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Abstract

Worldwide urbanization drives rural-urban transformation (RUT) which has major conse-

quences in many countries of the Global South where there is an urgent need to better

understand and manage the underlying processes and consequences for ecosystem ser-

vices. To fill existing knowledge gaps on the extent and time course of RUT in Morocco, this

study focused on (i) analyzing the spatial patterns of rural-urban transformation in the

Rabat-Sale-Kenitra (RSK) region from 1972 to 2020, (ii) identifying key mechanisms of

change, and (iii) defining the main driving forces behind the spatial transformation patterns.

To this end, we processed data of the Landsat free archive, historical grayscale Corona

images, and nighttime lights datasets on Google Earth Engine (GEE) using machine learn-

ing classifiers and LandTrendr spectral-temporal segmentation algorithms. With an overall

accuracy (OA) ranging from 88–95%, the results revealed that during the study period the

RSK region experienced a 473% growth of horizontal built-up reflected in an area increase

from 63.4 km2 to 299.9 km2. The main changes occurred along the Kenitra-Rabat-Temara

axis and in central cities connected to the main road network. The horizontal expansion of

large and medium-sized cities led to the formation of a Rural-Urban Interface (RUI) on the

outskirts. The urban sprawl of some cities has affected the surrounding rural lands within the

RUI. Environmental, social, economic, and political forces have interacted in shaping the

changes in rural-urban landscapes.

Introduction

Since their initiation>8000 years ago, human settlements have caused rural-urban transforma-

tion [1]. According to recent UN reports, over half of the world’s population currently lives in

urban areas [2], a proportion forecast to increase to two-thirds by 2050 [3]. As a consequence

of ongoing population growth and substantial rural exodus, the largest increase will occur in

countries of the Global South [4, 5], leading to major effects on ecosystem services [6].

Although urbanization can be associated with many social and economic benefits [7], it

may lead to population destabilization [8], profound impact on land use dynamics [9], and

massive and uni-lateral use of natural resources [10], causing significant societal, environmen-

tal, and economic issues distortions [11]. This alters the shape, size, and structure of cities,
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beyond their formal administrative boundaries, contributing to land quality degradation [12,

13], and the conversion of agricultural lands [14]. Furthermore, it has blurred the boundaries

between rural and urban areas [15], leading to the formation of a transition zone often referred

to as the “rural-urban fringe” or the “rural-urban interface” (RUI). This interface has unique

characteristics and an identity that is neither rural nor urban [16, 17]. As a “rurban” entity

with new opportunities of “being” and “becoming” [18], it encompasses many of the gradual

changes that occur in (formerly) rural areas as a result of the expansion of the urban core.

Remote sensing and Geographic Information Systems (GIS) have emerged as powerful

tools for studying the ongoing evolution of urbanization and its spatial dimensions. These

technologies offer a consistent and objective means of measuring landscape transformations

over time [19–21]. However, the management of big data obtained from Earth Observation

(EO) and the analysis of large-scale cases have presented challenges in previous studies due to

certain soft- and hardware limitations [22].

In the last decade, the development of the Google Earth Engine (GEE) cloud computing

platform has facilitated spatio-temporal analysis of landscape patterns by overcoming many of

the existing limitations [23, 24]. The platform allows for faster analysis of geospatial big data of

different formats and resolution allowing for time series analysis since 1975 [25–27]. All data-

sets, interfaces, and algorithms are easily accessible on the cloud allowing to perform multiple

analyses across regional and global scales [22, 28].

Since 2018 many studies used have employed free GEE products in conjunction with classi-

fied satellite images for comprehensive LULC analysis on regional, continental, and global

scales and over extended periods using advanced processing models and customized algo-

rithms specifically designed for land cover classification and change detection, enabling the

detection of fine-scale changes [22, 24, 29–32]. For instance, a recent study applied this

approach to quantitatively assess global urban growth and green recovery patterns observed

over the past three decades [33]. The authors utilized the Random Forest (RF) classifier, the

LandTrendr temporal segmentation algorithm, and a fusion of Landsat series images from

1985 with open global urban-extent maps. The study yielded an overall accuracy ranging from

76% to 90% and provided valuable insights into global urbanization dynamics and ecological

rehabilitation.

