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Abstract

Lyme disease is the most common vector-borne disease in North America and Europe. The

clinical manifestations of Lyme disease vary based on the genospecies of the infecting Bor-

relia burgdorferi spirochete, but the microbial genetic elements underlying these associa-

tions are not known. Here, we report the whole genome sequence (WGS) and analysis of

299 B. burgdorferi (Bb) isolates derived from patients in the Eastern and Midwestern US

and Central Europe. We develop a WGS-based classification of Bb isolates, confirm and

extend the findings of previous single- and multi-locus typing systems, define the plasmid

profiles of human-infectious Bb isolates, annotate the core and strain-variable surface lipo-

proteome, and identify loci associated with disseminated infection. A core genome consist-

ing of ~900 open reading frames and a core set of plasmids consisting of lp17, lp25, lp36,

lp28-3, lp28-4, lp54, and cp26 are found in nearly all isolates. Strain-variable (accessory)

plasmids and genes correlate strongly with phylogeny. Using genetic association study

methods, we identify an accessory genome signature associated with dissemination in

humans and define the individual plasmids and genes that make up this signature. Strains

within the RST1/WGS A subgroup, particularly a subset marked by the OspC type A geno-

type, have increased rates of dissemination in humans. OspC type A strains possess a

unique set of strongly linked genetic elements including the presence of lp56 and lp28-1
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plasmids and a cluster of genes that may contribute to their enhanced virulence compared

to other genotypes. These features of OspC type A strains reflect a broader paradigm

across Bb isolates, in which near-clonal genotypes are defined by strain-specific clusters of

linked genetic elements, particularly those encoding surface-exposed lipoproteins. These

clusters of genes are maintained by strain-specific patterns of plasmid occupancy and are

associated with the probability of invasive infection.

Author summary

Different genotypes of B. burgdorferi have been associated with different rates of dissemi-

nation, but the genetic basis of these differences is not known. We report the genomes of

299 B. burgdorferi isolates from patients with Lyme disease. We find that whole genome

sequence (WGS) type A isolates are a genetically divergent group of isolates characterized

by an enlarged pan-genome, an expanded surface lipoproteome encoded on a unique set

of plasmids, including lp28-1 and lp56, and increased rates of dissemination. Using

genome-wide association methods applied to the B. burgdorferi pan-genome, we identify

loci associated with dissemination. The near-clonal nature of B. burgdorferi populations

means that relationships of individual loci to dissemination are relatively weak after

adjusting for the lineage structure among the isolates, implying that experimental studies

and larger cohorts are needed to identify the causal alleles within a lineage mediating

these effects. Across the isolates studied, an increasing number of surface-expressed lipo-

proteins was associated with an increased probability of dissemination in humans. The

results underscore how strain-specific genetic variation—particularly among surface lipo-

proteins located on plasmids—is linked to the phenotype of human dissemination. More

broadly, this approach provides a foundation for future studies linking spirochete geno-

type to the diverse clinical phenotypes of Lyme disease in humans.

Introduction

Lyme disease is a heterogeneous illness caused by spirochetes of the Borrelia burgdorferi sensu

lato (Bbsl, sensu lato meaning ‘in the broad sense’) complex. Bbsl contains over 20 subspecies

(also termed genospecies, genomic species), four of which cause the majority of infections in

humans: B. burgdorferi sensu stricto (Bbss, sensu stricto meaning in the strict sense), B. afzelii,
B. garinii, and B. bavariensis [1]. Nearly all Lyme disease in the US is caused by Bbss. In

Europe, most infections are caused by B. afzelii, B. garinii, or B. bavariensis. Some authors

have proposed reclassifying Lyme disease spirochetes as Borreliella [2], while others prefer to

retain the use of the Bbsl designation [3,4]. We focus here on Bbss, and refer to this group of

spirochetes throughout the manuscript as Bb.

Infection with Bb usually presents as an expanding skin lesion, erythema migrans (EM), at

the site of the tick-bite. If untreated, spirochetes may disseminate to secondary sites, primarily

other skin sites, the nervous system and joints [1,5]. In addition to clinical variation caused by

different Bbsl species, differences in virulence have also been noted among genotypes within

Bb [6–8], and such phenotypic differences have been recapitulated in murine models [9–11].

These associations imply that microbial genetic loci influence the clinical manifestations of

Lyme disease. Despite such evidence linking microbial genotype to clinical phenotype, the
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specific genes or loci responsible for the clinical manifestations of Lyme disease have not yet

been identified.

Bb genome analysis has been limited to date due to technical challenges of sequencing and

assembly and difficulties of obtaining isolates from patients with Lyme disease [12]. The Bb
genome consists of a roughly one megabase of core genome (~900Kb chromosome and the

plasmids cp26 and lp54), as well as numerous (>15) additional circular and linear extrachro-

mosomal DNA elements (colloquially termed plasmids) [13,14]. Subsets of plasmids have high

levels of homology (as exemplified by seven 32 kilobase circular plasmids (cp32) [15] and four

28-kilobase linear plasmids (lp28) [14] in the B31 reference isolate), which have diversified

through duplication, recombination, and other primordial evolutionary events [16]. The sheer

number of plasmids and their extreme homology has made sequencing and assembly of com-

plete Bb genomes a major challenge, particularly with widely-used short read sequencing

methods [17].

The technical challenges of sequencing and assembly are compounded by the difficulty of

obtaining isolates from human disease. However, it is possible to culture Bb from EM lesions

in many cases and successful cultivation of Bb from blood of infected patients has also been

reported. Culture requires specialized techniques which are rarely used in routine clinical

practice. The spirochete has occasionally been cultured from cerebrospinal fluid (CSF) in

patients with meningitis, but rarely from synovial fluid in patients with Lyme arthritis, the

most common late disease manifestation in the US. Thus, the great majority of available Bb
isolates are from patients with EM, an early disease manifestation. As a result of these chal-

lenges, only a small number of human clinical isolates have been sequenced and analyzed. To

our knowledge, no large whole genome sequence (WGS) studies of human isolates have been

conducted. Fewer than 50 human isolates analyzed by WGS have been publicly reported,

either sporadically or included in cohorts consisting primarily of tick-derived isolates and in

the majority of studies limited or no clinical information was reported to allow for genotype to

phenotype comparisons [18–23].

Genotyping systems have been developed to subclassify Bb strains using single or multiple

genomic regions (reviewed in [24]). Two of the most commonly used typing methods are

based on restriction-fragment length polymorphisms in the 16S-23S ribosomal RNA spacer

region [25,26], termed ribosomal spacer type (RST), and on sequence variation of outer sur-

face protein C (OspC), one of the most variable Bb proteins [27,28]. RST typing subdivides Bb
into 3 types, referred to as RST1, RST2, and RST3 [9], whereas OspC typing subdivides Bb into

~30 OspC genotypes of which >24 cause infection in humans [29–31]. RST and OspC are in

linkage disequilibrium on the core genome, and each RST genotype is generally associated

with particular OspC types (e.g., RST1 mostly corresponds to OspC types A and B and RST2

corresponds primarily to OspC types F, H, K and N) [31]), whereas RST3 is the most variable

and correlates with the remaining OspC types. In addition to these genotyping methods, mul-

tilocus sequence typing (MLST), which is based on eight chromosomal housekeeping genes,

has been used to further sub-stratify the strains [31,32]. According to the Borrelia MLST data-

base (https://pubmlst.org/borrelia/),>900 MLST sequence types have been identified.

Application of targeted genotyping methods has previously established a link between Bb
microbial genotype and several phenotypic properties including dissemination in humans, dis-

ease severity, immunogenicity, and the type of clinical presentation [1,6,8,9,11,30,31,33–36].

