on the variant caller used. HaplotypeCaller, 
Lofreq, and Mutect2 were all made and optimized for identifying variants in cancer cell 
data sets and had significantly higher false discovery rates than tools designed for viral 
use, particularly at low allele frequencies. Adjusting the filtering or input parameters 
on these callers may better optimize them for their use on viral data. For example, 
HaplotypeCaller suggests additional filtering of output data; however, when applied to 
this data set, SNV detection was significantly reduced. Without this additional filtering, 
most variants are identified but high numbers of false positives are included, suggesting 
additional optimization could improve performance.

The design of the synthetic IAV data also allowed us to test the effect of genomic 
position on variant detection and allele frequency. In influenza virus sequencing data, 
the ends of the genomic segments routinely have lower coverage than internal regions, 
due to poor end-capture during sequencing. By engineering variants near the ends 
of the segments in the synthetic data, we found that variants at these positions are 
often missed entirely by the tools (false negatives), and when they are detected, their 
allele frequencies are poorly estimated. This suggests that variants found at the ends 
of segments and more generally, in low-coverage regions of the genome, should be 
interpreted with caution. We also engineered variants that were immediately adjacent to 
each other. These variants were also often missed by the tools, despite having compara
ble coverage with other variants that were detected as true positives. This may be due 
to the variant callers preferentially assigning consecutive nucleotide changes as indels, 
rather than SNVs, excluding them from these analyses. When taken together, it is clear 
that genomic position does affect the performance of bioinformatic tools and that an 
understanding of the underlying biology and technical procedures should be used to 
inform viral variant calling.

We tested the optimized frequency and coverage cutoffs using SARS-CoV-2 sequence 
data from clinical infections. Most variant callers did not agree on the set of minor 
variants in the virus sequence data from clinical samples, and most minority variants 
were not reproducible across replicates. Ultimately, we determined that using the more 
stringent variant callers (timo, iVar, and Varscan), sequencing replicates, and moderate 
allele frequency (≥1%) and read depth (≥200×) cutoffs provide the highest confidence 
in the output SNV calls and allele frequency estimations. However, when replicate 
sequencing is unavailable, we suggest using a more stringent frequency cutoff (≥3%) 
on SNVs identified by multiple variant callers.

Combined, the simulated, synthetic, and clinical data sets show that there will always 
be a tradeoff between inclusion of the maximum number of true variants and inclusion 
of false-positive data. Our study provides an extensive framework for studying minority 
variants in sequence data from clinical samples, outlining major considerations around 
choice of variant caller, application of frequency and coverage thresholds, and use of 
replicate sequencing. Furthermore, we have established a pipeline that can be used 
for further testing and optimization of parameters, or for other viruses. This work will 
inform and improve future studies of intra-host variation and estimates surrounding viral 
diversity and viral evolution.
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