However, for Morocco most of such studies have focused on small-scale urbanization pro-

cesses, with a particular emphasis on major metropolitan centers like Casablanca and Fez [34–

38]. These studies have predominantly relied on classical processing methods and mainly

examined land use and land cover (LULC) changes since 1984, when free Landsat images of

60m became accessible in Morocco. Little attention has been paid to the transformations that

urbanization has triggered on the rural side and sustainability issues raised by the LULC

changes detected [39]. Furthermore, the Rabat-Sale-Kenitra (RSK) region has not been specifi-

cally investigated within the scope of existing studies.

In our study, we monitor the spatial rural-urban transformation in the region of Rabat from

1972 to 2020, using a combination of high resolution black/white CORONA images from the

1970s, a series of Landsat images from 1985 to 2020, and recent Geospatial dataset accessible

on GEE. We hereby aimed at (i) analyzing the spatial patterns of rural-urban transformation in

the Rabat-Sale-Kenitra (RSK) region from 1972 to 2020, (ii) identifying key mechanisms of

change, and (iii) defining the main driving forces behind the spatial transformations.

Study area

The RSK region, formed by the merger of the former Rabat-Salé-Zemmour-Zar and Gharb-

Cherarda-Béni Hssen regions, is after the Casablanca-Settat region Morocco’s second most
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rapidly urbanizing area. It is the center of the country’s demographic, economic, and adminis-

trative activities, as it is home to the country’s administrative capital city [40]. RSK comprises

the three prefectures Rabat, Salé, and Skhirate-Témara and four provinces (Kenitra, Khémis-

set, Sidi Kacem, and Sidi Slimane) (Fig 1). It encompasses 23 urban communes and 91 rural

communes [41], with a total area of 18,194 km2 (2.6% of the national territory) and a popula-

tion of 4,581,000 inhabitants [42] leading to a population density of 252 people per km2. It

holds 12% of the country’s usable agricultural land (10,194 km2) and 4% of its total forest area

(3513 km2) [40].

Materials and methods

To investigate the spatial transformation, we used data from Corona, Landsat 5, Landsat 8,

and the Harmonized Global Night Time Light dataset (HGNTL) Table 1. Our study was car-

ried out in three stages. First, we selected a black and white satellite images from the Corona

KH-4B mission in 1972, taking into consideration its availability and the absence of cloud

Fig 1. The geographic location and administrative boundaries of the study area. Map was created using ArcGIS (version 10.6) from Esri (http://www.

arcgis.com). Basemap satellite images accessed from World Imagery Esri Tile Layer. Credits: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus

DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0290829.g001
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cover. Additionally, we chose Landsat free satellite images from 1985, which marked the avail-

ability of free Landsat 30m resolution data in Morocco, to study the urban fabric’s expansion

over the 48 years from 1972–2020. Second, we combined the annual nighttime light product

with the Normalized Difference Vegetation Index (NDVI) to delineate the limits of the RUI,

which encompass the gradual changes that occurred in rural areas due to urban growth. Third,

we employed a temporal segmentation approach to determine the spatial transformations in

rural lands due to urban sprawl (Fig 2).

Table 1. Different datasets used in the study.

Acquisition year Datasets Mission (scenes)/sensor Spatial

resolution

Sources

1972 Corona KH-4B-(DS1117-1011DF072—DS1117-

1011DF086) 15 scenes

1.8m U.S. Geological Survey. (USGS)–Declass 1

1985,1995,

2005,2010,

1995,2000

Landsat 5 Multi-Spectral Scanner (MSS) 30m USGS

2015, 2020 Landsat 8 Operational Land Imager (OLI) 30m

1992–2020 Harmoniz-ed Global

Night Time Lights

(HGNTL)

Defense Meteorological Program -Operational

Line Scan System (DMSP/OLS) sensor / Visible

Infrared Imaging Radiometer Suite (VIIRS)

~1km National Oceanic and Atmospheric Administration

(NOAA) / National Aeronautics and Space

Administration (NASA). HGNTL Proposed by [43].

https://doi.org/10.1371/journal.pone.0290829.t001

Fig 2. Flow chart of general framework analysis of rural-urban transformation.

https://doi.org/10.1371/journal.pone.0290829.g002
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Data pre-processing

CORONA images. After georeferencing the Corona scenes using a third-order polyno-

mial transformation, we mosaicked and rescaled the images to 30m to produce black-and-

white images comparable with Landsat images S1a Fig. We then downloaded a 1985 Landsat 5

satellite scene from USGS, taken during the same season as the Corona image, and grayscaled

it for colorization training using the Generative Adversarial Networks (GAN) deep learning

approach. GANs consist of two main neural networks: a generative neural network (G) and a

discriminative neural network (D; [44]). The generator (G) used the grayscale Landsat image

to generate the true color information for each pixel, while the discriminator (D) compared

the training results with the real data (the real RGB image). The training process continued

until the GAN (D) was unable to distinguish between the real RGB image and the artificially

colored Landsat image [45]; (Fig 3).