For example, using RST and OspC genotyping we previously showed that RST1 OspC type A

strains have greater propensity to disseminate [7,8], are more immunogenic [6], are associated

with more symptomatic early infection [6], and with a greater frequency of post-infectious

Lyme arthritis (also referred to as antibiotic-refractory Lyme arthritis) [6,37]. However, these

approaches lack the resolution to reconstruct a detailed evolutionary history or to define
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individual genes or loci underlying phenotypic variability. The limitations of previous studies

have been further compounded by the absence of large cohorts of patient-derived isolates

accompanied by detailed clinical information.

In this study, we used WGS to characterize in detail the genomes–including the core

genome and associated plasmids–of 299 patient-derived Bb strains. The isolates were collected

primarily from patients with EM, over three decades across Northeastern and Midwestern US

and Central Europe. Although most isolates were from skin (the site from which Bb is most

commonly isolated), we assessed dissemination using established methods [7,34] that incorpo-

rate clinical signs of dissemination as well as the presence of Bb at extra-cutaneous sites as

assessed by a positive blood PCR or a positive blood culture (see Methods). We hypothesized

that genetic variation in Bb open reading frames (ORFs) and plasmids among strains was asso-

ciated with differences in dissemination in humans. We carried out phylogenetic and phylo-

geographic analysis, and identified particular Bb genomic groups, plasmids, and individual

ORFs associated with disseminated human disease.

Materials and methods

Ethics statement

This study involves secondary use of deidentified archival clinical isolates and patient data col-

lected in previous studies and was approved by the Massachusetts General Hospital Institu-

tional Review Board (IRB) under protocol 2019P001864. Analysis of deidentified patient data

was carried out under a waiver of consent.

Selection of B. burgdorferi isolates (see S1 Table)

In total, 299 Bb isolates collected from 299 patients over a 30-year period (1992–2021) were

included in this study: 201 from the Northeastern US, 62 from the Midwestern US and 36

from Slovenia (Central Europe). The majority (97%) of isolates were derived from skin

(n = 287); 9 were from CSF and 2 were from blood. Isolates were cultured in BSK or MKP

medium [38,39]. All patients met the US Centers for Disease Control and Prevention (CDC)

criteria for Lyme disease [40]. Only low passage isolates (passage <5) were used for WGS.

Northeastern united states

The 201 isolates from the Northeastern US were collected at two geographic locations: 113

from New England (primarily from contiguous regions of Massachusetts, Rhode Island, and

Connecticut) and 88 from New York State. The New York strains belong to a larger collection

of more than 400 clinical isolates, collected between 1992–2005, that had been previously

typed at the rrs-rrlA IGS and ospC loci [7,35]. To account for the full diversity of Bb genotypes

found in the collection, isolates with the best sequence quality from each OspC major group

were selected for this study in accordance with their prevalence in the entire collection. All of

the latter isolates were cultured from skin biopsies of infected patients, rather than from blood

or CSF (S1 and S2 Tables).

Midwestern united states. The 62 isolates from the Midwestern US were derived from

skin and CSF specimens submitted to the Marshfield Laboratories (Marshfield, WI) for Borre-
lia culture from 1993 to 2003 (S1 and S2 Tables).

Central europe (Slovenia). The 36 isolates from Slovenia represent all Bb isolates that

were cultured from patients over a 27-year period (1994–2021), who were evaluated at the

Lyme borreliosis outpatient clinic at the University Medical Center Ljubljana (UMCL).
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Selection of patients. Patients included in this study were diagnosed with early Lyme dis-

ease and were classified as having either localized or disseminated infection. Early Lyme dis-

ease was defined by the presence of at least one EM skin lesion or symptoms consistent with

Lyme neuroborreliosis along with a positive CSF culture. Localized infection was defined by a

single culture positive EM skin lesion in the absence of clinical and/or microbiological evi-

dence of dissemination to a secondary site. Disseminated infection was defined by a positive

blood or CSF culture or a positive PCR on a blood sample, the presence of multiple EM lesions,

and/or signs of neurological involvement. Of the 299 isolates, 291 (97.3%) were classified as

Disseminated or Localized by these criteria; clinical records were not available to classify the

remaining 8 of the 299 (2.7%), and, therefore, these isolates were excluded from analyses of

dissemination. A measure of bloodstream dissemination was available for 212/299 (70.9%) of

isolates, with blood PCR testing results available for 106/299 (35.4%) and blood culture avail-

able for a disjoint set of 106/299 (35.4%) of all isolates. Multiple EM skin lesions were present

in 57/290 (19.7%); among patients with a single EM, 23/88 (26.1%) had a positive blood culture

and 28/86 (32.6%) had a positive PCR on a blood sample. Lyme neuroborreliosis was defined

by clinical criteria and based on assessment by the treating clinician. In Europe, CSF pleocyto-

sis and intrathecal production of Borrelia antibodies were required for diagnostic determina-

tion of Lyme neuroborreliosis, following guidelines of the European Federation of the

Neurological Societies [41]. Summary statistics of isolates by group is provided in S1 Table.

The list of isolates and associated metadata is provided in S2 Table.

WGS. Bb DNA was isolated from the cultured isolates with either the IsoQuick kit (Orca

Research, Bothell, WA), the Gentra PureGene DNA Isolation Kit (Qiagen Inc., Valencia, CA),

or the DNEasy kit (Qiagen Inc, Valencia, CA). Short-read next-generation sequencing (NGS)

library construction was performed using the Nextera XT Library Prep Kit (Illumina, San

Diego, CA). DNA quantification was performed in a 96-well microplate using the SpectraMax

Quant dsDNA Assay Kit and the Gemini XPS Fluorometer (Molecular Devices, San Jose, CA),

or in a single tube using the Qubit 2.0 fluorometer (Thermo Fisher Scientific, Springfield

Township, NJ). Library quality was examined using the 4200 TapeStation and D1000 Screen-

Tape (Agilent, Santa Clara, CA). Paired-end sequencing (2 × 150 or 250 cycles) was performed

using the NextSeq 550 or MiSeq system (Illumina).

Bioinformatics data analysis. Trimmomatic v0.39 [42] was used for trimming and clean-

ing of raw sequence reads; SPAdes v3.14.1 [43] for de novo genome assembly; QUAST [44] for

quality assessment and assembly visualization; Kraken2 [45] v2.1.1 for digital cleaning of

assembled genomic sequence by using taxonomy classification; mlst v2.19.0 (https://github.

com/tseemann) for MLST [46] identification from assembled sequences; k-mer weighted

inner product (kWIP) [47] v0.2.0 for alignment-free, k-mer-based relatedness analysis; prokka

v1.14.6 [48] for genome sequence annotation; Roary [49] for core- and pan-genome analysis;

FastTree v2.1.11 [50] and IQtree [51,52] for phylogeny tree generation; the latter tool was used

to generate maximum-likelihood (ML) trees with bootstrap support. Bioconductor [53] pack-

ages in R [54] v4.1.1 and/or RStudio v2021.09.0+351, such as ggplot2 [55], ggtree [56],

ggtreeExtra, and ggstar, were also used for phylogeny tree plotting. Association of homology

groups with dissemination was conducted using PySeer 1.3.10 using the lineage model. MLST

definitions were downloaded from pubMLST. Multidimensional scaling (MDS) was calculated

on the kWIP distances using the command mdscale() in R. Fisher’s exact test was used for

pairwise comparison of categorical variables as implemented with the fisher.test() function in

R. The MiniKraken2 database was constructed for Kraken2 from complete bacterial, archaeal,

and viral genomes in RefSeq as of March 12, 2020.

Bayesian trees were constructed by running BEAST directly on the core genome alignment

from Roary using an HKY substitution model. We constructed maximum clade credibility
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trees using TreeAnnotator [57]. To construct OspC trees, we extracted annotated OspC

sequences from the de novo assemblies, filtered for full-length sequences, aligned them using

MAFFT [58] and constructed a phylogenetic tree using BEAST v.1.10.4 [57]. We obtained at

least 10,000,000 samples from the posterior distribution and inspected the posterior traces for

convergence.

