
 | Microbial Genetics | Research Article

A modular plasmid toolkit applied in marine bacteria reveals 
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ABSTRACT A conspicuous roadblock to studying marine bacteria for fundamental 
research and biotechnology is a lack of modular synthetic biology tools for their genetic 
manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit 
to study marine bacteria in the context of symbioses and host-microbe interactions. To 
demonstrate the utility of this plasmid system, we genetically manipulated the marine 
bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of 
the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive 
and native promoter expression, developed reporter strains that enable the imaging 
of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a 
secondary metabolite and a host-associated gene. We demonstrate the broader utility of 
this modular system for testing the genetic tractability of marine bacteria that are known 
to be associated with diverse host-microbe symbioses. These efforts resulted in the 
successful conjugation of 12 marine strains from the Alphaproteobacteria and Gam
maproteobacteria classes. Altogether, the present study demonstrates how synthetic 
biology strategies enable the investigation of marine microbes and marine host-microbe 
symbioses with potential implications for environmental restoration and biotechnology.

IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due 
to their ability to produce a diversity of bioactive metabolites and their involvement 
in host-microbe symbioses. Modular cloning toolkits have become a standard for 
engineering model microbes, such as Escherichia coli, because they enable innumerable 
mix-and-match DNA assembly and engineering options. However, such modular tools 
have not yet been applied to most marine bacterial species. In this work, we adapt a 
modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteo
bacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic 
toolkit by engineering a marine Pseudoalteromonas bacterium to study their association 
with its host animal Hydroides elegans. This work provides a proof of concept that 
modular genetic tools can be applied to diverse marine bacteria to address basic science 
questions and for biotechnology innovations.

KEYWORDS CRISPRi, golden gate, violacein, metamorphosis, tubeworm, Hydroides, 
modular, marine, symbiosis

M arine bacteria are a valuable and currently under-utilized resource for environ
mental restoration (1–6) and bioprospecting (7, 8), especially considering their 

influence on biogeochemical cycles (9) and their vital role in evolution through 
symbioses with eukaryotes (10). While advances in metagenomic sequencing have 
enabled a deeper exploration of microbial diversity and gene content (11, 12), genetic 
tools to explore functions in marine bacteria remain scarce.
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Effective genetic engineering approaches in model microbial species, such as 
Escherichia coli, utilize standardized and modular cloning toolkits (13–19), which leverage 
aligned plasmid parts based on the ordered pairings of restriction site overhangs to 
enable innumerable mix-and-match plasmid assembly options. However, such modular 
genetic tools have not yet been applied to most marine bacterial species. Thus, adapting 
and applying standardized molecular cloning tools for studying marine bacteria can 
provide a framework for addressing functional questions for basic science and biotech
nology.

Marine bacteria are of specific interest as targets for genetic tool development due 
to their ability to produce diverse bioactive metabolites (20), their prominent associa
tions in aquatic microbiomes, and their involvement in host-microbe symbioses (21–23). 
Alphaproteobacteria and Gammaproteobacteria, in particular, are the most abundant 
orders in the ocean (12) and are prominent members of the microbiomes of animals such 
as phytoplankton (12), tubeworms (21), and corals (24).

Of particular interest as targets for genetic manipulation are marine Pseudoalteromo
nas species because they produce a number of bioactive secondary metabolites (8, 
25–29) and are often found in association with marine invertebrates (30–36). Pseudoal
teromonas species are known to engage in a transient symbiosis called bacteria-stimu
lated metamorphosis, whereby surface-bound bacteria promote the larval-to-juvenile 
life cycle transition in invertebrates such as tubeworms and corals (37, 38). Pseudoaltero
monas luteoviolacea stimulates the metamorphosis of the tubeworm Hydroides elegans 
(39, 40) by producing syringe-like protein complexes called Metamorphosis-Associated 
Contractile structures (MACs). MACs stimulate tubeworm metamorphosis by injecting 
an effector protein termed Mif1 into tubeworm larvae (40–42). Genes encoding the 
MACs structure are found in the P. luteoviolacea genome as a gene cluster encoding 
structural components, such as the macB baseplate and macS sheath, as well as the 
protein effector gene mif1 (41). Despite the significant insights gained by using genetics 
in P. luteoviolacea, new genetic tools are needed to further dissect the function of MACs 
and their stimulation of tubeworm metamorphosis.

In this work, we utilize a modular plasmid toolkit, and contribute new Marine 
Modification Kit (MMK) plasmid parts, to study bacteria-stimulated metamorphosis in 
the Gammaproteobacterium, P. luteoviolacea. We demonstrate the broader utility of this 
approach by conjugating MMK plasmids into marine Alphaproteobacteria and Gammap
roteobacteria that have been shown previously to be involved in diverse host-microbe 
interactions.