The results were evaluated using the structural similarity index (SSIM) Eq (1), which com-

pares the pixel values of two images to determine the proportion of identical pixels and quanti-

fies their similarity [44–46]. Upon achieving a SSIM >0.9, indicating a high level of similarity

between the compared images, we applied the GAN training algorithm on the rescaled Corona

image to produce the final colorized version S1b Fig.

SSIMðr; sÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

; ð1Þ

Where x represents the generated image, y is the RGB reference image, μx and μy are the aver-

ages of x and y, respectively. σx
2 and σy

2 represent the variance of x and y, respectively, and σxy

defines the covariance between both generated and reference images. C1 and C2 are defined as

(K1L)2 and (K2L)2, where K1 and K2 are fixed at 0.01 and 0.03 by default, respectively, and L is

the dynamic range of the pixel values.

LANDSAT images. We created annual composites of the cloud/shadow-free Landsat

images from 1985 by combining multiple reducer functions [47]. To improve the accuracy of

Fig 3. Architecture of the proposed GAN learning model used to colorize Corona grayscale images.

https://doi.org/10.1371/journal.pone.0290829.g003
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land cover classification, we added several quality bands to the multispectral composite,

including NDVI, the built-up area band ratio (BRBA), the normalized difference water index

(NDWI) and the slope/elevation extracted from the ALOS DEM. All of these additional inputs

were normalized to have the same scale as the satellite image (30m) Table 2.

Classification, smoothing, and validation

All images were processed in three stages. First, we employed the Random Forest (RF) meta-

machine learning algorithm, provided by the Google Earth Engine (GEE) platform [48], to

classify the pre-processed satellite images. The classification process involved the utilization of

2000 sampling datasets randomly distributed across the research area. These datasets were

split into two random fractions, with 70% allocated for training and 30% for validation. The

RF model was trained on 60 decision trees, enabling it to learn patterns and features within the

images. The class chosen by the majority of trees becomes the model’s prediction [49]. Accord-

ing to [50], the RF classifier is one of the most accurate supervised classifiers because it uses

multiple self-learning decision trees.

Second, we used a majority filter-based post-classification approach to improve the homoge-

neity and accuracy of the RF classification and reduce salt-and-pepper noise [51]. This technique

replaces isolated pixels with the surrounding value and only displays the dominant classified pix-

els within a 3 x 3 pixel radius [52]. Third, we evaluated the classification performance using the

remaining 30% sampling datasets (600; [53, 54]). This process involves comparing the classified

values of the RF training model to those of the validation fraction to build an error confusion

matrix, which is used to determine the overall accuracy (OA) [55]. According to [56], classifica-

tion is considered accurate and useful for LULC studies when the OA is>85%.

Urban expansion indices

We employed three main complementary growth indices to measure the rate, intensity and

direction of urban expansion across the RSK region during the study period: the Annual

Urban Expansion (AUE), the Urban Expansion Rate (UGR) and the Urban Expansion Inten-

sity Index (UEII). These indices allowed us to determine the pace of the urban area evolution

and identify the preference for urban growth as well as compare the local urban evolution pace

with different countries.

First, we calculated the AUE (Eq (2); [57]) and the UGR (Eq (3); [58]) using the built-up

area at two temporal periods (T1, T2).

AUE ¼
UAðT2Þ � UAðT1Þ

T
;

ð2Þ

UGR ¼
UAðT2Þ � UAðT1Þ

UAðT1Þ
∗

1

T

� �

∗100;
ð3Þ

Table 2. Quality bands added to the Landsat images.

Quality bands Source Equation Resolution

NDVI Landsat images (Near infrared—Red) / (Near infrared + Red) 30m

NDWI (Green—Near infrared) / (Green + Near infrared)

BRBA (Red / Shortwave infrared)

Slope/ Elevation ALOS DEM -

https://doi.org/10.1371/journal.pone.0290829.t002
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Where AUE is measured in square kilometers per year (km2/year), UGR is expressed as a per-

centage (%), UA(T1) and UA(T2) represent the built-up areas in the studied region at two

temporal periods (T1) and (T2), and T represents the time interval between T1 and T2.