To characterize the plasmid content of individual isolates, we took two approaches. We first

aligned the contigs to the B31 reference and quantified a plasmid as present or absent if greater

than 50% of the reference genome plasmid was covered by contigs. Because homology alone

does not necessarily indicate that a plasmid is present [14], as a complementary approach, we

built a hidden Markov model (HMM) of PFam32 genes using HMMer [59] and searched the

resulting profile against the assemblies to identify PFam32 genes. We then aligned the resulting

putative PFam32 genes against a set of canonical PFam32 genes, kindly provided by Dr. Sher-

wood Casjens, that have been used to determine plasmid types in published reports [12]. For

each putative PFam32 gene, if a match with>95% amino acid identity was present in the list

of annotated PFam32 genes, we marked the isolate as having a copy of the closest-matching

PFam32 based on sequence identity. If no PFam32 within these thresholds could be identified,

the closest PFam32 family member was considered unknown and not assigned in this analysis.

Results

Whole-genome sequencing of human Borrelia burgdorferi sensu stricto

isolates

To gain insight into the evolution, population structure, and pathogenesis of Bb in human

infection, we sequenced 299 isolates of Bb from human cases of early Lyme disease. The de
novo assemblies produced high-quality, genome assemblies with a median total length of 1.34

megabases (Mb) (IQR 1.30–1.37 Mb). Final assemblies had a median GC content of 28.12%

(IQR 27.96–28.22), similar to the 28.18% GC content of the B31 reference strain [13]; con-

tained a median of 107 contigs per isolate (IQR 88.0–137.5); and had a median N50 of 213,476

bases (IQR 80,809–221,506 bases). Median coverage of the genome assemblies was 57.6x

(interquartile range [IQR] 27.6x – 130.8x). We were unable to finish assembly of plasmids due

to repetitive plasmid sequences. Assembly statistics are given in S3 Table.

As an initial characterization of divergence between strains, we applied alignment-free,

kmer-based analysis (kWIP) to the WGS data and identified three major clusters based on

their genetic distances (Figs 1C, 1D, and S1). This unbiased distance analysis (without any ref-

erence or annotation) revealed that a single lineage (WGS A) was divergent from all of the

other isolates (Fig 1C and 1D). The remaining isolates are grouped into two stable clusters

(WGS groups B and C). RST type 1 was divergent from the other two WGS groups, but RST 2

and 3 were mixed between WGS groups B and C (Fig 1C and 1D).

We next constructed maximum clade credibility (MCC) (Fig 2) and maximum-likelihood

(ML) (S2A Fig) phylogenetic trees using core genome elements (as defined by Roary [49], see

Methods) from WGS. WGS groups defined by k-mer distance corresponded to the clade struc-

ture on the core-genome tree and the associated OspC types (Figs 2 and S2). In addition, they

revealed substructure within these groups, particularly WGS group B, which we split into sub-

clusters B.1 and B.2 (Figs 2 and S3B). ML and MCC trees were in broad agreement, and the

posterior probability of all nodes separating WGS groups was > 0.99 (similarly, bootstrap sup-

port>99% on the ML tree), indicating that the distance-based clustering was phylogenetically

well-supported.

We compared WGS-based classification to existing targeted typing methods. WGS groups

were strongly associated with RST (Fig 1A and 1B, Fisher’s exact test, p < 1 x 10−6) and OspC
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type (Figs 1A, 1B, and S1; Fisher’s exact test, p< 1 x 10−6). RST1 / Osp C type A/B sequences

consistently clustered as a single clade in the core genome phylogenetic tree and MDS of k-

mer distances (Figs 1C and S1), demonstrating agreement between typing methods. In con-

trast, RST2 and RST3 were both polyphyletic in the WGS data and contained within separate

WGS groups (Fig 1C and 1D). Similarly, OspC types were monophyletic on the WGS tree

Fig 1. A. Counts of samples according to RST and OspC type. Top, middle, and lower panels show samples from different geographic regions. X-axis gives

OspC type. Bars are colored according to RST type. B. Plots as in (A) but with bars colored according to the WGS group. C. Multidimensional scaling (MDS) of

299 Bb genomes, with RST type annotated. D. MDS of 299 Bb genomes, with WGS type annotated.

https://doi.org/10.1371/journal.ppat.1011243.g001
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(Fig 2) and on a tree built from OspC sequences (S2C Fig), but there were some instances of

closely related OspC sequences that were part of distinct WGS groups (S2C and S2D Fig). For

example, the OspC type L isolates from the Midwestern US and Slovenia are on different

branches of the core genome phylogenetic tree (Figs 2, S2C, and S2D). Thus, RST and OspC

typing methods identify substructure in Bb genomes, and largely agree on the divergent RST1

/ OspC A/B clade, but RST does not capture fine-grain genetic structure, and the frequency of

recombination at the OspC locus means that there are instances in which the genetic distances

between OspC sequences is a poor measure of core genome distance.

Population geographic structure

We next explored the relationship between genetic markers and geography. WGS group was

strongly associated with broad geographic region (US Northeast, US Midwest, EU Slovenia)

(Fisher’s exact test, p< 1 x 10−6), similar to the findings with previously evaluated genetic

markers including RST (Fisher’s exact test, p< 1 x 10−6) and OspC type (Fisher’s exact test,

p< 1 x 10−6) (counts by geographic region are shown in Fig 1A and 1B).

Fig 2. Maximum clade credibility (MCC) core genome phylogenetic tree with metadata annotated adjacent to the tips. OspC types are displayed in

color and annotated with text. The region of collection and RST type are labeled by colored boxes adjacent to the tips. Dissemination status is denoted

with a star (disseminated isolates) or square (localized). WGS group is labeled by colored points on the outer rim of the. The posterior support for all

nodes> 0.9 has been labeled in blue text. The tree scale is in nucleotide substitutions per site.

https://doi.org/10.1371/journal.ppat.1011243.g002
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The number of ORFs in the genome differed significantly by region within a given WGS

group (Fig 3A). In the US Northeast and in Slovenia, WGS groups differed significantly by the

number of ORFs (Fig 3B). These differences are not attributable to reference genome bias

because the ORF counts were derived from annotated de novo assemblies. As core genome size

is relatively constant among strains regardless of geographic location, the differences in acces-

sory genome size across different populations, even within a given genomic group with a single

common ancestor, suggests that the diversification of accessory genome size may be one mecha-

nism by which strains adapt to distinct ecological factors in each geographic region. Slovenian

isolates were clustered in two well-defined monophyletic groups (Figs 2 and S2C), suggesting at

least two inter-continental exchanges (Figs 2 and S2C), consistent with a previous report [19].

Associations between genotype and Bb dissemination in patients

A primary goal of sequencing clinical isolates is to identify bacterial genetic associations with

clinical phenotypes. We hypothesized that certain genetic elements are associated with spiro-

chetal dissemination in humans. Dissemination is a prerequisite for the progression of disease

from an EM skin lesion to more severe Lyme disease complications such as meningitis, cardi-

tis, and arthritis. Given the previously-reported associations between single-locus genetic

markers and dissemination [7,8,11,34], we investigated the relationship between genotype and

dissemination in humans. We scored isolates as either disseminated or localized based on spe-

cific clinical characteristics of the patients from whom they were obtained, particularly pres-

ence of multiple vs a solitary EM skin lesion and neurologic signs and symptoms of Lyme

disease, as well as having positive culture or PCR results for Bb in blood.