RESULTS

Toolkit-enabled quantitative promoter expression in P. luteoviolacea

To test the application of modular genetic tools in marine bacteria, we identified a 
set of preexisting parts from the Yeast Toolkit and Bee Toolkit platforms (17, 18) and 
used Golden Gate Assembly (14) for rapid, modular construction of plasmids (Fig. 1A 
through C). Each type of part is defined by its functional role (e.g., promoter and coding 
sequence [CDS]) and directional 4 bp overhangs generated by flanking Type IIS (BsaI) 
restriction sites. The modular parts include Type-1 and Type-5 stage-2 connectors with 
BsmBI recognition sites (17, 18), a Type-2 promoter with ribosome binding site (RBS), a 
Type-3 protein CDS (e.g., gfp and Nanoluciferase), a Type-4 terminator, an optional Type-6 
repressor and Type-7 promoter with RBS, and a Type-8 backbone. Preexisting Type-8 
backbones are available with different origins of replication (ColE1 and RSF1010) and 
antibiotic resistance markers (ampicillin, kanamycin, or spectinomycin resistance) (17, 
18). For this work, we selected a broad-host-range (BHR) plasmid backbone contain
ing a kanamycin resistance gene, a reporter CDS (fluorescent gfp-optim1, mRuby, or 
Nanoluciferase [NLuc]), T7 terminator, and a stage-2 assembly connector. The back
bone selected has an RSF1010 origin of replication which is known to replicate in a 
broad range of Gram-positive and Gram-negative bacterial hosts at a copy number of 
10–12 per chromosome and also contains a promiscuous origin of transfer and the 
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plasmid-encoded mobilization genes repA, repB, repC, and mobC (43, 44). An auxotrophic 
MFDλpir strain was used as the E. coli donor, thus obviating the need to generate 
antibiotic-resistant recipient strains to counter select E. coli donor cells after conjugation 
(45).

To apply the modular genetic tools in a marine symbiosis model, we tested the 
expression of five promoters in P. luteoviolacea. We assembled plasmids with each 
promoter fused to NLuc and conjugated the plasmids into P. luteoviolacea. We utilized 
two existing BHR promoters, PA3 and CP25, previously shown to work in diverse bee gut 
microbes (17, 46, 47). We also created a Ptac lacO promoter part (pMMK201), which is a 
hybrid of the lac and trp promoters amplified from the pANT4 plasmid (48). When P. 
luteoviolacea with the plasmids were grown in exponential, stationary, or biofilm growth 
phases, we observed at least 10-fold more luminescence signal compared to the 
background with all BHR promoters tested (Fig. 1D).

Previous observations have shown that the production of MACs is greatest during the 
exponential phase of growth when P. luteoviolacea is cultured in rich media (40). 
However, the expression of mac genes in live cultures has not been previously quantified. 
To observe the expression of two native mac promoters, we constructed two plasmids 
with P. luteoviolacea promoters driving the expression of the MACs structural genes; 
promoters from the MACs sheath (macS promoter, pMMK203) and baseplate (macB 
promoter, pMMK202) genes. The macSp luciferase reporter strain was elevated 1,000-fold 
in exponential growth as compared to 100-fold in stationary and 10-fold in biofilm phase, 
when compared to the detection limit (Fig. 1E). In contrast, the macB, baseplate pro
moter exhibited similar levels of luminescence among each phase, approximately 10-fold 
higher than the detection limit (Fig. 1E).

Functional CRISPRi knockdown of secondary metabolite biosynthesis in P. 
luteoviolacea

While previous studies in P. luteoviolacea have used gene knockouts to interrogate gene 
function, these approaches are time-consuming and low-throughput. We therefore 
tested whether P. luteoviolacea is amenable to gene knockdown via CRISPR interference 
(CRISPRi) (Fig. 2A and B) (49, 50). As a proof of concept, we targeted the vioA gene that 
encodes a key enzyme in the biosynthesis of violacein (51), which gives P. luteoviolacea 
its characteristic purple pigment (Fig. 2B). An assembled plasmid containing dCas9 and a 
single-guide RNA (sgRNA) targeting vioA (pMMK603) was conjugated into P. luteoviolacea 
resulting in the visible absence of the purple pigment associated with violacein produc
tion on the plate (Fig. 2C). We also created a plasmid containing dCas9 and a sgRNA 
targeting gfp to test whether the presence of the CRISPRi machinery adversely affected 
wild-type (WT) P. luteoviolacea or violacein production. No difference was observed 
between the growth and cell morphology of P. luteoviolacea containing gfp or vioA 
sgRNA CRISPRi plasmids compared to WT (Fig. S1). WT P. luteoviolacea produced 
violacein as expected, while P. luteoviolacea with CRISPRi with the gfp sgRNA produced a 
statistically comparable amount of violacein (adjusted P = 0.26, n = 8, Dunn’s multiple 
comparison test). A significant reduction of violacein production was observed between 
cultures of P. luteoviolacea strains expressing the vioA and gfp targeting CRISPRi plasmids 
(adjusted P = 0.02, n = 8, Dunn’s multiple comparison test) (Fig. 2D). The lack of violacein 
in the vioA knockdown strain was comparable to that of a P. luteoviolacea strain with an 
in-frame deletion of vioA (adjusted P = 0.26, n = 8, Dunn’s multiple comparison test) (Fig. 
2D). These results demonstrate the successful implementation of CRISPRi for gene 
knockdown in P. luteoviolacea.