Secondly, we computed the UEII in the eight different geographical directions (i-th) out

from the city center at two temporal periods T1 and T2 (Eq (4); [59].

UEIIi ¼
UAiðT2Þ � UAiðT1Þ

T∗TLAi

� �

∗100;
ð4Þ

Where UEIIi represents the annual average urban expansion intensity index of the i-th spatial

unit in a period (T), UAi(T1) and UAi(T2) denote the urban areas of the i-th spatial unit at

time T1 (1972) and T2 (2020), respectively, and T represents the study period (48 years), TLAi

is the total area of the spatial unit i.

The UEII values are split as follows: 0 to 0.28 represents a slow expansion; 0.28 to 0.59 refers

to low-speed expansion; 0.59–1.05 denotes medium-speed expansion; 1.05–1.92 means high-

speed expansion; and>1.92 stands for very high-speed expansion [60].

Change detection analysis

RUI delineation. To define the limits of the RUI, we employed a two-step process. Firstly,

we merged two spatial products: the Harmonized Global Night Time Lights (HGNTL) collec-

tion (1992–2020) and the NDVI collection (1992–2020) to produce the eVANUI spectral

index. This index maps the geographical boundaries between the functional area; including

urban areas and suburbs [61], characterized by high socioeconomic activity and low vegetation

cover indicative of ongoing urbanization, and the non-functional area, typically rural regions

with lower socio-economic activity and higher vegetation cover.

Secondly, we used administrative data on the distribution of urban and rural communes in

1992 to exclude the RUI from the eVANUI-defined areas. This step aimed to accurately delin-

eate the transitional zone between urban and rural domains without overlapping with purely

urban regions as defined by administrative divisions.

The Vegetation Adjusted Nighttime Light Urban Index (VANUI) was proposed first by

[62] as a way to reduce saturation in Nighttime Light (NTL) data from 1992 to 2013. Then it

has been further developed and utilized in numerous studies, by incorporating additional data

sources to address various research objectives. For instance, VANUI has been employed in

studying carbon emission issue [63], and has been used also to reduce blooming effects and

enhance the visibility of urban features [64].

In our study, we enhanced the VANUI index by integrating a harmonized NTL open prod-

uct from 1992 to 2020 [43], which combines DMSP and VIIRS NTL datasets, along with

NDVI collection from 1992 to 2020. Our primary goal was to leverage the inverse correlation

between vegetation and night light intensity to accurately delineate the functional and non-

functional areas.

To calculate the eVANUI index, we extracted the mean of the HGNTL collection and the

median of the NDVI collection from 1992 to 2020. The mean of the HGNTL collection was

employed to adjust for time-varying luminosity, while the median of the NDVI collection was

used to reduce seasonal variability across vegetated land. Afterward, we rescaled the HGNTL

to 30m. Finally, we reduced the value ranges of both products to (0,1) by removing all negative

values for snow, water, and clouds from the NDVI S2a Fig, and by dividing all pixel values out

of 63 on the HGNTL S2b Fig.

The eVANUI formula Eq (5) assigned low values to pixels with high vegetation cover and

minimal luminosity (non-functional areas), and higher values to areas with high to medium
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luminosity and low to rare vegetation cover (functional areas). Then, the final delineation of

both areas boundaries was achieved using a threshold-based method S3 Fig.

To obtain the RUI, we excluded urban communes from 1992, as outlined in the administra-

tive division published in the official bulletin of August 26, 1992, N4165, from the eVANUI-

defined areas. This approach is particularly suitable for countries, where the transition zone

between rural and urban areas is modestly developed, while the rural areas still lack certain

basic infrastructure, particularly electricity.

eVANUI ¼ NDVI∗ 1 � HGNTLð Þ; ð5Þ

Built-up expansion and the impact on rural land. To assess the spatial change in the

rural landscape, especially within the RUI due to urban sprawl, we used the LandTrendr spec-

tral-temporal segmentation algorithm [65]. A variety of spectral indices as Tasseled Cap struc-

tures (TCB, TCG, TCA, TCW), the NDVI, and the Enhanced Vegetation Index (EVI), were

tested to select the most sensitive one for detecting land conversion from vegetation to built-

up in our study area. The LandTrendr algorithm is commonly used for detecting forest distur-

bances and recovery [66–68], and it has been increasingly adopted for various land cover

change assessments, including changes in crop land [69], mining disturbance and restoration

[70], and land conversion from vegetation to impervious surfaces [71].

