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ABSTRACT Viruses targeting mammalian cells can indirectly alter the gut microbiota, 
potentially compounding their phenotypic effects. Multiple studies have observed a 
disrupted gut microbiota in severe cases of severe acute respiratory syndrome corona
virus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic 
shifts in disease severity resulting in a large and continuing burden of non-hospitalized 
infections, we still know very little about the impact of mild SARS-CoV-2 infection 
on the gut microbiota in the outpatient setting. To address this knowledge gap, we 
longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 
household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota 
relative to controls. These results were confirmed and extended in the K18-humanized 
angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 
infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut 
microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, 
and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least 
severe symptoms in mice, it destabilized the gut microbiota and led to a significant 
depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice 
to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology.

IMPORTANCE Taken together, our results demonstrate that even mild cases of 
SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized 
individuals are consistent with studies of hospitalized patients, in that reproducible shifts 
in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to 
identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, 
our mouse experiments revealed an impact of the Omicron variant, despite producing 
the least severe symptoms in genetically susceptible mice, suggesting that despite the 
continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal 
mucosa. These results will hopefully renew efforts to study the mechanisms through 
which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while 
also considering the potentially broad consequences of SARS-CoV-2-induced microbiota 
instability for host health and disease.

KEYWORDS COVID-19, SARS-CoV-2, non-hospitalized patients, human gut micro
biome, gastrointestinal symptoms, microbial ecology

M ammalian viruses exhibit bidirectional interactions with the gut microbiota 
(the trillions of microorganisms colonizing the gastrointestinal tract) (1). The 

gut microbiota and its aggregate gene content (the gut microbiome) contribute to 
protective immunity from influenza (2, 3) and respiratory syncytial virus (4), whereas 
human immunodeficiency virus (HIV) is associated with marked perturbations in gut 

July/August  Volume 14  Issue 4 10.1128/mbio.00889-23 1

Editor Claire M. Fraser, University of Maryland, School 
of Medicine, Baltimore, Maryland, USA

Address correspondence to Peter J. Turnbaugh, 
peter.turnbaugh@ucsf.edu.

Vaibhav Upadhyay and Rahul Suryawanshi 
contributed equally to this article. Order of names 
was determined based on contributions to the 
writing process.

P.J.T. is on the scientific advisory boards for 
Pendulum, Seed, and SNIPRbiome; there is no 
direct overlap between the current study and these 
consulting duties. The other authors declare no 
competing interests.

See the funding table on p. 15.

Received 10 April 2023
Accepted 12 April 2023
Published 9 June 2023

Copyright © 2023 Upadhyay et al. This is an 
open-access article distributed under the terms of 
the Creative Commons Attribution 4.0 International 
license.

https://crossmark.crossref.org/dialog/?doi=10.1128/mBio00889-23&domain=pdf&date_stamp=2023-06-09
https://doi.org/10.1128/mbio.00889-23
https://creativecommons.org/licenses/by/4.0/


microbial community structure and function (5). The gut microbiota is also distinctive 
in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infections requiring hospitalization relative to healthy controls (6–8); however, the direct 
causal effects of SARS-CoV-2 relative to concomitant changes in host immunity, diet, 
and pharmacotherapy remain unknown. Decreased bacterial richness is a reproducible 
marker of SARS-CoV-2 infection (7–10), whereas the specific bacterial taxa correlated 
with infection vary between studies, in part due to differences in the built environment 
(10). Furthermore, the generalizability of these findings to subjects with milder cases that 
do not require hospitalization and have less severe symptoms is unclear.

The impact of SARS-CoV-2 in the outpatient setting is a timely question as current 
estimates suggest the vast majority (92%) of individuals in the USA that test positive 
for SARS-CoV-2 will not require hospitalization (11). The predominant variant at the time 
of this manuscript is Omicron (12), which is less likely to require hospitalization (13), 
aided in part by preexisting immunity due to vaccination and prior waves of infection 
(14). Despite these encouraging trends, a growing number of non-hospitalized adults 
still develop long-lasting symptoms persisting months after clearing the virus (15, 16), 
highlighting the importance of understanding the mechanisms responsible. Considered 
in light of emerging evidence that the microbiome can exhibit “ecological memory” of 
past events (17), we hypothesized that even mild cases of SARS-CoV-2 could still disrupt 
the gut microbiota, potentially contributing to phenotypes months later.

Here, we present an analysis of subjects participating in the COVID-19 Host Immune 
Response Pathogenesis (CHIRP) study. CHIRP was an exploratory study of primarily 
outpatients and their household contacts collected between May and August 2020. 
Prior work on this cohort revealed SARS-CoV-2-specific CD8+ T cells are maintained well 
into convalescence (recovery from disease), even in mild disease (18, 19). However, these 
prior studies did not analyze the gut microbiota. To address this knowledge gap, we used 
paired 16S rRNA gene and metagenomic sequencing (MGS) from longitudinal samples 
collected from CHIRP cases and household controls. We confirmed and extended 
these findings using two mouse models of SARS-CoV-2: the K18-humanized angioten
sin-converting enzyme 2 (K18-hACE2) mouse model (20) and wild-type C57BL/6J mice. 
SARS-CoV-2 binds to the human ACE2 receptor, but some variants cannot interact with 
the orthologous mouse protein (21, 22). The K18-hACE2 mouse expresses human ACE2 
under the keratin-18 promoter, leading to expression in lung epithelium, and provides an 
experimentally tractable model to study multiple SARS-CoV-2 variants (23). In contrast, 
C57BL/6J mice develop infection without meaningful lung pathology with a subset of 
variants (24), and present a complementary mouse model of infection. Taken together, 
our results define a significant and long-lasting impact of mild SARS-CoV-2 infection on 
the gut microbiota.