Functional CRISPRi knockdown and visualization of P. luteoviolacea during a 
tubeworm-microbe interaction

We next tested whether CRISPRi would be functional in the context of a marine host-
microbe interaction by targeting the macB gene, which encodes the MACs baseplate, an 
essential component of the MACs complex that induces tubeworm metamorphosis (39, 
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40) (Fig. 3A). Biofilm metamorphosis assays were performed comparing P. luteoviolacea 
strains with sgRNAs targeting macB (pMMK604) or the sgRNA targeting gfp control (Fig. 
3B). The strain with sgRNA targeting macB exhibited significantly reduced levels of 
tubeworm metamorphosis compared to the gfp-sgRNA control (adjusted P < 0.0001, 
Dunn’s multiple comparisons test, n = 12) (Fig. 3B). The reduction of metamorphosis 

A B

C

E

Stationary

Biofilm

Exponential

m
a
cS

p

m
a
cB

p

D

L
u

m
in

e
s
c
e

n
c
e

 (
R

L
U

/O
D

6
0

0
)

107

106

105

104

103

102

101

100

C
P
25

PA
3

P
ta

c

FIG 1 Schematic overview of the modular plasmid system and quantitative promoter measurements. (A) Schematic representation of the modular golden 

gate assembly plasmid parts with flanking BsaI cut sites (dashed lines). Overlapping 4 bp overhangs are color coordinated. The modular broad-host-range 

(BHR) backbone (pBTK402) contains inverted BsaI cut sites and an RFP dropout. (B) Golden Gate Assembly is performed in a one-tube reaction by digesting 

the backbone and insert part plasmids with BsaI and ligating with T4 ligase. (C) A modular stage-1 plasmid is complete when all overlapping inserts are 

successfully assembled in order. (D and E) Luciferase assays of P. luteoviolacea strains expressing plasmids with different promoters during exponential, stationary, 

or biofilm growth driving a Nanoluciferase (NLuc) gene where (D) shows CP25-NLuc-T7, PA3-NLuc-T7, Ptac-NLuc-T7 and (E) compares native MACs macS and macB 

promoters. Luminescence, as relative luminescence units (RLUs), is normalized to optical density at 600 nm (OD600) and plotted on a log base 10 scale. The 

dashed line indicates P. luteoviolacea cells expressing a non-luminescent plasmid as represented by the dotted line (Y = 524 RLU/OD600). Plotted is the mean of 

three biological replicates. Error bars indicate standard deviations.
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stimulation in the macB-sgRNA knockdown strain was comparable to that of a P. 
luteoviolacea strain with an in-frame deletion of macB carrying the gfp-sgRNA control 
plasmid (adjusted P ≥ 0.99, Dunn’s multiple comparison test, n = 12) (Fig. 3B). These 
results demonstrate that CRISPRi paired with a modular plasmid system is a viable tool 
for interrogating gene function during a marine host-microbe interaction.

To date, bacteria have not been visualized during or after the stimulation of metamor
phosis in Hydroides. To test whether marine bacteria harboring a toolkit plasmid are 
amenable to live-cell imaging when in association with juvenile tubeworms, we created 
biofilms of P. luteoviolacea containing plasmids encoding CP25-gfp-T7 (gfp) or CP25-
Nanoluc-T7 (NLuc) and added competent Hydroides larvae. After incubation for 24 h, 
biofilms of gfp-expressing P. luteoviolacea were clearly observed when visualized by 
fluorescence microscopy (Fig. 3C). P. luteoviolacea stimulated Hydroides metamorphosis 
while carrying a modular plasmid and fluorescent bacteria were observed being 
ingested by the Hydroides juveniles. Bacteria can be seen collecting in the pharynx (Fig. 
3C, yellow arrows), then moving in a peristaltic fashion toward the gut (Movie S1). In 
contrast, bacteria containing a CP25-NLuc-T7 plasmid were difficult to visualize by light 
microscopy, in the absence of the gfp fluorescent marker (Fig. 3D). Taken together, the 
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FIG 2 CRISPRi knockdown of secondary metabolite production in P. luteoviolacea. (A) Schematic representation of modular CRISPRi parts adapted to include 

dCas9-bla and Ptac sgRNA parts, pMMK601, and pMMK602, respectively. Part plasmids are combined, and a BsmBI Golden Gate Assembly was performed. (B) 