This algorithm accurately identifies land disturbances based on spatial patterns of land-

cover change magnitude (spectral difference), year of disturbance, and duration of changes

[68, 72]. However, it is imperative to emphasize the significance of scrutinizing time intervals,

especially in studies centered around urban regions undergoing rapid expansion, due to the

potential occurrence of disturbances between the selected intervals [22].

For validation process, we identified 120 areas of disturbance using the LandTrendr

algorithm, and cross-referenced the year of each disturbance with historical high spatial

resolution Google Earth Pro images from the corresponding years. This comparison served

to confirm the accuracy of our results. According to [66], this approach is well suited for

the continuous monitoring of land disturbance using moderate-resolution satellite

imagery.

Results

Dynamics of built-up

Built-up cover in the 70s. In 1972, the built-up in the study area covered a surface of 63.4

km2 or about 0.4%, whereby 17 urban agglomerations of different sizes along with several

small scattered clusters were classified; Rabat, Sale, Kenitra, Souk El Arba, Sidi Slimane, Tifelt,

Roumani, Khemisset, Sidi Kacem, Sidi Yehya, El Mehdiya, Harhoura, Temara, Sidi Bouknadel,

Sidi Allal Elbahraoui, Machra belksiri, and Skhirate (Fig 4).

The three largest cities Rabat, Sale, and Kenitra, occupied 21.9 km2, 11.3 km2, and 11.0

km2, respectively, medium and small agglomerations such as Khemissate, Tiflet, Sidi Yehya,

Souk El Arba, Sidi Kacem, Temera, Sidi Slimane, Sidi Allal Elbahraoui, and Skhirate, had areas

of less than 3.5 km2 each.

Built-up cover between 1985 and 2020. During 1985–2020, the use of Landsat archives at

5-year intervals yielded eight binary images of the urban built-up fabric. Their validation

images showed an OA ranging from 88–95%, Table 3. The random forest classifications,

which met the evaluation criteria for land cover classifications, were more accurate than two

well-known global open-access datasets: the Global Human Settlement Layer (GHSL) and the

DLR World Settlement Footprint (WSF), S4 Fig. Our maps indicated a three-fold increase of
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the built-up fabric from 1985 to 2020 (Fig 5). This increase in the size of the agglomeration

was accompanied by an increase in the number of agglomerations from 17 to 23.

The AUE ranged from 2.1 km2 (1972–1985), 6.3 (1985–1990), 3.7 (1990–1995), 9.2 (1995–

2000), 2.2 (2000–2005), 3.9 (2005–2010), 10.7 (2010–2015) to 5.7 km2 (2015–2020).

Urban growth affected each city to varying degrees and levels, with a percentage of expan-

sion fluctuating over time (Fig 6). The largest cities in the region, Rabat, Kenitra, and Sale,

experienced the most significant changes to their urban fabric especially between 1985 and

1990 (Fig 7). These cities expanded outward in various directions and at varying rates, particu-

larly toward the coastline, where the observed UEII was higher than in other directions. Small

to medium-sized towns, such as Souk El Arbaa, developed along the main transport route

Fig 4. Random forest binary classification of the colorized Corona image for the RSK region, Morocco (1972). (a) Rabat, (b) Sale, (c) Kenitra, (d) Souk

El Arba, (e) Sidi Slimane, (f) Tifelt, (g) Rommani, (h) Khemisset, (i) Sidi Kacem, (j) Sidi Yehya, (k) El Mehdiya, (l) Harhoura, (m) Temara, (n) Sidi

Bouknadel, (o) Sidi Allal Elbahraoui, (p) Machra belksiri, (q) Skhirate. Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g004

Table 3. The overall accuracy of the binary RF classifications of the RSK region, Morocco from 1985 to 2020.

Satellite RF classification results per year OA (%)

Landsat 5 1985 88

1990 93

1995 93

2000 95

2005 94

2010 92

Landsat 8 2015 90

2020 95

https://doi.org/10.1371/journal.pone.0290829.t003
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based on the accessibility of the land. For new towns created around major cities to absorb

demographic and urban pressure, such as for the city of Ain El Aouda, urban expansion was

extremely rapid and multidirectional (Fig 8). Regardless of the urban growth pattern in the

RSK cities, urban expansion density was always high in the city center, while it was less dense

on the citys’ outskirts (Fig 9).