RESULTS

Lack of a reproducible shift in the gut microbiota following mild cases of 
SARS-CoV-2

We evaluated the gut microbiota of outpatients with SARS-CoV-2 infections during 
the first year of the pandemic. Samples were collected in the weeks to months after 
initial infection (maximum 154 days after initial positive test results; Fig. S1). Fifty-three 
longitudinal stool samples were collected from 18 subjects enrolled in CHIRP, including 6 
men and 12 women whose ages ranged from 19 to 71 years in a Case–Control household 
study design (Table S1). DNA was extracted from samples and used for paired 16S 
rRNA gene sequencing (16S-Seq) and MGS. We generated 135,600±7,236 (mean±sem) 
high-quality 16S rRNA gene reads/sample and 54.0±2.19 million (mean±sem) high-qual
ity MGS reads/sample (Table S2A).

On average, the gut microbiomes of SARS-CoV-2 Cases were similar to Controls. 
Both groups were primarily colonized by members of the Firmicutes, Bacteroidota, and 
Actinobacteriota phyla across the sampling period (16S-Seq data; Fig. 1A). PERMANOVA 
testing did not reveal a significant difference in gut microbial community structure when 
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adjusted for longitudinal sampling (Case/Control r2 = 0.0517 P = 0.00300, Padj = 0.584; 
Days Post-PCR r2 = 0.0134, P = 0.363, Padj = 0.584; Fig. 1B). Similarly, there were no 
changes in bacterial diversity (Fig. S2A and B) or 16S-Seq ASV abundances, which were 
highly correlated between groups (Fig. 1C). MGS data at the pathway (Fig. S2C) and gene 
family level (Fig. S2D) was not significantly different between Cases and Controls after 
adjustment for longitudinal sampling (Pathway Case/Control r2 = 0.0356, P = 0.0152, Padj 
= 0.1; Gene families Case/Control r2 = 0.4611, P = 9.999e-5, Padj = 1). Pathway (Fig. 1D) 
and gene families (Fig. 1E) were highly correlated between Cases and Controls. Statistical 
testing confirmed the lack of a reproducible shift in phylum, ASV, or metabolic pathway 
levels after adjustment for longitudinal sampling (Padj > 0.1, see Methods section).

Long-lasting microbiota instability following SARS-CoV-2 infection

We hypothesized that the lack of consistent differences in the gut microbiomes 
of Cases and Controls may have been due to high levels of variation among the 
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FIG 1 Mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection does not reproducibly change the gut microbiome months after infection. 

(A) Phylum-level taxonomic summary of 16S-Seq data for Cases and Controls. (B) Principal Coordinates Analysis of 16S-Seq data. Lines indicate successive 

samples from each individual. (C–E) Scatter plots reveal a significant correlation between Cases and Controls for the abundance of (C) 16S-Seq ASVs, (D) 

metagenomic sequencing (MGS) pathways, and (E) MGS gene families (n = 53 samples from 14 Cases and 4 Controls). Pearson’s r and p value annotated for (C–E). 

ASV, amplicon sequence variant; CLR, Centered Log Ratio.
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SARS-CoV-2-infected individuals. Consistent with this hypothesis, visualization of our 
16S-Seq and MGS data by Principal Coordinates Analysis (PCoA) and quantification of 
β-dispersion (25) both demonstrated a marked and significant increase in temporal 
variation of the gut microbiotas of Cases relative to Controls (Fig. 2A and B). Samples 
from Cases deviated across sampling timepoints more than Controls in terms of 16S-Seq 
ASV abundance (Fig. 2C) and MGS functional pathways (Fig. 2D). Cases exhibited a 
significant increase in distance to Controls over time; however, there were marked 
fluctuations across the entire time course (Fig. 2E).

Next, we sought to identify which bacterial taxa and metabolic pathways were most 
variable following SARS-CoV-2 infection. We calculated the CV, a statistical measure of 
dispersion, for all ASVs or MGS pathways. As expected, CV was negatively correlated with 
ASV and pathway abundance (Fig. S3). Cases exhibited significantly higher CVs at the 
ASV (Fig. S4A) and pathway (Fig. S4B) level relative to Controls. We then used F tests to 
identify ASVs that had a significant difference in variability between groups: the more 
variable ASVs were significantly enriched in Cases (Fig. 2F, pie chart). We focused on 36 
ASVs that were three standard deviations above or below an equivalent CV between 
groups. The majority (32/36) of these outlier ASVs were more variable in Cases than 
Controls. The Firmicutes phylum was most common, representing 32/36 outlier ASVs 
(Fig. 2F). We also identified three ASVs from the Actinobacteriota phylum, including an 
ASV assigned to the Rothia genus that has been previously associated with SARS-CoV-2 
infection (9, 10).