Schematic representation of the violacein gene cluster vioABCD in P. luteoviolacea and the violacein molecular structure. The CRISPRi system was assembled with 

an sgRNA targeting the vioA gene (pMMK603) and employed to knock down violacein production in P. luteoviolacea. (C) P. luteoviolacea with gfp (pMMK815) 

or vioA (pMMK816) sgRNA plasmids grown on marine agar plates. (D) Quantification of violacein production (measured at 580 nm) between P. luteoviolacea 

containing gfp or vioA sgRNA plasmids. Asterisks indicate significant differences (*P = 0.02, Dunn’s multiple comparisons test). Bars represent the mean of eight 

total replicates and error bars indicate standard deviations.

Research Article mBio

July/August  Volume 14  Issue 4 10.1128/mbio.01502-23 5

https://doi.org/10.1128/mbio.01502-23


modular plasmid system enables live imaging and experimentation during a marine 
host-microbe interaction.

Applying the modular toolkit in marine Alphaproteobacteria and Gammap
roteobacteria

Given the success of genetic manipulation of P. luteoviolacea, we tested whether other 
marine Proteobacteria might be amenable to conjugation and retention of a modular 
genetic toolkit plasmid. To this end, we isolated or acquired representative bacteria that 
are known to engage in symbioses with marine plants or animals in the ocean (Fig. 
4A; Tables S1 and S2). To enable genetic selection using antibiotics, we determined 
the minimum inhibitory concentration for each bacterial strain tested against kanamy
cin (Table S1). When conjugation was performed using the BHR (RSF1010) plasmid 
backbone, CP25 promoter, gfp reporter, and T7 terminator, we observed the expression 
of gfp in 12 marine strains across two proteobacterial classes, four orders, and 10 genera 
(Fig. 4B). Adaptations to the conjugation protocol and the use of constitutive promoters 
driving gfp enabled visual confirmation of successful conjugation (Fig. 4B, Materials and 
Methods).
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FIG 3 Functional knockdown of MACs and visualization of P. luteoviolacea during the tubeworm-microbe interaction. (A) Schematic depicting P. luteoviolacea 

and the production of MACs, which induce tubeworm metamorphosis. CRISPRi single-guide RNA (sgRNA) targeting the macB MACs baseplate gene prevents 

MACs from assembling, rendering the bacterium unable to induce metamorphosis. Cells that produce intact MACs are able to induce tubeworm metamorphosis. 

A strong fluorescent reporter strain (BHR-CP25-gfp) enabled visualization of live tubeworm-bacteria interactions. (B) Bar graph representing biofilm metamor

phosis assays with P. luteoviolacea carrying a CRISPRi plasmid targeting macB or gfp and Hydroides tubeworms. A P. luteoviolacea ∆macB strain with a sgRNA 

targeting gfp and a treatment without bacteria (no bacteria) were included as controls. Biofilm concentrations were made with cells at OD600 0.1. Bars plotted 

show the average of 12 replicates, performed across three independent experiments. Each well contained 20–40 worms. Error bars indicate standard deviations. 

Statistical significance between treatments was determined by Dunn’s multiple comparisons test (N = 12). (C and D) Merged fluorescence and DIC micrographs of 

Hydroides elegans juveniles imaged 24 h after the competent larvae were exposed to inductive biofilms of P. luteoviolacea containing plasmids with (C) CP25-gfp 

or (D) CP25-NLuc. Strains containing NLuc plasmids were used as a negative control to account for autofluorescence. Yellow arrows show accumulation of 

fluorescent bacteria in the Hydroides juvenile pharynx. Scale bar is 100 µm.
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DISCUSSION