Fig 5. Evolution of the urban fabric in the RSK region, Morocco from 1972 to 2020. (a) Urban area (km2), (b) urban growth rate (UGR %). Map was

created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g005

Fig 6. Spatial evolution of the built-up area per city, in the RSK region, Morocco from 1985 to 2020. (a) Rabat, (b) Sale, (c) Kenitra, (d) Souk El Arba,

(e) Sidi Slimane, (f) Tifelt, (g) Rommani, (h) Khemisset, (i) Sidi Kacem, (j) Sidi Yehya, (k) El Mehdiya, (l) Harhoura, (m) Temara, (n) Sidi Bouknadel, (o)

Sidi Allal Elbahraoui, (p) Machra belksiri, (q) Skhirate, (r) Ain Attik, (s) Had Kourt, (t) Dar Gueddari, (u) Jorf El Melha, (v) Tamsna, (w) Ain El Aouda.

Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g006
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Rural-urban interfaces

Most major towns in the RSK region have expanded into rural communities where the urban

fabric meets rural space and producing mixed-identity transitory interfaces that are not fully

urban yet no longer fully rural. Coupling the eVANUI with the 1992 administrative division

allowed the mapping of eleven primary transition interfaces covering a total area of 113.6 km2

in the RSK region since 1992 (the year when nighttime products became available) (Fig 10).

In the case of Rabat, a small transitional RUI has emerged at the southern boundary

towards the north of El Menzah, while the majority of the city’s urban fabric has spread

Fig 7. Built-up cover growth per city (%), in the RSK region, Morocco from 1972 to 2020.

https://doi.org/10.1371/journal.pone.0290829.g007

Fig 8. Urban expansion intensity in three different cities of the RSK region, Morocco from 1972 to 2020. (a) Rabat (metropolitan city), (b) Souk El

Arba (medium city), and (c) Ain El Aouda (new city). Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g008
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Fig 9. Urban growth from the city center to its boundary, at a 0.5 km interval buffer for three different cities in the RSK region, Morocco from 1972

to 2020. (a) Rabat, (b) Souk El Arba, and (c) Ain El Aouda. Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g009

Fig 10. The limits of urban and rural interfaces in the RSK region, Morocco. Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.

com).

https://doi.org/10.1371/journal.pone.0290829.g010
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horizontally towards Temara, forming an urban corridor connecting the two towns and subse-

quently extending away from Temara’s urban boundary towards the former rural commune of

Ain El Aouda. Similarly, a second urban growth area has formed around Skhirate, expanding

southward to the rural commune of Sebbah and southeast to the former rural commune of

Ain Attik.

Salé’s urban fabric has also extended since 1995 to incorporate the rural commune of Sidi

Bouknadel on the city’s northeastern outskirts, establishing a new RUI. For Kenitra, urban

development began in 1995 beyond its borders, forming an RUI pattern beyond the city’s

boundaries to the southeast and southwest, towards Oulad Salama, Haddada, and Sidi Taibi

rural communes.

In addition, Tifelt’s urban fabric has gradually evolved in the southeast section of Ait Bou

Yahya Elhajjama since 2010, creating a new RUI outside the city. Khemisset’s urban expansion

resulted in the development of an RUI in the south, towards the rural commune of Ait Ouribel.

Sidi Slimane’s urban fabric expanded to the southwest and north directions, forming a transi-

tion zone in the surrounding rural communes (Boumezz, Dar El Amri).

Similarly, Sidi Kacem grew beyond its urban borders in 1995 into Chbanat, forming a tran-

sitional fringe between urban and rural territory. The urban fabric of Souk El Arba has also

expanded east and west towards the rural commune of Benni Malek, since 2000, forming an

RUI in both directions. Recently, the reclassified cities of Ain El Aouda and Sidi Allal Elbah-

raoui have also formed a RUI pattern towards the rural communes of Oumazza and Ait Malek

respectively.

Urban growth patterns and spatial changes on rural lands within the rural-urban inter-

face. The built-up area that formed inside these interfaces was 3.4 km2 in 1992 and expanded

to 22.5 km2 in 2020. The nature of these built-up areas in the rural-urban interface differs

from rural built-up areas because they are linked and relatively close to one another, and they

are located on the edge of urban communes, in contrast to the rural settlements which were

always very scattered (Fig 11). The temporal segmentation LandTrendr algorithm, utilizing

the overall brightness of the land surface as a crucial indicator of change, revealed that distur-

bances in the region began in the early years of the prospection and continued with varying

intensities from area to area until 2020 (Fig 12). Most of the changes were of low magnitude,

except for the RUIs around major cities and in the region’s center, where the magnitude was

significantly higher. The coincidence of a strong disturbance (high change magnitude) with an

abrupt change in duration in the RUIs of coastal and central cities indicated the emergence of

newly converted areas. The validation of LandTrendr results using the TCB index in various

rural-urban areas confirmed that in many high-magnitude/low duration areas within the

RUIs, the urban fabric process had been expanded on many rural lands including vegetation

lands (Fig 13).