Complementary analyses of our metagenomic data supported these overall trends 
(Fig. S4). Gene family abundance exhibited significantly more variability (assessed by 
β-dispersion) in Cases relative to Controls (Fig. S4C). Gene families trended towards more 
variation between sample points for Cases compared to Controls (Fig. S4D). Gene family 
variability assessed by CV was also significantly higher in Cases relative to Controls (Fig. 
S4E).

Taken together, these data indicate that the human gut microbiome can be 
destabilized months after initial infection with SARS-CoV-2. However, it is not possible to 
infer a causal role of SARS-CoV-2 infection in destabilizing the gut microbiota based only 
on observational studies in humans given the clear potential for confounding factors. 
By focusing on outpatient sampling, we were able to rule out the confounding effects 
of hospitalization and treatment in prior studies (26); however, our longitudinal samples 
corresponded to a period of extensive social distancing (Fig. S5) that could have feasibly 
impacted the gut microbiota (27). Thus, we turned to an established mouse model of 
SARS-CoV-2 infection, wherein environmental and genetic variables could be controlled 
to test the causal role of viral infection in shaping the mouse gut microbiota.

SARS-CoV-2 alters the gut microbiota in susceptible mice

We tested the impact of three SARS-CoV-2 variants on the gut microbiota of K18-hACE2 
mice: WA1, Delta, and Omicron (BA.1). These variants differ in their phenotypic impacts 
in K18-hACE2 mice, with each successive temporal SARS-CoV-2 variant resulting in milder 
infection than the prior variant (23). Fifty K18-hACE2 female mice were housed in an 
Animal Biosafety Level 3 (ABSL3) facility, and longitudinal stool samples were collected 
following infection and successive planned sacrifice for virological assessment of gut 
and lung tissues (Fig. S6A; Table S2B). At each timepoint (days 2 and 4), an entire cage 
of mice was sacrificed for viral titer assessment from WA1, Delta, and Omicron infected 
cages, and all remaining mice were sacrificed at day 7. As previously reported (23), the 
results of lung viral titer assessment were significantly different between variants (Fig. 
S6B), with WA1 having the highest titer and Omicron the lowest titer. The SARS-CoV-2 
mRNA transcripts for E and N genes were detectable using nucleic acid amplification 
within small intestinal tissue (Fig. S6C and D) with trends mirroring those observed 
for viral plaque assays from the lung (Fig. S6B). To evaluate the gut microbiota, we 
performed 16S-Seq on 55 samples, resulting in 435,539±7,099 (mean±sem) high-quality 
reads/sample (Table S2B).
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All SARS-CoV-2 variants led to a dramatic and significant impact on the mouse gut 
microbiota. Visualization of all three variants compared to the uninfected mice showed 
clearly distinct patterns of grouping (Fig. 3A, WA1 r2 = 0.247, P = 0.00530; Delta r2 = 0.135, 
P = 0.0499; Omicron r2 = 0.395, P = 0.000900); however, they did not reach statistical 
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significance by PERMANOVA testing after adjusting for longitudinal sampling (Padj = 1, all 
variants). PERMANOVA testing on a per variant basis comparing changes with day post 
infection revealed trends to changes over time that did not reach statistical significance 
when adjusted for cage (WA1 r2 = 0.187, P = 0.0254, Padj = 0.0882; Delta r2 = 0.169, P 
= 0.0663, Padj = 0.215; Omicron r2 = 0.169, P = 0.0883, Padj = 0.467). Bacterial diversity 
increased over time following infection with all three variants (Fig. 3B, Shannon index, 
WA1 P = 0.006, WA1:Time interaction P = 0.031, Delta P = 0.030, Delta:Time interaction 
P = 0.008, Omicron P = 0.000379, Omicron:Time P = 0.049). A linear mixed effect model 
confirmed that Shannon index changed by time on a per variant basis (WA1 P = 1.45e-6; 
Delta P = 3.15e-11; Omicron P = 2.19e-6). We observed differences in relative abundance 
at the phylum level for four phyla between groups (two-way ANOVA for Verrucomicro
biota, P = 6.09e-8; Firmicutes, P = 1.29e-5; Bacteroidota, P = 9.08e-4; and Proteobacteria, P 
= 1.10e-2). There was a striking loss of Verrucomicrobiota in Omicron-infected mice and 
a subtle reduction in Proteobacteria in WA1-infected mice, with reciprocal shifts between 
Firmicutes and Bacteroidota in these groups (Fig. 3C). Notably, the relative abundance of 
Akkermansia diminished over time in response to infection with WA1, Delta, and Omicron 
(Fig. 3D).

Given the multi-strain design of our experiment, we sought to understand whether 
the impact of SARS-CoV-2 on the gut microbiota was variant-specific. The baseline gut 
microbiota was indistinguishable between groups (PERMANOVA r2 = 0.260, P = 0.754, 
Padj = 1) with zero significantly different ASVs (Padj > 0.1) between each variant and 
uninfected controls. We leveraged the within-subjects design of this longitudinal dataset, 
comparing ASV relative abundance overtime for each variant including their baseline 
samples using a linear mixed effect model (Fig. 3E). Most differentially abundant ASVs 
were variant-specific (Fig. 3F). The number of significant ASVs matched SARS-CoV-2 viral 
load, with each successive variant leading to a less pronounced microbiota shift: WA1 
(336 ASVs), Delta (215 ASVs), Omicron (87 ASVs) (Table S3A; Fig. S6B). Shared responses 
were highest for WA1 and Delta (127 ASVs) with five ASVs consistently altered in all three 
variant groups (Fig. 3E and F). Taken together, these results indicate that the impact of 
SARS-CoV-2 on the gut microbiota varies between viral strains and has decreased over 
time.