Modular genetic tools provide insights about bacteria-stimulated metamor
phosis

We tested a modular plasmid toolkit on a genetically tractable marine bacterium, P. 
luteoviolacea, that promotes the metamorphosis of the tubeworm Hydroides elegans (40, 
41, 55) and produces several bioactive secondary metabolites (26, 29, 56, 57). We expand 
the tools available for functional interrogation of bacteria-stimulated metamorphosis in 
P. luteoviolacea by quantifying gene expression by a luminescence assay (Fig. 1D and E), 
and using CRISPRi to knock down the secondary metabolite, violacein (Fig. 2C and D), as 
well as a metamorphosis-associated gene, macB (Fig. 3B) during the bacteria-tubeworm 
interaction. Distinct patterns of sheath (macSp) (41, 58) and baseplate (macBp) promoter 
induction suggest distinct mechanisms of gene regulation within the MACs gene cluster. 
Expression of the sheath gene was sensitive to bacterial mode of growth, while baseplate 
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gene expression appeared static across the growth conditions tested. Although MACs 
are known to produce two effectors that stimulate tubeworm metamorphosis and kill 
eukaryotic cells (41, 58), the environmental conditions that promote MACs production 
remain poorly characterized. The tools developed here could help to characterize the 
conditions under which P. luteoviolacea MACs are produced or assembled and could help 
in the development of MACs or other contractile injection systems for use in biotechnol
ogy (59, 60). The modular tools in this work open new capabilities for interrogating 
bacteriology, including the ability to quantify gene expression in live cultures, knock 
down gene expression for rapid functional testing, and visualize bacteria during an in 
vivo interaction.

Whether, and how, bacteria and the animal are harmed or benefit from the interaction 
during bacteria-stimulated metamorphosis remains a prominent question in the field 
(38, 61, 62). Swimming Hydroides larvae initially encounter and are stimulated to undergo 
metamorphosis by the bacterial biofilm. And MACs were previously visualized within 
P. luteoviolacea biofilms by tagging the MACs baseplate with super-folder GFP (40). 
However, less attention has been put on the interaction between Hydroides and the 
bacteria after metamorphosis. Previous work by Gosselin et al. has shown that Hydroides 
is able to feed on bacteria as the sole food source (63). In the present work, we visualize 
live bacteria surrounding and being ingested by Hydroides juveniles (Fig. 3C) (21). The 
visualization of transgenic bacteria in Hydroides will enable future lines of research that 
can help dissect the role of microbiome seeding in bacteria-stimulated metamorphosis. 
More broadly, our results showcase the feasibility of using a modular plasmid toolkit 
to test hypotheses about bacteria-stimulated metamorphosis and provide a framework 
for the interrogation of other bacteria and their products that promote host-microbe 
symbioses (36, 64, 65).

Toolkit compatibility in marine bacteria

In this work, we explore genetic tractability in 12 ecologically relevant marine bacteria 
that belong to two Proteobacterial classes (Fig. 4). The Gammaproteobacteria strains 
conjugated successfully in this study are a selection of symbiosis-associated strains 
representing five genera (Fig. 4A) (66–72). To our knowledge, this is the first report of 
genetic tractability in strains from the genera Endozoicomonas, Nereida, and Cobetia (Fig. 
4B). Endozoicomonas species are among the most abundant bacterial symbionts in some 
corals and other marine hosts (73–75). Related strains of Cobetia have been implicated 
in thermotolerance against bleaching in coral experiments with probiotic consortium 
treatments (76). The conjugation of the representative Endozoicomonas and Cobetia 
strains in this study is a considerable step toward exploring function in coral host-micro
biome interactions at a critical time to encourage the restoration of coral reefs (6, 77, 
78). The genetic conjugation of Pseudoalteromonas sp. PS5 in this study presents an 
opportunity to explore secondary metabolite production, including the coral metamor
phosis-inducing compound, tetrabromopyrrole (Fig. 4) (36, 79). The Alphaproteobacteria 
strains tested for compatibility with MMK plasmids fall within the Roseobacter group 
(Fig. 4A), an ecologically important group of bacteria known to play a role in sulfur and 
carbon cycling on marine phytoplankton (80–82). Roseobacter strains have also been 
explored as probiotics for the aquaculture industry (83–85). We tested the toolkit with 
the tractable, phytoplankton-associated species of Phaeobacter gallaeciensis (86), and 
Ruegeria pomeroyi (87), and demonstrated conjugation with invertebrate microbiome-
associated strains Phaeobacter sp. HS012 (88) and Leisingera sp. 204H (89) (Fig. 4). Using 
modified Shimia sp. may be of interest for future coral microbiome studies (90–93). 
Species in the Nereida genus have been isolated from kelp (94) and are associated with 
gall formations (95, 96). Tractability in this strain could help guide further understanding 
of microbe-seaweed interactions (97, 98), kelp aquaculture, and the development of kelp 
probiotics (99). In summary, the development of methods and established tractability of 
several new strains and genera have significant implications for the future of bacterial 
genetic development in established and emerging symbiosis systems.
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Future modifications

The modularity of the plasmid toolkit enables the potential for creating new plasmids 
that are compatible with the existing system to boost functionality. For example, the 
addition of backbone plasmid parts (Type-8) with different origins of replication and 
selectable markers could allow utilization in bacteria that are naturally resistant to 
the antibiotics used in this and prior works (17, 18). We have created a Type-8 Tn10 
transposon backbone for stable integration of toolkit parts into the genomes of marine 
bacteria and used this part to integrate a fluorescent gfp marker into the genome of 
Pseudoalteromonas sp. PS5 (79). Type-8 parts like this could be used to tag and track 
marine bacteria for studying host-microbe interactions in the future.