Discussion

The results of analyzing high-resolution historical grayscale satellite images and Landsat

series of moderate spatial resolution showed that the RSK region experienced rapid urban

expansion that changed the structure and shape of all the major cities in the region. The

built-up surface expanded horizontally, with an annual UGR of 7.8%. This rate was lower

compared to the majority of African and Asian countries, such as Kenya and (29.3%) and

Pakistan (29.0%), but higher than that observed in the United States and Japan, where UGRs

ranged from 2 to 4% [73].

The evolution of built-up areas in most RSK cities was highly correlated with the coastline

and road network. Cities along the Kenitra-Temara axis developed considerably faster than
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Fig 11. The development of the urban fabric inside the rural-urban interface from 1992 to 2020 in the RSK region, Morocco. (a) Sale, (b) Rabat, (c)

skhirate, (d) Ain El Aouda, (e) Kenitra, (f) Tifelt, (g) Khemisset, (h) Sidi Slimane, (i) Sidi Kacem, (j) Souk El Arba, (k) Sidi Allal Elbahraoui. Map was

created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

https://doi.org/10.1371/journal.pone.0290829.g011

Fig 12. The LandTrendr results using the Tasseled Cap Brightness (TCB) in the RSK region, Morocco. (a) The magnitude of the change, (b) the year of

the change, (c) the duration of the change. Map was created using ArcGIS (version 10.6) from Esri (http://www.arcgis.com). Basemap satellite images

accessed from World Imagery Esri Tile Layer. Credits: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and

the GIS User Community.

https://doi.org/10.1371/journal.pone.0290829.g012
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other cities in the region. The increasing coastal urbanization in the region was mainly due to

the numerous advantages and opportunities for resource-based economic activity that the

coastline offers [74]. The intensity of growth in the central cities varied depending on their

proximity to road infrastructure, which offers economic vitality and greater accessibility.

Many studies have confirmed the strong effect of the road networks on urban growth patterns

[75]. The spatial transformations occurred in several phases and were primarily influenced by

environmental, social, political, and economic forces.

Driving forces

During Morocco’s colonial period (1912–1956), a profound transformation of the social and

urban structures occurred as attention shifted from Fez, the former capital, to Rabat, the new

administrative capital and to the coastal regions due to their high economic importance [76,

77]. Consequently, rapid urbanization took place within these key hubs, driven by the concen-

tration of political, economic, and administrative activities and the interplay between natural

population growth and rural migration seeking economic opportunities and improved living

conditions in these centers. The expanding population in urban areas, created a surge in

demand for housing, infrastructure, and services, fundamentally altering the dynamics of the

capital region, fueling the urban expansion and gradually shaping the urban landscape.

The 1970s marked the beginning of political and social stability following the transition

from colonial rule to independence. The population began to rapidly grow as documented by

the United Nations Population Division. The overall number of urban agglomerations in RSK

increased to 17, including both large cities and small agricultural-based settlements such as

Khemisset and Tifelt.

In the mid-1980s, Morocco suffered from four consecutive years of drought, which signifi-

cantly set back the country’s development [78], particularly in the RSK region, which is one of

the primary rainfed agricultural regions in the country [40]. Given that Morocco’s economy

heavily relies on agriculture [79], the stagnation in this sector due to drought had ripple effects

Fig 13. Example of some rural lands, impacted by the urban expansion inside the rural-urban interfaces of Rabat and Sale, Morocco. Landsat images

were obtained from USGS Earth Explorer (https://earthexplorer.usgs.gov).

https://doi.org/10.1371/journal.pone.0290829.g013
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on all other economic activities. Consequently, the pace of urban expansion considerably slo-

wed down during this period. The UE between 1972 and 1985 was at most 2.1 km2 per year,

growing from 63.3 km2 in 1972 to 90.9 km2 in 1985.

Between 1985 and 1995, Morocco experienced new socio-spatial dynamics and economic

recovery. The country began to see the benefits of reforms and development projects includ-

ing the structural adjustment programs (SAPs) [80], and the initiation of privatization [81].