Finally, we tested if SARS-CoV-2 infection of the K18-hACE2 model would recapitulate 
the microbiota destabilization phenotype that we observed in humans. We generated 
rarefaction curves from the longitudinally sampled mice in a given cage. Rarefaction 
curves were stable over time in uninfected controls, but showed extensive heterogene
ity in all three SARS-CoV-2-infected groups (Fig. 4A). The range of ASVs detected was 
84–95 (controls), 70–320 (WA1), 53–249 (Delta), and 84–324 (Omicron). We generated 
rarefaction curves normalized to the baseline timepoint of longitudinally sampled cages 
and observed a similar pattern of heterogeneity and absence of an obvious temporal 
association (Fig. 4B). Microbiota instability was also clear by PCoA (Fig. 4C), with a 
significant increase in β-dispersion for Delta and Omicron. Changes in the gut microbial 
variation (Fig. 4D) and species variability (Fig. 4E) were significantly increased in infected 
mice. Notably, microbiota shifts were not significantly associated with time post infection 
(Fig. 4F), consistent with PERMANOVA testing (WA1 Time r2 = 0.0919, P = 0.0862; Delta 
Time r2 = 0.0717, P = 0.213; Omicron Time r2 = 0.0649, P = 0.145).

Next, we sought to identify which bacterial taxa were most variable following SARS-
CoV-2 infection in mice. As expected, there was a negative correlation between CV and 
ASV abundance (Fig. 4G). In uninfected mice, the correlation between CV and abundance 
was nearly bimodal with features having a CLR value <0 having high CV values compared 
to those with mean CLR values above 0. In contrast, during infection, there was signifi-
cantly increased CV across organisms of all abundances, though the negative correlation 
between CV and ASV abundance was still preserved (Fig. 4G). We utilized F tests to 
compare ASV variability between each variant and the uninfected controls, revealing that 
nearly all ASVs were more variable in infected mice (Fig. 4H, χ2 table). We then generated 
a distribution of CV between variants and the uninfected group that reflected these 
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FIG 4 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) destabilizes the mouse gut microbiota. (A) Rarefaction curves for uninfected and WA1-, 

Delta-, or Omicron-infected mice. (B) Rarefaction curves of subsequent timepoints normalized to the baseline timepoint for each longitudinally sampled group. 

(A-B) Each longitudinally sampled group is delineated by a different line type (solid, dashed, dot-dashed for mice sampled to days 7, 4, and 2, respectively). The 

day post infection is annotated. (C) Principal coordinates 1 and 2 of 16S-Seq data separated by group to facilitate visualization. The distance from the uninfected 

reference group’s centroid is displayed for the right three plots (p values, β-dispersion comparing each variant to the uninfected reference group with Tukey’s 

multiple comparisons adjustment). Each shape represents a longitudinally sampled cage. (D) Subsequent distances between successive points in (C) for a given 

cage are plotted and grouped by SARS-CoV-2 variant. (E) Coefficients of variance (CV) for each 16S amplicon sequence variant (ASV) is plotted by SARS-CoV-2 

variant. (D–E) Dunn’s post-hoc test of Kruskal-Wallis analysis of variance. (F) Euclidean distance from the centroid of the uninfected group is plotted by day of 

sampling after infection. A Spearman’s correlation coefficient and p value are annotated. A line of best fit with 95% confidence interval is superimposed. (G) 

A correlation between Taxonomic variability and Abundance is displayed, and a Spearman’s correlation coefficient is annotated. (H) An F statistic was used to 

compare ASV variability between each SARS-CoV-2 variant and the uninfected group (padj shown). A two-by-two table is shown of the findings with a χ2 test 

annotated below the table for each variant. ΔCV for ASVs with a significant test for any Variant are plotted as a density curve, with three standard deviations 

above and below 0 annotated. The features corresponding to outlier ASVs are displayed in the phylogenetic tree. All displayed features had higher CV values in 

all three Variants compared to the uninfected group. n = 10 unique cages with 55 total samples from 50 mice.
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shifts and selected outliers that were three standard deviations above or below an equal 
CV value between groups. The outliers among this group were exclusively more variable 
in the infected mice and primarily from the Firmicutes phylum (Fig. 4H, density curves 
and phylogenetic tree). Taken together, these findings support a causal and strain-
specific role of SARS-CoV-2 in microbiota instability.

SARS-CoV-2 impacts the gut microbiota in the absence of lung pathology

Given the robust shift in the gut microbiota in response to Omicron, the mildest variant 
in the K18-hACE2 model, we hypothesized that the immunological or other types of 
host responses to viral inoculation could alter the gut microbiota independent of host 
disease. To test this hypothesis, we turned to wild-type C57BL/6J mice that are resist
ant to severe lung pathology from SARS-CoV-2 infection (24). We infected C57BL/6J 
mice with Beta and Omicron variants and longitudinally collected stool samples for 
20 days (Fig. S6E). We performed 16S-Seq on 33 samples, resulting in 398,412±10,679 
(mean±sem) high-quality reads/sample (Table S2C). Live virus was detectable in the 
lungs at day 2 post infection; however, we did not detect any live virus in the gastrointes
tinal tract (Fig. S6F).