WGS groups differed from each other in their propensity to disseminate (p = 0.059 for 3

groups; p = 0.012 for 4 groups, Fisher’s exact test) (Figs 3C and S3C and S4 Table). Slovenian

isolates disseminated at a lower rate (25%) than US isolates (42.7%) (p = 0.045, Fisher’s exact

test), and the relationship between WGS groups and human dissemination was slightly

Fig 3. A. Number of ORFs by geographic region in different WGS groups. * denotes p< 0.05; ** denotes p< 0.01; *** denotes p< 0.001; **** denotes

p< 0.0001; ns—not significant (as assessed by Wilcoxon rank-sum test). B. Number of ORFs by WGS group in different geographic regions, with assessment

of statistical significance as in (A). C. Probability of dissemination by genomic group. Each point represents a sample. Points are colored by WGS group. The

samples that disseminated have been plotted at y = 1; those that did not have been plotted at y = 0. Random noise has been added to the x- and y- coordinate to

display the points. The mean +/- 95% binomial confidence interval is shown for each group with error bars.

https://doi.org/10.1371/journal.ppat.1011243.g003
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stronger when testing US isolates only (p = 0.02 for 3 groups; p = 0.004 for 4 groups, Fisher’s

exact test). WGS group A isolates from the US, which correlate with OspC type A and RST1

strains, showed the highest rate of human dissemination (51.4%) whereas US WGS group B

isolates had the lowest rate of human dissemination (32.4%). Within WGS group B, there was

evidence of substructure (S3 Fig). US B.1 isolates disseminated at a higher rate (40.0%) than

B.2 isolates (18.4%) (S3C Fig).

Consistent with previous observations [6,7] and with the general alignment of WGS, RST,

and OspC type, RST type was also associated with dissemination (p = 0.010, Fisher’s exact

test), with RST1 having the greatest propensity to disseminate and RST3 the lowest [7,8]

(S4B Fig). OspC type A was also associated with dissemination (p = 0.008, Fisher’s exact test,

S4A Fig). A significant association with dissemination could not be detected when OspC type

was tested as a categorical variable with 23 categories (p = 0.3, Fisher’s exact test, S4 Fig), likely

because of the reduced power due to many categories.

The propensity to disseminate varied greatly among the US and Slovenian isolates, which is

likely due to the major genetic differences in isolates between the two regions (Fig 3C). In Slo-

venia, the predominant WGS group A isolates are OspC type B and all the WGS B.2 isolates

are OspC type L (S4 Fig). This correlation was particularly notable for WGS A strains, which

were recovered from patients with disseminated Lyme disease at a rate of 51.4% in the US vs

23.1% in Slovenia. WGS-B.2 isolates in the US were associated with the lowest dissemination

rate (18.4%), whereas those from Slovenia showed a higher dissemination rate of 30% (Figs 3C

and S4A). Taken together, these data confirm that rates of dissemination vary by genotype and

demonstrate that WGS A/RST1, particularly a subset distinguished by OspC type A strains, is

a genetically distinct lineage with higher rates of dissemination.

Plasmid associations with WGS profiles

As most of the genetic variation in Bb occurs on plasmids [12,60,61], we investigated the varia-

tion in plasmid content across genotypes. Assembly and analysis of plasmid sequences is chal-

lenging because the length of repeated sequences in plasmids is greater than the read length

generated by the short-read Illumina sequencing technology used in this study [17]. To cir-

cumvent this, we exploited the relationship between plasmid partition genes (paralogous fam-

ily 32; PFam32) and plasmid types [12,16], putatively identifying the presence or absence of a

plasmid by the presence/absence of unique PFam32 sequences (Fig 4). After annotating all

PFam32 genes in the assemblies using an HMM, we linked each putative PFam32 to a plasmid

by finding the closest match by sequence homology from a curated list of PFam32 protein

sequences (see Methods).

Applying this method to each strain, we created a provisional map of plasmids across Bb
strains (Fig 4A and 4B). While a few plasmids are found more broadly, distinct genotypes and

WGS groups contain unique collections of plasmids. Several plasmids, including cp26, lp54,

lp17, lp36, lp25, lp28-4, lp28-3 are found in nearly all isolates (Fig 4A and 4B) and others such

as cp32-7, cp32-5, cp32-6, cp32-9, and cp32-3 are found in most strains. Other plasmids were

more variable and only found in certain genotypes. OspC type A strains possessed a distinct

plasmid profile, containing lp56 and a unique version of lp28-1 (marked by the lp28-1 PFam32

as well as a previously-annotated “orphan” PFam32 sequence, BB_F13. When found in isola-

tion, BB_F13 defines an lp28-11 plasmid [12], so was annotated as such. However, in many

cases it may signify a subtype of lp28-1 rather than an entirely new plasmid, especially OspC

type A isolates whose sequence is likely similar to the B31 reference strain [13,14]). Based on

PFam32 sequences, WGS A strains also contained lp28-2 and most also contained lp38. OspC

type K strains also contained a relatively homogenous subset of plasmids including lp21, lp28-
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Fig 4. A. Core genome maximum likelihood phylogeny with tips colored by OspC type. The clade corresponding to RST1 is shaded in light blue and the clade

corresponding to OspC type A is shaded in green. B. The matrix at the right shows the presence or absence of individual plasmids using the presence or

absence of PFam32 plasmid-compatibility genes as a proxy. The columns of the matrix have been clustered using hierarchical clustering. The rows of the matrix

are ordered according to the midpoint rooted maximum likelihood phylogeny shown at left. C. Odds ratio of dissemination and confidence interval by

plasmid, inferred by PFam32 sequences. D. Volcano plot displaying the -log10 P value (as calculated using Fisher’s exact test) and the odds ratio of

dissemination for each plasmid, inferred by Pfam32 sequences.

https://doi.org/10.1371/journal.ppat.1011243.g004

PLOS PATHOGENS Borrelia burgdorferi genomes reveal clusters of accessory elements linked to virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011243 August 31, 2023 11 / 29

https://doi.org/10.1371/journal.ppat.1011243.g004
https://doi.org/10.1371/journal.ppat.1011243


5, lp28-6, cp32-12. WGS-A/ RST1 genotypes were the least heterogeneous with respect to plas-

mid diversity and OspC type, whereas WGS-B and WGS-C groups (RST2 and RST3) were

more diverse, although the subset of RST2 strains consisting of OspC type K isolates was also

relatively homogenous. Curiously, lp28-9 was found only in Slovenian RST1 isolates (Fig 4),

the majority of which were OspC type B (Fig 1); cp32-12, cp32-9, and cp32-1 were also found

more commonly in Slovenian isolates.

Many plasmids (e.g. lp28-1, lp28-2, lp38 and numerous others) were found in multiple dis-

tinct branches of the phylogenetic tree suggesting a complex inheritance pattern of polyphy-

letic loss and/or recombination. This is consistent with the observed reassortment between

core genome elements and OspC (S2C and S2D Fig). For example, OspC types B and N both

contained cp32-8, whereas OspC type K genotype is most closely correlated with the lp21,

lp28-5 and cp32-12 pattern. lp56 is associated with OspC type A and OspC type I.

Specific plasmids showed significant associations with dissemination. The presence of lp28-

1 was associated with dissemination (OR 1.8, p = 0.02, Fisher’s exact test), as was cp32-11 (OR

1.9, p = 0.02) and cp32-4 (OR 1.7, p = 0.04) (Fig 4C and 4D and S5 Table). In addition, the

lp38 plasmid is present in roughly half of US isolates but absent in all Slovenian isolates and

demonstrated a trend toward being associated with dissemination (OR 1.6, p = 0.05) which

may explain the lower frequency of dissemination generally observed with European Bb.

To confirm the accuracy of these plasmid differences across genotype, we also constructed

a map of plasmid occupancy across strains by an alternate approach. We aligned contigs from

assembled genomes to the B31 reference sequence and annotated a plasmid as “present” if the

assembled contigs covered a majority of the reference plasmid sequence (S5A–S5C Fig). Only

plasmids present in the B31 reference genome are considered in this analysis. These results

were qualitatively similar to those obtained using the PFam32 sequences (S5 Fig and S6 Table)

suggesting that cp26, lp54, lp17, lp28-3, lp28-4 and lp36 were present in nearly all strains

whereas other plasmids were more variable.

Together, these analyses reveal a core set of plasmids present across Bb strains as well as

strain-variable plasmids that are associated with distinct geographic and clinical features (i.e.,

propensity to disseminate) of Bb, suggesting that they contain individual bacterial genetic ele-

ments that may underlie distinct disease phenotypes.