The current promoter driving dCas9 is constitutive. However, adding an inducible 
promoter driving dCas9 (e.g., PBAD for arabinose induction) would allow the CRISPRi 
system to be controllable. The expression of gfp was not uniformly observed in the 
Phaeobacter, Leisingera, and Nereida strains (Fig. 4B). However, the plasmid toolkit could 
be used to identify plasmid components that would produce uniform expression (e.g., 
different origins of replication, selectable markers, promoters, etc.). In the future, more 
strains may be tested for manipulation with the present toolkit plasmids for applying 
genetics in a broader array of bacteria types.

Conclusion

The modular plasmid toolkit described here provides a basis for streamlining the genetic 
manipulation of marine bacteria for basic and applied purposes. These tools reveal new 
possibilities to study marine microbes in the context of plant and animal interactions, or 
with challenging and diverse non-model bacteria, ultimately helping us harness marine 
microbes for research, bioproduction, and biotechnology.

MATERIALS AND METHODS

Bacterial culture

A list of strains used in this study, isolation sources, accession numbers, and minimum 
inhibitory concentration can be found in Table S1. Environmental strains of marine 
bacteria were isolated and cultured on Marine Broth (MB) 2216 (BD Difco) and or natural 
seawater tryptone (NSWT) media (1 L 0.2 µm filtered natural seawater from Scripps Pier, 
La Jolla, CA, 2.5 g tryptone, 1.5 g yeast extract, 1.5 mL glycerol). MB and NSWT media 
are used interchangeably throughout the study; however, the experiments were always 
conducted using only one media type. Marine bacteria were incubated between 25°C 
and 30°C, and cultures were shaken at 200 rpm. All liquid cultures were inoculated with 
a single colony and incubated between 16 and 18 h, unless otherwise indicated. E. coli 
SM10λpir and S17-1λpir were cultured in LB (Miller, BD Difco) at 37°C, shaking at 200 rpm. 
E. coli MFDλpir (45) was cultured in LB supplemented with 0.3 mM Diaminopimelic acid 
(DAP). For E. coli, antibiotic selections with ampicillin, kanamycin, and chloramphenicol 
were performed using a concentration of 12.5 µg mL−1.

Plasmid construction and assembly

Golden Gate Assembly-compatible parts from the BTK, YTK (17, 18), and MMK used in 
this work can be found in Table S3. New plasmid parts were made by PCR amplifying 
insert and backbone fragments and combining them with Gibson Assembly with a 2:1 
ratio (20 fmol insert: 10 fmol backbone) (100). PCR amplification was performed with 
custom primers (Table S4), a high-fidelity DNA polymerase (PrimeSTAR GXL, Takara), 
and purified using a DNA Clean and Concentrator kit (Zymo Research). Part plasmids 
were assembled to make a stage 1 plasmid using Golden Gate Assembly, with T4 DNA 
ligase (Promega) and either BsaI or BsmBI (New England Biolabs), depending on the 
construct. Single-tube assembly was performed by running the following thermocycler 
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program (BsaI/BsmBI): 37/42°C for 5 min, 16°C for 5 min, repeat 30×, 37/55°C for 10 min, 
and 80°C for 10 min. The assemblies were directly electroporated into S17-1λpir cells, 
confirmed by colony PCR (EconoTaq PLUS Green, LGC Biosearch) with internal primers, 
and then electroporated into MFDλpir cells for conjugation. To facilitate assembly for 
and expression of CRISPRi parts in P. luteoviolacea, we moved the BsmBI cut site in 
the dCas9 part plasmid (pBTK614) to a location where the existing bla gene will be 
retained in the assembled plasmid (pMMK601), and thus also conferring resistance to 
ampicillin. In the sgRNA plasmid (pBTK615), we replaced the existing PA1 promoter with 
the Ptac promoter (including −35 and −10 sequences but excluding lacO), which drives 
the sgRNA expression (pMMK602). The CRISPRi assemblies were electroporated directly 
into SM10λpir cells and shuttled to MFDλpir cells for conjugation.