Remarkably, Beta and Omicron variants resulted in a pronounced shift in the gut 
microbiota of C57BL/6J infected mice by day 2 post infection (Fig. 5A, Beta r2 = 0.622, 
P = 0.000100; Omicron r2 = 0.590, P = 0.000100). The adjusted PERMANOVA was not 
significant, likely due to insufficient power (Beta Padj = 1, Omicron Padj = 1). Beta-infec
ted mice showed greater bacterial diversity compared to uninfected mice, although 
Omicron-infected mice C57BL/6J mice did not show this trend (Fig. S7A). Phylum-level 
abundance was significantly altered in response to infection (two-way ANOVA for 
Verrucomicrobiota, P = 6.97e-8; Firmicutes, P = 1.54e-8; Bacteroidota, P = 1.10e-2; and 
Proteobacteria, P = 1.07e-6). Proteobacteria were depleted in Beta- and Omicron-infected 
mice, though not as marked or pronounced as the depletion of Verrucomicrobiota in 
these same groups (Fig. 5B). Correspondingly, Akkermansia were depleted in both Beta- 
and Omicro-infected groups (Fig. 5C). We confirmed reduction in Akkermansia was most 
significant immediately after infection in the wild-type mice infected with either Beta 
or Omicron (Beta and Omicron combined linear mixed effect model P = 0.00522 for 
days 0 through 4 post infection; linear mixed effect model P = 0.383 including all 
timepoints). No ASVs were significantly different between the uninfected and Beta- and 
Omicron-infected mice at baseline (Padj > 0.1). Numerous ASVs were identified as being 
depleted or elevated by both Beta and Omicron, with 11 ASVs overlapping between 
both groups (Fig. 5D and E; Table S3B). Finally, while there was no difference in β-disper
sion or distance traveled between sampling points for Beta- or Omicron-infected mice 
compared to the uninfected group (Fig. S7B and C), the variability of taxonomic features 
was significantly greater in mice infected with Beta or Omicron (Fig. 5F).

DISCUSSION

Our results in humans and mice demonstrate that the gut microbiota is destabilized 
following mild cases of SARS-CoV-2 infection; however, the cellular and molecular 
mechanisms responsible remain to be elucidated. SARS-CoV-2 most likely impacts the 
gut microbiome through effects on host immune or epithelial cells (28). However, 
despite its minimal impact on the host, Omicron still led to a dramatic collapse of 
the mucin-dependent gut Verrucomicrobium A. muciniphila. These results may suggest 
that SARS-CoV-2 can lead to dysfunction of the intestinal goblet cells, due to either 
direct infection or the increased level of intestinal cytokines. While early work on WA1 
suggested that it cannot bind to goblet cells (29), this work conflicts with recent data 
demonstrating goblet cell hyperplasia in response to severe SARS-CoV-2 infection (28). 
The impact of Omicron on A. muciniphila was notable and suggests the continued 
evolution of SARS-CoV-2 may have preserved its ability to perturb the intestinal mucosa.

The downstream consequences of microbiota instability for COVID-19 pathophysiol
ogy will be important to assess. Persistent symptoms have been observed in a subset 
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of adults characterized principally by fatigue, headache, anosmia, and dyspnea though 
impacting every organ system (16). In our own study, the majority of Cases met WHO 
definitions of SARS-CoV-2-related symptoms persisting >90 days from diagnosis (Table 
S1). One Case subject did not participate in follow-up symptom reporting. A recent 
report showed findings similar to ours in that taxonomic changes in the gut microbiome 
were captured as late as 6 months after SARS-CoV-2 infection and were linked to 
prolonged symptoms, though instability of the gut microbiome was not assessed (30). 
In our own cohort, symptoms related to SARS-CoV-2 included cold symptoms, anosmia, 
and gastrointestinal symptoms (Table S1). Gastrointestinal symptoms such as nausea, 
abdominal pain, or diarrhea may be exacerbated by more recently evolved variants 
either through their direct impact on the intestine and/or resulting destabilization of the 
gut microbiome caused by infection. We observed a trend to greater dispersion between 
subjects with long-term symptoms compared to those without (dispersion P = 0.318 
Cases with or without long COVID symptoms), though were underpowered to compare 
these groups.

It is also important to consider the impact of disruptions in the gut microbiota 
to host responses in other contexts. SARS-CoV-2 significantly alters the pulmonary 
immune response (23). Akkermansia muciniphila has established links to promoting 
activation of exhausted T cells (31), and eliciting high-quantity mucosal IgA responses 
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FIG 5 Mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in wild-type mice result in destabilization to the gut microbiota and 

loss of Akkermansia. (A) Principal coordinate analysis of C57BL/6J mice comparing communities after Beta and Omicron variant infection are shown relative 

to uninfected mice. (B) Phylum-level taxonomic summaries for uninfected or Beta- or Omicron-infected mice sampled from days 0 to 20 after inoculation. 