Strain variation in core, accessory, and surface lipoproteome

In an effort to implicate individual genetic elements in dissemination, we identified the core

and accessory genome elements in each of the sequenced isolates and annotated and clustered

all ORFs in the de novo assemblies using BLAST, splitting clusters whose BLAST homology

was< 95% (Fig 5). Plotting the presence or absence of a given core or accessory genome ele-

ment adjacent to each isolate in the phylogeny reveals consistent patterns of ORF presence/

absence across closely related groups of isolates. Each of the genomic groups contained unique

clusters of ORFs in the accessory genome (Fig 5). The accessory genome phylogenetic tree pro-

vided an alternative and more natural clustering of accessory genome elements and PFam32

sequences (S6A and S6B Fig).

We prioritized surface-expressed lipoproteins (Figs 5C and 6) for further analysis because

of their important roles in Lyme disease pathogenesis and immunity (reviewed in [1,62]). We

focused on the subset of all lipoprotein ORFs demonstrated to be located on the surface of the

spirochete [63] and divided them into core (S7A Fig) and strain-variable (Fig 6A). The Bb core

lipoproteome (S7A Fig) consists of approximately 45 surface lipoprotein groups that are pres-

ent in almost every isolate. These include OspA and B, complement regulator acquiring sur-

face proteins (CRASPS), as well as several other lipoproteins whose functions are less well-
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understood. The accessory lipoproteome (Fig 6A) consists of approximately 100 lipoprotein

groups that are strain-variable. These include lipoproteins found in only subsets of isolates,

such as BB_A69 and BB_E31, and others, such as Decorin binding protein A (BB_A24) and

OspC (BB_B19), which we found in almost every isolate but broken into separate ortholog

groups because of extensive allelic diversity. Strain-specific clusters were also present in major

gene families of Erps [64,65] (S7B Fig) and Mlps [66,67] (S7C Fig). We found larger numbers

Fig 5. A. Core genome phylogeny with tips colored by OspC type. B. The phylogeny is plotted alongside a matrix of

presence (blue) or absence (white) for genes in the accessory genome. The rows of the matrix are ordered by the

phylogenetic tree in A. The columns of the matrix are ordered using hierarchical clustering such that genes with

similar patterns of presence/absence across the sequenced isolates are grouped close together. C. Odds ratio (OR) of

dissemination and 95% confidence interval for homology groups encoding surface-exposed lipoproteins and for which

the unadjusted p-value for association with dissemination (by Fisher’s exact test) is< 0.15.

https://doi.org/10.1371/journal.ppat.1011243.g005
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of these multi-gene family members in more invasive WGS groups (A and C) (Fig 6B). The

number of lipoproteins in a given isolate was associated with the probability of dissemination

(β1 = 0.037 +/- 0.017, p = 0.03, logistic regression, Fig 7E). We observed a stronger effect for

Erps (β1 = 0.087 +/- 0.053, logistic regression, Fig 7E) with a trend toward significance

(p = 0.1). In contrast, the total number of ORFs and the number of Mlp alleles were not signifi-

cant in logistic regression models (p = 0.45 and p = 0.38, respectively, Fig 7E). Aggregating

mean effects by OspC types (S7F Fig) showed similar trends to individual isolates, i.e. OspC

types with greater numbers of lipoproteins were more likely to disseminate.

Several lipoprotein groups, such as BBK32, BBK07, and BBK52 were found in almost all

strains, but were not found in a subset of closely related genotypes. Notably, CspZ (BBH_06)

and two other lipoproteins encoded on lp28-3, BB_H37 and BB_H32, were lost in two diver-

gent subsets of Slovenian isolates (S7A Fig), suggesting multiple independent loss events in

evolutionary history. Interestingly, these two subsets were either WGS-A or WGS-B.2, strains

with the greatest and least probability of dissemination (S3 Fig). The increased frequency of

loss of lp28-3 in Slovenian isolates implies that this plasmid is likely non-essential for human

infection.

Many genes had evidence of recurrent loss or gain. For example, one cluster that shows this

pattern in Fig 5B contains the lipoproteins BB_J45, BB_J34, and BB_J36 along with 12 other

genes annotated on the lp38 in B31, suggesting that these lipoproteins had been lost or gained

multiple times in the evolutionary tree as a part of a pattern that involved most or all of lp38.

Associations between accessory genome elements, Genotype, and

dissemination

The genetic basis of the phenotypic differences between these strains most likely includes

nucleotide-level variation in chromosomal and plasmid DNA as well as variation in gene pres-

ence or absence in the accessory genome (which is primarily plasmid-borne). While it is not

feasible to resolve these associations definitively in this study, we attempted to identify prelimi-

nary ORF-level associations by clustering ORFs according to homology using Roary [49]. We

then applied linear mixed models genome-wide study approaches to identify homologous

groups of ORFs associated with disseminated infection (Fig 7A and 7B). We used the approach

of Lees et. al [68] to adjust for lineage effects by identifying lineages that were associated with a

phenotype.

Three lineages, defined by principal components of the distance matrix between isolates,

were significantly associated with the phenotype of dissemination (MDS1, p = 0.004, MDS2,

p = 0.03, and MDS8, p = 0.04, Wald’s test). In ancestry-adjusted association logistic regression

analysis in which principal components were included as covariates [69], only a handful of loci

were associated with phenotype, and their genomic position was distributed throughout the

genome with no strong spatial pattern (Fig 7B). The uncorrected association statistics showed

somewhat stronger correlations that were concentrated in the plasmids (Fig 7A). The results of

all analyses are reported in S7 Table and lipoprotein-specific analyses in S8 Table.

We also used the pan-genome association approach to identify associations between ORF

homology groups and single-locus genetic markers. Single-locus genetic markers were strongly

Fig 6. A. Bb strain-variable (accessory) surface lipoproteome: Core genome phylogeny with tips colored by OspC type

(colored according to the scheme in Fig 5) with a matrix of presence (blue) or absence (white) for surface lipoproteins.

Surface-exposed lipoproteins present in between 5% and 80% of strains were considered to be part of the strain-

variable (accessory) lipoproteome. B. The number of surface-exposed lipoproteins (left panel), Erps (middle panel),

and Mlps (right panel) by WGS group. ** denotes p< 0.01; *** denotes p< 0.001; **** denotes p< 0.0001, as assessed

by Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.ppat.1011243.g006
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linked to genetic variation in ORF homology groups, particularly those ORFs encoded on plas-

mids (Fig 8; S9 Table for OspC Type A; S10 Table for OspC Type K; S11 Table for RST1). The

strongest effects were seen among surface-exposed lipoproteins [63] (S8 Fig). Together, these

Fig 7. Manhattan Plots showing the association of individual ORF homology groups with the phenotype of

dissemination. The Y axis plots the P-value for tests of association between each homology group and the phenotype of

dissemination are shown. For ORFs that aligned to the B31 reference genome, the x axis denotes the annotated position

in the genome. A. P-values from univariate logistic regression by genomic position for each ORF. B. P-values from

regression estimates that include lineage correction. C. Manhattan plot showing loci associated with each lineage for the

lineages associated with phenotype. D. Odds ratios (OR) (exp(beta)) with 95% confidence interval are shown for

dissemination for the lineage-adjusted model. ORFs with p< 0.1 and allele frequency> 0.1 and< 0.9 are displayed.

https://doi.org/10.1371/journal.ppat.1011243.g007
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results, along with those found in Fig 6, demonstrate that individual Bb genotypes represent

tightly-linked sets of genes that confer distinct surface lipoproteomes.