Biparental conjugation in marine bacteria

E. coli donor strains (MFDλpir or SM10λpir) containing the mobilizable plasmids were 
grown under antibiotic selection in LB with the appropriate supplements (including 
0.3 mM DAP for E. coli MFDλpir). Conjugations were performed as previously described 
(17) with modifications for culturing marine bacteria. Briefly, several colonies of the 
recipient strains were inoculated and grown overnight in liquid culture. Recipient and 
donor cultures were spun down (4,000 × g for 2 min) in a 1:1 OD600 ratio. All donor 
supernatant was removed leaving only the cell pellet. All but 100 µL of the recipient 
supernatant is removed, and the cell pellet is resuspended. The recipient suspension 
was transferred to the donor pellet, which was resuspended with the recipient cells. 
Two 50 µL spots are plated onto NSWT (supplemented with 0.3 mM DAP for MFDλpir-
mediated conjugations) and incubated overnight at 25°C with the lids facing up. The 
next day, spots were scraped up with a pipette tip and resuspended in 500 µL of liquid 
marine media and 100 µL was plated onto marine media containing antibiotic selection, 
according to the minimum inhibitory concentration (Table S1). Streptomycin-resistant 
P. luteoviolacea (Table S1) were conjugated with E. coli SM10λpir, and counterselection 
was performed with 100–200 µg/mL streptomycin. All other marine bacteria (Table S1) 
were conjugated with E. coli MFDλpir, and transconjugant selection was performed in 
the absence of DAP. Several of the bacteria take longer to grow or do not reach a high 
optical density (i.e., Endozoicomonas, Ruegeria, and Nereida) in culture. Slower-growing 
marine bacteria were conjugated by growing larger 50 mL initial volumes of culture and 
spinning down the entire culture to reach 1:1 (donor:host) ratios.

Phylogeny

Strains or close representative strains used in this study were compiled into a genome 
group on PATRIC v3.6.12 (101). A whole genome phylogenetic codon tree composed 
of 100 single-copy genes (102) was performed using the Phylogenetic Tree Service (103–
105). A maximum likelihood phylogeny was generated using the best protein model 
found by RaxMLv8.2.11 (106), which was LG. Bootstraps were generated using the rapid 
bootstrapping algorithm with the default of 100 resamples (54). The tree was visualized 
with FigTree v1.4.4. and was rooted at the mid-line.

Growth curve

Pseudoalteromonas luteoviolacea ∆vioA and WT were grown on MB agar plates and 
incubated overnight at 25°C. P. luteoviolacea strains expressing CRISPRi plasmids were 
grown on MB agar plates with 200 µg mL−1 of kanamycin and grown overnight at 25˚C. 
Single colonies were picked and inoculated into 5 mL of MB liquid media with the 
respective antibiotics listed above. Two biological replicate cultures were inoculated for 
each strain by picking different colonies from the agar plate and inoculating separate 
5 mL cultures. Cultures were incubated at 25°C for 18 h shaking at 200 rpm. From the 
initial cultures, a subculture was created by performing a 1:25 dilution into the subcul
ture. The subculture consisted of 25 mL of MB liquid media and 1 mL of original culture 
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along with the respective antibiotics into a 125-mL flask. Subcultures were incubated at 
25°C shaking at 200 rpm throughout the growth curve experiment. Optical density (OD) 
at a wavelength of 600 nm was measured from the subculture every half hour for the first 
5 h and then measured every hour until 10 h with a final measurement at 24 h.

Luciferase culture and assay

P. luteoviolacea containing plasmids with constitutive or native promoters driving 
Nanoluciferase (NLuc) were inoculated into 5 mL of MB or NSWT media with appropri
ate antibiotics and grown at 25°C at 200 rpm for 24 h. Each biological replicate was 
represented by a separate culture. Cultures used for the growth phase assay were 
inoculated as a 1:100 dilution with the appropriate antibiotic, and then incubated at 
25°C and shaking at 200 rpm. The luminescence of cultures was measured at exponential 
(OD600 0.35–1.0), early stationary (OD600 1.0–1.45), or late stationary (OD600 2.38–2.54) 
phases. For biofilm cultures, 1.5 mL of stationary-phase culture was pelleted and plated 
as a single spot on NSWT or MB plates. Biofilm plates were incubated at 20–25°C for 24–
28 h. Each spot was scraped with a pipette tip and resuspended in 200 µL of NSWT or MB 
media before being resuspended in NSWT or MB. Luciferase reactions were performed 
with 100 µL of bacterial culture or biofilm resuspension aliquoted into opaque white 
walled 96-well plates (Corning #3642), with a modified protocol as written for Promega 
Nano-Glo Live Cell Assay System (Promega, catalog #N2011). Briefly, bacteria and the 
final reagent mix (2.5 µL of Nano-Glo LCS dilution buffer, 0.5 µL of Nano-Glo live cell 
substrate, and 17.5 µL of water) were read at a 1:1 ratio. Luminescence was measured 
on a Molecular Devices Microplate FilterMax F5 reader with a custom program on the 
Softmax Pro 7 software. Readings were done on the kinetic luminescence mode at 2 min 
intervals for 20 min in total, using a 400-ms integration time, a 1-mm height read, and 
no other optimization or shaking settings. The detection limit is defined as the average 
expression of P. luteoviolacea cells expressing a non-luminescent plasmid across growth 
conditions. Raw data were normalized to the OD600 of the culture used and plotted with 
an N = 3 biological replicates.