These reforms actively promoted private sector participation in urban development across

Morocco, including the RSK region, given its significance. Consequently, this period

marked the beginning of the diffusion phase of the built-up fabric in the region with an

annual urban growth rate of 5.5%. The privatization was reported in various countries as

having significant effects on the demographic profile of cities and the emergence of urban

migration patterns [82].

From 1995 to 2005, urbanized surfaces evolved in the region’s largest and medium-sized

cities. This particular period witnessed a significant transformation in reconstruction policies,

marked by a focus on promoting investments in the construction sector and the introduction

of a program known as "Cities without Slums", which aimed to eliminate informal settlements

through the establishment of affordable economic housing primarily particularly on the out-

skirts of urban centers [83]. Consequently, a process of peri-urbanization began to increase in

the outskirts of the largest and medium cities at the expense of surrounding rural communes.

The annual UGR within the RUIs during this period, reached 14.4%.

Between 2005 and 2010, the country adopted a stringent regulatory strategy to control the

expansion of large urban centers, alleviate existing dysfunctions, and address urban develop-

ment challenges. This approach involved the establishment of new cities to curb the chaotic

expansion of the suburbs [84], and the reclassification of some rural communes as urban such

ad Ain Attik (2009), and Sidi Allal Elbahraoui (2009). The government allocated a substantial

budget to these newly established urban centers, to develop the necessary infrastructure. As a

result, there was a notable impact on territorial development, leading to a decrease in the

annual UGR within the RUI to 8% during this period. Conversely, the built-up coverage within

the newly formed urban centers experienced an increase (Fig 7).

From 2010 to 2020, the overall scenario exhibited minimal changes, with the UGR

increase, especially within the new urban centers, as a result of the implementation of road

infrastructure development programs [42] and a decrease in interest rates on housing loans.

However, the annual UGR within the RUI remained stable at 8%, similar to the previous

period. According to the national reports, the reclassified cities have partially alleviated the

pressure on the suburbs of major cities within a period before developing also an interface

outside their administrative boundaries (Fig 11). Nonetheless, the satellite cities have

encountered significant challenges due to deficiencies in essential infrastructure since their

inception [85].

Effects on rural hinterlands

The continuous horizontal urban growth resulted in the alteration of the rural landscape in

the outskirts of metropolitan centers. Our study revealed that the extensive and haphazard

urban sprawl came mainly at the expense of rural vegetation and some open lands in the

RUI. This pattern of change is similar to that seen in many other countries of the Global

South that have experienced a significant loss of rural vegetation due to urban sprawl [86–

88]. This is often due to a scarcity of strategies to control unstructured urban sprawl and a

lack of programs focused on promoting sustainable development in both the urban core and

rural areas.
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Conclusions

Our study approach using grayscale and Landsat satellite archives diverged from traditional

techniques in urban land use change studies by taking into account not only the spatio-tempo-

ral evolution of the built-up area within urban boundaries, but also the alterations in the rural

landscape at the rural-urban fringe of major cities. The results showed that the expansion of

urban development in RSK has been rapid and unbalanced. This resulted in a significant

impact on the rural landscapes, including vegetation lands in the periphery of major coastal

and central cities. Despite efforts to regulate urban growth, mitigate its effects, promote rural

development, and conserve natural resources, urban planning in Morocco still requires greater

emphasis on the environmental dimension of rural-urban transformation and subsequent

urban sprawl.
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S2 Fig. Datasets used to calculate the eVANUI. (a) The mean of the NDVI image collection

from 1992 to 2020. (b) The median of Harmonized Global Night Time Lights (HGNTL) col-

lection from 1992 to 2020. HGNTL reprinted from Xuecao Li et al [43] under a CC BY 4.0

International license (https://gee-community-catalog.org/projects/hntl/). Map was created

using ArcGIS (version 10.6) from Esri (http://www.arcgis.com).

(TIF)

S3 Fig. Delineation of rural urban interface. (a) The limits of functional and nonfunctional

areas. (b) The extracted rural urban interface. Map was created using ArcGIS (version 10.6)

from Esri (http://www.arcgis.com).
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S4 Fig. Comparison of the random forest classification of the built-up with two open access

products GHSL2000 and WSF2015. Landsat images were obtained from the USGS Earth

Explorer (https://earthexplorer.usgs.gov). GHSL data was provided by the European Commis-

sion, Joint Research Centre (JRC) (http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_
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settlement-footprint-2015-wsf-dlr-eoc), under a CC BY 4.0 International license (http://
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Esri (http://www.arcgis.com).
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