Due to the structural patterns of genetic diversity in Bb, ORFs associated with phenotype

without ancestry correction (Figs 5C and 7A) should not be ignored. Due to the near-complete

linkage (e.g. Fig 8) between genetic elements in the accessory genome, individual loci with

strong, causal effects on a given phenotype may not be separable from their set of linked vari-

ants, i.e. their background lineage. OspC type A strains, which have the highest rates of dis-

semination in this study (S4 Fig) and previous reports in mice and humans [6,7], and have

been linked to more severe symptoms of Lyme disease [6] (S4C Fig), are strongly associated

with a set of approximately 75 loci (OR> 50) including a DbpA homology group (OR 4964,

p = 2.1 x 10−49, likelihood ratio test), an OspC homology group (OR 2951, p = 2.9 x 10−49, like-

lihood ratio test), and BB_H26 (OR 2186, p = 6.3 x 10−40, likelihood ratio test) (S9 Table).

These and other linked alleles were strongly correlated with one another (r = 0.94, p< 2.2 x10-

16 for DbpA/group1807 and OspC/group1021; r = 0.85, p < 2.2 x 10−16 for DbpA/group and

BB_H26). In many cases this linkage is physical due to presence on the same replicon (e.g. the

BB_J alleles on lp38), but strongly linked allelic groups may also be present on distinct repli-

cons (e.g. DbpA on lp54 and OspC on cp26). While the strong correlations between individual

alleles make it difficult to separate the statistical effects of individual alleles, such correlations

are also the characteristic and defining feature of Bb lineages.

Fig 8. Manhattan Plots showing the association of individual ORF homologous groups with OspC type A (panel A), Osp C type K (panel B), and RST1 (panel

C). The Y axis plots the P-value for tests of association between each homology group and the lineage marker as shown. For ORFs that aligned to the B31

reference genome, the x axis denotes the annotated position in the genome.

https://doi.org/10.1371/journal.ppat.1011243.g008
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Discussion

The sequencing and analysis of 299 human Bb clinical isolates adds insight to the genetic, geo-

graphic, and phenotypic diversity of Bb strains causing Lyme disease in several ways. First, our

results confirm and extend previous findings on the microbial genetic basis of disease manifes-

tations in humans. The surprising quality of single-locus typing systems for capturing the rele-

vant genetic structure of Bb derives from the near-clonal population and resulting strong

linkage among Bb genetic elements, a phenomenon which was observed in previous studies

[70,71] and which was similarly observed in this large collection of human isolates.

Second, WGS goes beyond single-locus typing systems by revealing the specific genetic ele-

ments that contribute to strain-specific genetic and phenotypic variation. The presence of

homoplasy among a subset of accessory genome elements (i.e. genes that are present or absent

in multiple branches of the phylogeny in Fig 5B) means that single-locus markers are an

imperfect proxy for strain-specific genetic differences. Thus, association studies linking geno-

type to phenotype benefit from WGS typing. In addition, while highlighting the fidelity and

usefulness of single-locus typing, WGS also reveals their limitations. For RST, the main limita-

tion is that marker subtypes are polyphyletic with respect to the core genome phylogeny,

although the intermixing of WGS groups B and C in RST types 2 and 3 has not been a major

issue in practice because the phenotypes (for example, the relative rate of dissemination in

humans) of those groups appear more similar than the genomically and phenotypically diver-

gent RST1 / WGS A group. For OspC typing, the main limitation is that there are many types,

and the proliferation of closely-related subtypes reduces power in genetic association studies;

furthermore, because of the frequency of recombination at the OspC locus [72,73], the dis-

tance between OspC sequences is not a reliable measure of the distance between strains. Unless

there is a clear order or distance among the types (a condition which is not met by OspC

types), the usefulness of a discrete typing system declines as the number of types increases.

Prior studies have identified genetic markers and correlated their presence with specific

clinical findings [1,6,8,9,11,30,31,33–36]. Our findings support the idea that WGS A / RST1—

particularly the subtype defined by OspC type A—is genetically distinct [31,71,74,75] and asso-

ciated with an increased probability of dissemination in humans. We identified specific genetic

features associated with this lineage, including having a larger number of ORFs than other lin-

eages. These ORFs are found on a strain-specific collection of plasmids, including lp28-1 and

lp56. This is consistent with previous findings that have linked the presence of lp28-1 to infec-

tivity in mouse models [76–79]. Importantly, these results extend previous findings which

showed that RST1 OspC type A strains are associated with more severe Lyme disease [6], by

identifying candidate plasmids lp28-1 and lp56 as potential genetic factors that mediate the

greater virulence of these Bb genotypes in patients.

Why are OspC type A strains more virulent? While an association does not establish causal-

ity, we report here that lipoprotein number is associated with the probability of invasion; we

speculate that the larger collections of surface lipoproteins in virulent strains such as OspC

types A and H may enable such spirochetes to defend more effectively against the host immune

response or invade host tissues. Surface lipoproteins are known to be important in immunity,

pathogenesis, and Bb-host interactions (reviewed in [1,62]).

Both gene dosage and allelic variation among lipoproteins present in the same quantity

may be important. For example, at the level of allelic variation, distinct homology groups of

OspC and DbpA are associated with the OspC type A genotype in this study. Previous experi-

mental work has shown that specific allelic variants of DpbA promote dissemination and alter

tissue tropism in a mouse model of Lyme disease [80]. Moreover, allelic variation in OspC

alters binding to extracellular matrix components, promotes joint invasion, and modulates
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joint colonization [81]; OspC has also been shown to bind to plasminogen [82,83], promote

resistance in serum killing assays [84], and its role in causing infection can be, under certain

circumstances, partially complemented by other surface lipoproteins [85,86]. Homology

groups of DbpA (BB_A24), and specific members of the Erp (BB_M38, BB_L39) and Mlp

(BB_Q35) (S8 Table and S7B–S7D Fig) families are associated with dissemination, and the

genetic differences among these homology groups represent potential candidates for evalua-

tion in follow-up studies.

At the level of gene dosage, differences were particularly notable among multi-copy gene

families such as Erps and Mlp proteins. The statistically-significant relationship between lipo-

protein number and probability of dissemination in humans and the borderline-significant

relationships for copy number of Erps and Mlps (S7E and S7F Fig) suggest that varying the

amount and diversity of linked clusters of surface lipoproteins—which, individually or in com-

bination, may promote survival in the presence of immune defenses, binding to mammalian

host tissues and through other pathogenic mechanisms—may be a general mechanism to facil-

itate vertebrate infection and, consequently, may underlie strain-specific virulence of Bb in

humans. Erps are divided into three families that each bind to distinct host components (extra-

cellular matrix, complement component, or complement regulatory protein) [65,87–90]; it is

possible that the strain-variable clusters of Erps (S7B, S7E and S7F Fig) may influence clinical

manifestations by modulating strain-specific properties of tissue adhesion or resistance to

complement-mediated killing of spirochetes. The functions of Mlp proteins and many other

strain-variable lipoproteins remain largely unknown.

The microbial genetic association studies presented here begin to resolve the individual

genetic elements underlying certain phenotypes of Lyme disease. We hypothesized that spe-

cific genetic elements were associated with dissemination in patients. Our findings support

this hypothesis by identifying groups of genes associated with dissemination in humans, but

due to the near-clonal population structure of Bb, it is not possible to resolve the specific

genetic elements within these groups without further investigation. Using unadjusted, univari-

ate associate models, virtually all dissemination-associated genes were found on plasmids.

However, after correction for spirochete genetic structure due to lineage, only weak locus-spe-

cific associations were observed. Distinguishing causal alleles from non-causal, linked alleles

requires statistical reassortment, usually in the form of recombination, and/or experimental

data. Because reassortment does occur (lineages are not perfectly clonal), larger sample sizes can

help narrow the list of potential causal loci. Improved statistical models that explicitly incorpo-

rate the joint distribution of covariates among isolates would also help. In the near term, until

much larger collections of isolates are available, pinpointing causal alleles will depend on experi-

ments using reverse genetic tools. The results shown in Figs 6 and 7 and S7 Table are helpful in

narrowing down the candidate loci and genetic elements that may predispose to or protect

from dissemination in humans.