(C) Akkermansia genus, Centered Log Ratio (CLR) for each variant plotted against day of sampling post-inoculation. P values, two-way analysis of variance 

comparing each variant to the uninfected group. (D–E) A linear mixed effects model was created for each variant. (D) Volcano plot of padj versus difference in 

CLR abundance. (E) Differentially abundant amplicon sequence variants (ASVs) shared/distinct between variants. Overlapping ASVs in (E) are annotated in (D).  (F) 

Taxonomic variability is plotted comparing uninfected and Beta- and Omicron-infected mice. n = 15 mice with five mice per group in three cages, and 33 total 
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(32). Disrupting A. muciniphila or other bacterial species that control immune function 
could be important as the host balances viral clearance with tissue damage that might 
lead to outcomes like acute lung injury or prolonged symptoms after infection (33).

Importantly, we discovered a marked instability in the human gut microbiota 
following SARS-CoV-2 infection, complicating efforts to identify bacterial genes, 
pathways, and taxonomic groups that consistently differentiated Cases and Controls 
in humans. Across all data types and groups in our study, instability was the hallmark 
of SARS-CoV-2 infection. This data is in line with a concept that has been referred to 
as the “Anna Karenina Principle,” wherein disease-associated microbial communities are 
distinct from the microbiotas of healthy individuals but lack shared features (34). Similar 
observations have been made in the context of broad-spectrum antibiotics, autoimmun
ity, and enteric bacterial infections (34); however, this is to our knowledge the first 
evidence that mild cases of a respiratory virus infection can lead to microbial commun
ity-wide instability in the gastrointestinal tract. Longitudinal studies of other common 
viral infections in the outpatient setting will be important in order to test the gener
alizability of these findings, coupled to larger cohorts of SARS-CoV-2 patients. Further
more, the individualized nature of the microbiota’s response to infection highlights the 
potential for incorporating microbiome signatures into precision medicine.

Our study has several limitations. Although the CHIRP samples analyzed in this 
study are a vanishingly rare commodity of SARS-CoV-2-naïve individuals following initial 
infection, the number of subjects was small and each individual was unevenly sampled. 
In addition, we had limited metadata regarding infection-associated changes in diet 
or other lifestyle factors that could compound microbiome susceptibility, including 
the social distancing practices of each participant. Furthermore, we may have been 
insufficiently powered in our human study to see consistent effects of SARS-CoV-2 on 
the gut microbiota. The duration and number of independent cages/experiments of our 
mouse studies were limited due to the logistical challenges of performing experiments 
under ABSL3 conditions.

Despite these limitations, our data clearly show that the gut microbiota can be 
destabilized, at least in some individuals, following mild SARS-CoV-2 infection. These 
changes were independent of disease severity and distinct between SARS-CoV-2 
variants, potentially due to variant-specific effects on goblet cell function and mucosal 
integrity. It is notable that SARS-CoV-2 has reached virtually every corner of the world 
(35). While trends toward milder infections are a cause for celebration, it will be 
important to consider that mild infections have the potential for months-long desta
bilization of the gut microbiota, and that more recently evolved variants still have 
a pronounced impact on the gut microbiota in mouse models. These results will be 
important to revisit and evaluate in the future as we approach the next era of the 
pandemic and move toward understanding the long-term impact of prior SARS-CoV-2 
infection for our health and the health of our microbial co-conspirators.

MATERIALS AND METHODS

CHIRP subject enrollment

Subjects were recruited to the CHIRP study and provided informed consent (IRB 
20-30588). Subjects were asked to produce a nasal PCR indicating SARS-CoV-2 status 
at the time of enrollment. Subjects underwent survey-based questionnaires at visits 
and provided stool samples which were frozen at −80°C. One participant (CHIRP-4108) 
had symptoms but did not have a positive PCR test at the time of study enrollment, 
with subsequent research-based PCR testing as inconclusive. CHIRP-4108 is the child 
of CHIRP-4107 and CHIRP-4109. Two subjects, CHIRP-4100 and CHIRP 4106 (a Case and 
Control from separate households) reported antibiotic exposure prior to study enroll
ment. For the purposes of this study, only subjects with both a definitive positive PCR 
swab and symptoms are referred to as Cases, and all other individuals are Controls. 
Household relationships are listed in Table S1.
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Mouse SARS-CoV-2 infection models

Protocols for animal use were approved (AN169239-01C) by the Institutional Animal 
Care and Use committees at the University of California, San Francisco and Gladstone 
Institutes. Mice were housed in a temperature controlled-specific pathogen-free facility 
with a 12-h light–dark cycle and ad libitum access to water and laboratory rodent chow. 
The study involved intranasal infection of 104 plaque-forming units (PFU) of 6–8-week-
old female K18-hACE2 mice with Delta, Omicron, and WA1 variants of SARS-CoV-2. In the 
case of C57BL/6J mice, the mice were infected with 103 PFU of Beta or Omicron variants 
of SARS-CoV-2. All stool samples from a cage of mice were pooled into one tube with 
DNA/RNA shield 1–5 cages of infected mice sampled per timepoint. Where possible, two 
of the aggregated samples were selected for sequencing; otherwise, the resulting slurry 
was sequenced. In the case of K18-hACE2 mice, a full cage was euthanized at 2, 4, and 
7 days post infection for lung viral titer assessment or if meeting criteria for sacrifice on 
days 5 and 6. The lung and gut tissues were analyzed for viral titer using plaque assays as 
described (23), with lung tissue data published previously.