Violacein extraction

The specified P. luteoviolacea strains were struck onto NSWT media containing 200 µg 
mL−1 of streptomycin and kanamycin and incubated overnight at 25°C. Single colonies 
were inoculated into 5 mL of liquid media containing the same antibiotic concentrations. 
Cultures were incubated at 25°C, shaking at 200 rpm between 18 and 20 h. Cultures were 
removed from the incubator and standardized to an OD600 of 1.5. The cells were pelleted, 
and the supernatant was removed. The cell pellet was resuspended in 200 µL of 100% 
ethanol. The resuspended cells were pelleted and the supernatant containing the crude 
extract was recorded on a BioTek Synergy HT plate reader (Vermont, USA) using the Gen5 
program (v2.00.18) with an endpoint reading at 580 nm.

Microscopy

Microscopy was performed using a Zeiss Axio Observer.Z1 inverted microscope 
equipped with an Axiocam 506 mono camera and Neofluar10x/0.3 Ph1/DICI (Hydroides 
co-cultures) or Apochromat 100×/1.4 Oil DICIII (bacteria only) objectives. The Zeiss HE 
eGFP filter set 38 was used to capture GFPoptim-1 expression and Zeiss HE mRFP filter 
set 63 was used to capture mRuby2 expression. For Nanoluciferase controls, images were 
captured using the same fluorescence exposure times as the gfp optim-1 and mRuby2 
labeled strains of the same species.

Bacterial culture (2 µL) was added to freshly prepared 1% saltwater low-melt agarose 
(Apex catalog #20-103, Bioresearch products) pads on glass slides and coverslips were 
placed on top. Hydroides elegans were prepared in visualization chambers (Lab-Tek 
Chambered Coverglasses catalog #155411PK) with bacteria and imaged.
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Hydroides elegans culture

Hydroides elegans adults were collected from Quivira Basin, San Diego, CA, USA. The 
larvae were cultured and reared as previously described (40, 107). Larvae were main
tained in beakers containing filtered artificial seawater (35 PSU) and were given new 
beakers with water changes daily. The larvae were fed live Isochrysis galbana and cultures 
were maintained as described previously. The larvae were used for metamorphosis 
assays once they reached competency (between 5 and 7 d old) (108).

Hydroides elegans metamorphosis assays

Biofilm metamorphosis assays were performed using previously described methods (39, 
40, 109). Briefly, bacteria were struck onto MB plates with 300 µg mL−1 kanamycin as 
appropriate and were incubated overnight at 25°C. Up to three single colonies were 
inoculated into liquid broth and incubated overnight (between 15 and 18 h), shaking at 
200 rpm. Cultures were pelleted at 4,000 × g for 2 min, the spent media were removed, 
and the cell pellets were washed twice with filtered artificial sea water (ASW). The 
concentration of the cells was diluted to OD600 of 0.1, and four 100 µL aliquots of the 
cell concentrate were added to 96-well plates. The cells were given between 2 and 
3 h to form biofilms, then the planktonic cells were removed and the adhered cells 
were washed twice with filtered ASW. Between 20 and 40 larvae were added to each 
well in 100 µL of filtered ASW. Metamorphosis was scored after 24 h. Three biological 
replicates were performed on different days using separate Hydroides larvae originating 
from different male and female animals.

Chambered metamorphosis assays were performed using the same preparation 
principles as described above with the following modifications. Visualization chambers 
(Lab-Tek, catalog # 155411) were used for setting up the metamorphosis assay, then 
subsequently imaged. Inductive strains containing constitutively expressed gfp/mRuby/
NLuc plasmids were struck out onto MB media containing 300 µg mL−1 kanamycin. 
Several colonies were inoculated into 5 mL MB media with antibiotics. Cultures were 
grown for 18 h and cells were washed and allowed to form biofilms as described above. 
Cell concentrations ranging between OD600 0.1 and 0.5 were used to elicit optimal 
metamorphosis. Larvae were concentrated and the resident filtered ASW was treated 
with 300 µg mL−1 kanamycin. Larvae were imaged 24 h later.

Online protocols

Selected protocols used in this study can be accessed on the Shikuma Lab protocols.io 
page: https://www.protocols.io/workspaces/shikuma-lab-sdsu (110–112).
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