The complex structure of the Bb genome further complicates the identification of causal

loci because the genes in dissemination-associated clusters are predominantly found on plas-

mids. Integrating plasmid maps with associations at the level of individual ORFs provides a

clearer view of the potential determinants of distinct phenotypes. While we cannot yet resolve

the causative loci on lp28-1 or lp56 that enhance the pathogenicity of OspC type A strains, we

highlight candidate loci and quantify the statistical evidence for each locus considered. ORFs

on these plasmids such as BB_Q67 (which encodes a restriction enzyme modification system

[91,92]), BB_Q09, BB_Q05, BB_Q06, BB_Q07, and other plasmids such as BB_J31, BB_J41

(S7 and S8 Tables) are among tightly linked to the OspC type A genotype and are candidates

for further experimental examination. However, without complete plasmid sequences, the spa-

tial context of these associations and the physical structure of linkage are not resolved. Long-
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read sequencing will be necessary to define these relationships and establish a definitive map

of plasmids because of the frequent, complex exchanges of genes and gene blocks among plas-

mids [14,16].

Finally, our analysis highlights how strain genetic diversity, which is shaped by geographical

location and evolutionary history, contributes to clinical heterogeneity in Lyme disease. In the

context of known associations between genotype and clinical disease, the differences in genetic

markers across geographic areas may help explain why some clinical phenotypes are more

common in certain geographic locations. For example, Lyme arthritis is more common in the

US compared to Europe, probably because the infection in the US is due predominantly to Bb
strains which are more arthritogenic [93]. OspC type A strains appear to be more common

among patients in the US Northeast [30,31].

This report has several limitations. First, plasmids pose a unique challenge for assembly and

annotation [14,16]. As others have shown [17], complete plasmid assembly with short read

sequences is not possible. We devised two bioinformatic methods to overcome these chal-

lenges and infer plasmid presence/absence from short read sequencing, but neither is perfect.

Our PFam32 analysis is limited by an uncertainty as to which gene sequences are contained on

the plasmid associated with the PFam32 sequence [16]. A complementary analysis based on

the B31 reference sequence relies on a high-quality pre-existing assembly but cannot account

for genes/plasmids absent from the B31 reference strain. We also cannot exclude the possibility

of plasmid loss during culture, although isolates were passaged fewer than five times before

genome sequencing to minimize this possibility.

Second, there are limitations due to analysis of isolates collected over time by different

groups at different sites. In particular, we may underestimate dissemination because an assess-

ment of spirochetemia (blood PCR or blood culture) was only available for 71% of isolates

(S2 Table) and the absence of positive culture or blood PCR from a single time point does not

rule out the possibility that dissemination from the initial skin lesion may have occurred or

may occur at a later time point if patients were not treated with antibiotics. Further, because

we did not genotype blood isolates for this study, we cannot rule out that the strain that dis-

seminated to blood was different than those cultured from the EM skin biopsies. However,

based on past experience at NYMC, where skin and blood cultures were frequently obtained

from the same patient, the majority (>90%) of Bb genotypes recovered from blood matched

those in skin (personal communication: I.S. and G.W.).

Third, there are statistical limitations related to the Bb genome and study size. We did not

study all types of genetic variation. In particular, copy number variants (CNVs) and single

nucleotide polymorphisms (SNPs) were not considered here. Short read methods are not ideal

for studying CNVs. SNPs are incorporated indirectly through the measure of overall sequence

similar (BLAST identity) used to split homologous group clusters, but a detailed association

study of SNPs requires a larger sample size which is not currently available.

Fourth, models that naively correlate a given gene with the phenotype of interest will pro-

duce spurious associations due to the confounding effect of lineage and may overstate the

effect from single loci, a problem which is well known in human genome-wide association

studies [94]. Corrections for lineage and population structure are often applied to human

[95,96] and bacterial [68,69] association studies. However, Bb underscores the challenges to

these approaches, both because lineages appear to be defined by the exchange of blocks of

genes rather than single genes, and because the coarse tree structure differs for the core and

accessory genomes, implying that a single similarity measure to capture the pairwise dissimi-

larity between strains may not be adequate. Larger studies with more isolates, statistical meth-

ods that incorporate the joint distribution between genetic markers, and plasmid assemblies

finished by long read sequencing are required as a next step. Until complete assemblies are
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available, we regard plasmid assignment for each strain as provisional because both of the

methods we used to infer the presence/absence of plasmids have limitations related to the

extensive homology among plasmids and the imperfect linkage between PFam32 sequences

and the other genes on the plasmid [16].

Fifth, the present study includes isolates collected by different investigators over the past 30

years. Due to the logistical complexity and cost of collecting Bb isolates from patients in clini-

cal studies, substantially larger studies of isolates of Bb from patients may not be feasible in the

near term; however, long-read sequencing approaches have improved in accuracy, availability,

and cost, and are a logical next step to completing the genomes of existing isolates in our

collection.

Taken together, our results indicate that each Bb genotype represents a tightly-linked set of

strain-specific variation that occurs primarily in plasmids, much of it involving surface-

exposed lipoproteins. OspC type A strains—with their enlarged pan-genome, distinct plas-

mids, and expanded surface lipoproteome—represent the most dramatic example of this

genetic signature that is associated with distinct phenotypes of Lyme disease in humans. Given

the shared principles of genome organization and strong linkage between microbial genotype

and phenotype across all Lyme borrelia, this pattern may generally be true for all agents of

Lyme disease.
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covered by aligned contigs in the de novo assembly for the genome of the corresponding iso-

late. The clade corresponding to RST1 is shaded in light blue and the clade corresponding to

OspC type A is shaded in green. B. Odds ratio of dissemination and confidence interval by

PLOS PATHOGENS Borrelia burgdorferi genomes reveal clusters of accessory elements linked to virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011243 August 31, 2023 22 / 29

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s012
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s013
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s014
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s015
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s016
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s017
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011243.s018
https://doi.org/10.1371/journal.ppat.1011243


plasmid, inferred by PFam32 sequences. C. Volcano plot displaying the—log10 P value (as cal-

culated using Fisher’s exact test) and the odds ratio of dissemination for each plasmid, inferred

by alignment of assembled contigs to the B31 reference sequence.
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type (colored according to the scheme in Fig 5) with a matrix of presence (blue) or absence

(white) for surface lipoproteins. Surface-exposed lipoproteins present in at least 80% of strains

were considered to be part of the core lipoproteome. B and C. Core genome phylogeny with

presence/absence of Erp (C) homology groups and Mlp (D) homology group. D. The number

of surface-exposed lipoproteins (top panel), Erps (middle panel), and Mlps (bottom panel) by

OspC type. E. Logistic regression modeling the probability of dissemination by number of

ORF (top left, regression coefficient for slope, β1 = 0.002 +/- 0.002, p = 0.450), number of sur-

face-exposed lipoproteins (top right, β1 = 0.037 +/- 0.017, p = 0.03, logistic regression), num-

ber of Erps (bottom left, β1 = 0.087 +/- 0.053, p = 0.10, logistic regression), and number of

Mlps (bottom right, β1 = 0.048 +/- 0.055 p = 0.38, logistic regression). The observed data used

to build the regression model are plotted. Each isolate is a point whose y-value has been

assigned 1 to denote a disseminated phenotype or 0 to denote a non-disseminated phenotype.

A small amount of noise has been added to the y-coordinate to display overlapping points. F.
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and mean number of Mlps (bottom right).
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(top panel), Osp C type K (middle panel), and RST1 (bottom panel). Individual lipoproteins

are annotated by their localization. The scale is in 1,000,000 base pairs, with the ordering of

plasmids and the chromosome as in Fig 7. P-IM: Periplasmic inner membrane. POM: Peri-

plasmic outer membrane. S: surface.
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82. Önder Ö, Humphrey PT, McOmber B, Korobova F, Francella N, Greenbaum DC, et al. OspC is potent

plasminogen receptor on surface of Borrelia burgdorferi. J Biol Chem. 2012; 287: 16860–16868. https://

doi.org/10.1074/jbc.M111.290775 PMID: 22433849

83. Lagal V, PortnoïD, Faure G, Postic D, Baranton G. Borrelia burgdorferi sensu stricto invasiveness is

correlated with OspC–plasminogen affinity. Microbes Infect. 2006; 8: 645–652. https://doi.org/10.1016/

j.micinf.2005.08.017 PMID: 16513394

84. Caine JA, Lin Y-P, Kessler JR, Sato H, Leong JM, Coburn J. Borrelia burgdorferi outer surface protein

C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol.