Stool DNA extraction

Stool DNA was extracted using a modified protocol within a BSL2 biological safety 
cabinet given subjects had known infection with SARS-CoV-2. Samples were handled on 
dry ice, and containers were decontaminated before and after use with 70% ethanol. 
Briefly, samples were extracted using phenol–chloroform and 5% hexadecyltrimethylam
monium bromide. Samples underwent two rounds of bead-beating for 45 s at a rate 
of 5.5 m/s, and underwent heat denaturation for 15 min at 65℃. Polyethylene glycol 
was used to precipitate DNA, which was then washed in 70% ethanol. This method 
has been described previously (36). For mouse stool samples, roughly two stool pellets 
were selected from the DNA/RNA shield mixture and processed for 16S-Seq as described 
below.

16S rRNA gene amplicon sequencing

DNA was amplified using Kapa-HiFi Hotstart (KK2502, Kapa Biosystems) using primers 
to 16S-V4 regions (V4-515F - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCA
GCMGCCGCGGTAA, V4-806R - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACT
ACHVGGGTWTCTAAT) on a BioRad CFX 384 real-time PCR instrument with four serial 
10-fold dilutions of extracted DNA template. Individual sample dilutions in the exponen
tial phase were selected using an OpenTrons OT2 for subsequent indexing PCR using a 
dual GoLay error-correcting index primers (37). DNA concentration was measured using 
a PicoGreen assay (P7589, Life Technologies, South San Francisco, CA, USA), and samples 
were pooled at equimolar concentrations. Agencourt AMPure XP magnetic beads were 
used to purify the pooled PCR product, and the samples were subsequently sequencing 
on an Illumina MiSeq using 15% PhiX spiked in for sequencing. Mouse samples were 
amplified using V4 primers as previously described (38). All sequencing was paired, 
with human 16S as 270 bp and mouse 16S as 150 bp fragments. Amplicon reactions 
were pooled at equimolar concentrations and purified using the Agencourt AMPure XP 
magnetic beads. The pooled library was loaded onto the Illumina NextSeq 550 platform 
using 40% PhiX spiked in for sequencing.

16S rRNA gene sequencing analysis

Primer sequences and adatpers were trimmed using the cutadapt plugin in QIIME2 
prior to analysis. DNA sequences underwent quality filtering, denoising, and chimera 
filtering utilizing DADA2 (39) as implemented in QIIME2 (40). Taxonomy was assigned 
to amplicon sequence variants (ASVs) using the SILVA v138 database (41). Two negative 
control samples were processed in this manner. Greater than 98% of both negative 
controls reflected chimeric reads and were ~102 lower in final read content than the 
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lowest positive control. Negative control samples were subsequently removed from 
analysis. ASVs were filtered for those found with at least 10 reads in three samples and 
subsampled to even sampling depth using MicrobeR (42).

Samples underwent a PhILR transformation using the de novo generated phylogeny 
made using the PhILR package (43). β-Dispersion was assessed in this distance matrix 
using the function beta.disper in the R package vegan with resulting p values were 
adjusted using Tukey’s multiple comparison test, and permutational multivariate analysis 
of variance (PERMANOVA) testing was conducted using the adonis2 function with the 
following formula (distance matrix (DM) ~ Household + COVID_Status + Days After PCR 
test) (25). For PERMANOVA testing, the adonis2 command from the vegan package (25) 
was used, and blocks of permutation were set to 10,000 and restricted by individual 
subject using the how function in base R using participant ID. For unadjusted PERMA
NOVA testing, 10,000 unrestricted permutational blocks were used. For Fig. 2, distan
ces for individuals from which successive measurements were available were selected 
from the larger PhILR distance matrix, and initial measurements (e.g., 0 distance) were 
excluded. A linear mixed effect model with the following formula [Centered Log Ratio 
(CLR) ~ COVID_Status + (1|Subject ID)] was iterated over all ASVs using lmerTest for Fig. 1, 
a model fitting CLR ~ Day_Post_Infection|Cage was fit including all sampled timepoints 
for Fig. 3 and Table S3A, and a model fitting fitting CLR ~ Variant + Day_Post_Infection 
+ (1|Cage) was fit for Fig. 5 and Table S3B (44). ASVs for whom the model failed due 
to singularity were excluded from the analysis. Resulting p values were corrected using 
the p.adjust command in R and the Benjamini-Hochberg correction. The mean difference 
between abundance of day 2 and day 0 samples was chosen to plot across the x-axis 
in Fig. 3, given this maximized the number of independent replicates based on our 
experimental design. Calculation of coefficients of variance (CV) was completed by 
transforming CLR or normalized metagenomic data to ranks, and then dividing the 
mean of a feature by its standard deviation using the group by command and on a per 
sample basis iterated across all features for 16S-Seq, taxonomic MGS, and functional MGS 
data. For 16S-Seq data, F-statistics were obtained by comparing ranks between Cases 
and Controls for all ASVs using the var.test command in R, and adjusting resulting p 
values with a Benjamini-Hochberg correction. A ΔCV was calculated with negative values 
being greater in Controls and positive values being greater in Cases. A density curve 
was plotted with ΔCV values, and values demarcating three standard deviations outside 
of a ΔCV of 0 of this curve are displayed in Fig. 2F. The outliers of this distribution are 
displayed in the phylogenetic tree.