2017;19. https://doi.org/10.1111/cmi.12786 PMID: 28873507

85. Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface lipoproteins of Borrelia

burgdorferi against innate defences. Mol Microbiol. 2008; 69: 15–29. https://doi.org/10.1111/j.1365-

2958.2008.06264.x PMID: 18452586

86. Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for

OspC and VlsE at different stages of mammalian infection. Mol Microbiol. 2013; 89: 216–227. https://

doi.org/10.1111/mmi.12271 PMID: 23692497

87. El-Hage N, Babb K, Carroll JA, Lindstrom N, Fischer ER, Miller JC, et al. Surface exposure and prote-

ase insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology. 2001; 147: 821–

830. https://doi.org/10.1099/00221287-147-4-821 PMID: 11283278

88. Stevenson B, El-Hage N, Hines MA, Miller JC, Babb K. Differential binding of host complement inhibitor

factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive

host range of Lyme disease spirochetes. Infect Immun. 2002; 70: 491–497. https://doi.org/10.1128/IAI.

70.2.491-497.2002 PMID: 11796574

89. Lin Y-P, Bhowmick R, Coburn J, Leong JM. Host cell heparan sulfate glycosaminoglycans are ligands

for OspF-related proteins of the Lyme disease spirochete. Cell Microbiol. 2015; 17: 1464–1476. https://

doi.org/10.1111/cmi.12448 PMID: 25864455

90. Pereira MJ, Wager B, Garrigues RJ, Gerlach E, Quinn JD, Dowdell AS, et al. Lipoproteome screening

of the Lyme disease agent identifies inhibitors of antibody-mediated complement killing. Proc Natl Acad

Sci U S A. 2022; 119: e2117770119. https://doi.org/10.1073/pnas.2117770119 PMID: 35312359

PLOS PATHOGENS Borrelia burgdorferi genomes reveal clusters of accessory elements linked to virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011243 August 31, 2023 28 / 29

https://doi.org/10.1111/j.1365-2958.1995.mmi%5F18020257.x
https://doi.org/10.1111/j.1365-2958.1995.mmi%5F18020257.x
http://www.ncbi.nlm.nih.gov/pubmed/8709845
https://doi.org/10.1016/j.meegid.2014.03.025
https://doi.org/10.1016/j.meegid.2014.03.025
http://www.ncbi.nlm.nih.gov/pubmed/24704760
https://doi.org/10.1128/JB.00459-06
http://www.ncbi.nlm.nih.gov/pubmed/16923879
https://doi.org/10.1186/1471-2164-14-693
http://www.ncbi.nlm.nih.gov/pubmed/24112474
https://doi.org/10.1128/IAI.69.1.446-455.2001
https://doi.org/10.1128/IAI.69.1.446-455.2001
http://www.ncbi.nlm.nih.gov/pubmed/11119536
https://doi.org/10.1186/s12866-016-0806-4
https://doi.org/10.1186/s12866-016-0806-4
http://www.ncbi.nlm.nih.gov/pubmed/27502325
https://doi.org/10.1128/IAI.71.8.4608-4613.2003
http://www.ncbi.nlm.nih.gov/pubmed/12874340
https://doi.org/10.1073/pnas.97.25.13865
http://www.ncbi.nlm.nih.gov/pubmed/11106398
https://doi.org/10.1371/journal.ppat.1004238
http://www.ncbi.nlm.nih.gov/pubmed/25079227
https://doi.org/10.1371/journal.ppat.1008516
http://www.ncbi.nlm.nih.gov/pubmed/32413091
https://doi.org/10.1074/jbc.M111.290775
https://doi.org/10.1074/jbc.M111.290775
http://www.ncbi.nlm.nih.gov/pubmed/22433849
https://doi.org/10.1016/j.micinf.2005.08.017
https://doi.org/10.1016/j.micinf.2005.08.017
http://www.ncbi.nlm.nih.gov/pubmed/16513394
https://doi.org/10.1111/cmi.12786
http://www.ncbi.nlm.nih.gov/pubmed/28873507
https://doi.org/10.1111/j.1365-2958.2008.06264.x
https://doi.org/10.1111/j.1365-2958.2008.06264.x
http://www.ncbi.nlm.nih.gov/pubmed/18452586
https://doi.org/10.1111/mmi.12271
https://doi.org/10.1111/mmi.12271
http://www.ncbi.nlm.nih.gov/pubmed/23692497
https://doi.org/10.1099/00221287-147-4-821
http://www.ncbi.nlm.nih.gov/pubmed/11283278
https://doi.org/10.1128/IAI.70.2.491-497.2002
https://doi.org/10.1128/IAI.70.2.491-497.2002
http://www.ncbi.nlm.nih.gov/pubmed/11796574
https://doi.org/10.1111/cmi.12448
https://doi.org/10.1111/cmi.12448
http://www.ncbi.nlm.nih.gov/pubmed/25864455
https://doi.org/10.1073/pnas.2117770119
http://www.ncbi.nlm.nih.gov/pubmed/35312359
https://doi.org/10.1371/journal.ppat.1011243


91. Lawrenz MB, Kawabata H, Purser JE, Norris SJ. Decreased electroporation efficiency in Borrelia burg-

dorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi.

Infect Immun. 2002; 70: 4798–4804. https://doi.org/10.1128/IAI.70.9.4798-4804.2002 PMID: 12183522

92. Rego ROM, Bestor A, Rosa PA. Defining the plasmid-borne restriction-modification systems of the

Lyme disease spirochete Borrelia burgdorferi. J Bacteriol. 2011; 193: 1161–1171. https://doi.org/10.

1128/JB.01176-10 PMID: 21193609

93. Grillon A, Scherlinger M, Boyer P-H, De Martino S, Perdriger A, Blasquez A, et al. Characteristics and

clinical outcomes after treatment of a national cohort of PCR-positive Lyme arthritis. Semin Arthritis

Rheum. 2018. https://doi.org/10.1016/j.semarthrit.2018.09.007 PMID: 30344080

94. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006; 7:

781–791. https://doi.org/10.1038/nrg1916 PMID: 16983374

95. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for

genome-wide association studies. Nat Methods. 2011; 8: 833–835. https://doi.org/10.1038/nmeth.1681

PMID: 21892150

96. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet.

2012; 44: 821–824. https://doi.org/10.1038/ng.2310 PMID: 22706312

PLOS PATHOGENS Borrelia burgdorferi genomes reveal clusters of accessory elements linked to virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011243 August 31, 2023 29 / 29

https://doi.org/10.1128/IAI.70.9.4798-4804.2002
http://www.ncbi.nlm.nih.gov/pubmed/12183522
https://doi.org/10.1128/JB.01176-10
https://doi.org/10.1128/JB.01176-10
http://www.ncbi.nlm.nih.gov/pubmed/21193609
https://doi.org/10.1016/j.semarthrit.2018.09.007
http://www.ncbi.nlm.nih.gov/pubmed/30344080
https://doi.org/10.1038/nrg1916
http://www.ncbi.nlm.nih.gov/pubmed/16983374
https://doi.org/10.1038/nmeth.1681
http://www.ncbi.nlm.nih.gov/pubmed/21892150
https://doi.org/10.1038/ng.2310
http://www.ncbi.nlm.nih.gov/pubmed/22706312
https://doi.org/10.1371/journal.ppat.1011243