An analysis of variance (ANOVA) for baseline samples from the mouse experiments 
with the following formula was iterated over all ASVs (CLR ~ Variant). For wild-type 
mice, this was done comparing uninfected mice to both Omicron and Beta-infected 
mice. For mouse 16S-Seq data, baseline timepoints were excluded from PERMANOVA 
testing. PERMANOVA testing was restricted by longitudinally sampled cages by using the 
how function in base R and 10,000 permutations. For unadjusted PERMANOVA testing, 
10,000 unrestricted permutational blocks were used with the following formula (DM 
~ Variant + Days Post Infection). Baseline samples from all K18-hACE2 infected mice 
were compared using PERMANOVA testing with 10,000 permutations and adjusted for 
cage using the how function in base R with the following formula (DM ~ Variant). 
Differences in Akkermansia were determined by comparing all ASVs assigned to the 
genus Akkermansia between groups after CLR transformation of genus ASVs. Two-way 
ANOVA was calculated using the anova_test tool in the rstatix package, where the 
indicated dependent variable in the figure was a function of two independent variables 
(e.g., SARS-CoV-2 variant and days post infection).

Metagenomic sequencing

Extracted DNA was prepared using a Nextera XT DNA library preparation kit from 
Illumina, and methods were followed as specified by the manufacturer. Eighteen out 
of 58 samples lacked sufficient concentration to create 50 ng of sample material, and 
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for these, 20–30 μL of samples were used to provide the maximum amount of template 
material at tagmentation and PCR. Samples were amplified using six cycles of PCR using 
the IDT Illumina Type B indexing primers. Sample DNA concentrations were estimated 
using a PicoGreen assay (P7589, Life Technologies), pooled to equimolar concentrations 
using an OpenTrons OT2, and cleaned using the Agentcourt AMPure XP magnetic beads. 
The resulting library was sequenced on an Illumina NovaSeq instrument at UCSF’s Center 
for Advanced Technology using paired end sequencing with 150 bp fragments.

Metagenomic analyses

Shotgun libraries were processed using Humann3 with unstratified pathway data or 
gene families as outputs (45). Normalized abundance was calculated as Abundance 
normalized by Genome Equivalents as estimated by MicrobeCensus (46). Histograms 
of feature counts by number of samples present were created, and a cutoff of feature 
presence in three samples was used for pathway data or gene family data. While all 
gene family data trimmed in this manner was used to construct distance matrices and 
related analyses, low abundant features were trimmed and only the top 20,191 gene 
families were evaluated for associations with SARS-CoV-2 using a linear mixed effect 
model and represented in Fig. 1E. Pathway and gene family data were filtered to reads 
per kilobase per million*103 cutoffs of greater than 0.0005. A Canberra distance matrix 
was calculated for filtered functional data with subsequent PERMANOVA testing utilizing 
adonis2, and nMDS plots were created using the metaMDS command (25). PERMANOVA 
testing, dispersion assessment, and distances between points were done as described for 
16S-Seq.

SARS-CoV-2 E and N protein quantitative PCR

Mice were infected with the indicated variants of SARS-CoV-2, and RNA was extracted 
from small intestinal tissue that underwent homogenization. Quantitative polymerase 
chain reaction (qPCR) was conducted using SYBR Green. qPCR was conducted for 
SARS-CoV-2 envelope (E) and nucleocapsid (N) genes (E gene forward primer: 5′-ACA
GGTACGTTAATAGTTAATAGCGT-3′; reverse primer: 5′-ATATTGCAGCAGTACGCACACA-3′, N 
gene forward primer: 5′-AAATTTTGGGGACCAGGAAC-3′; reverse primer: 5′-TGGCACCTG
TGTAGGTCAAC-3′) and normalized to Gapdh gene (forward primer: 5′-AGGTCGGTGTGA
ACGGATTTG-3′; reverse primer: 5′-TGTAGACCATGTAGTTGAGGTCA-3′). Reactions were 
10 µL and conducted in 384-well plates using an annealing temperature of 60℃ on 
a CFX 384 Touch Real-Time PCR Detection System (Bio-Rad).

Social distancing variable measurements

We obtained population-level social distancing variables from Cubiq. Cubiq provided 
two pieces of data for each zip code and date combination. The Cubiq Mobility Index 
(CMI) quantifies movement in users in a given region per day. Movement was calculated 
using a derivative factor indicating the distance between opposite corners within a box 
around locations for users on a given day. CMI values can be interpreted as follows: 
5–100,000 m; 4–10,000 m; 3–1,000 m; 2–100 m; 1–10 meters. The “Home Percentage” 
variable is the estimated number of users sheltering-in-place, which is calculated by the 
number of users moving less than 330 ft from home on a given day.

Statistical analysis

Data were analyzed either in this R version 4.0.4, or an enterprise version of R studio 3.5.1 
for 16S-Seq data and R version 3.6.1 for shotgun data on the Wynton Computing cluster 
(a co-op-based computing cluster at UCSF). Unless otherwise stated, data were analyzed 
using the following software packages in R: tidyverse, ggplot2, and rstatix (47, 48).
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