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Abstract

Previous research has highlighted the role of the excitation/inhibition (E/I) ratio for typical

and atypical development, mental health, cognition, and learning. Other research has

highlighted the benefits of high-frequency transcranial random noise stimulation (tRNS)—

an excitatory form of neurostimulation—on learning. We examined the E/I as a potential

mechanism and studied whether tRNS effect on learning depends on E/I as measured by

the aperiodic exponent as its putative marker. In addition to manipulating E/I using tRNS, we

also manipulated the level of learning (learning/overlearning) that has been shown to influ-

ence E/I. Participants (n = 102) received either sham stimulation or 20-minute tRNS over

the dorsolateral prefrontal cortex (DLPFC) during a mathematical learning task. We showed

that tRNS increased E/I, as reflected by the aperiodic exponent, and that lower E/I predicted

greater benefit from tRNS specifically for the learning task. In contrast to previous magnetic

resonance spectroscopy (MRS)-based E/I studies, we found no effect of the level of learning

on E/I. A further analysis using a different data set suggest that both measures of E/I (EEG

versus MRS) may reflect, at least partly, different biological mechanisms. Our results high-

light the role of E/I as a marker for neurostimulation efficacy and learning. This mechanistic

understanding provides better opportunities for augmented learning and personalized

interventions.

Introduction

Previous human and animal studies have indicated the importance of the ratio of neuronal

excitation to inhibition (E/I) for learning [1–4]. Previous magnetic resonance spectroscopy

(MRS) studies highlighted the neurotransmitters glutamate and gamma-aminobutyric acid

(GABA) as the underlying building blocks of E/I and suggested their important role in mem-

ory and learning, including predicting educational levels later in life [4–8].

Recent findings show that an excitatory form of noninvasive neurostimulation—high-fre-

quency transcranial random noise stimulation (tRNS; [9])—influences E/I in mice by reducing
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GABAergic activity [10]. During tRNS, a small current with randomized frequency and cur-

rent intensity is applied over targeted brain areas. It is assumed that tRNS amplifies subthresh-

old neuronal activity, that by itself does not reach the necessary threshold to yield an action

potential (i.e., stochastic resonance; [11]). Thus, this amplification of the signal has been linked

to increases in signal-to-noise ratio, which is assumed to relate to successful enhancements in

learning, perception, and cognitive performance [12–17]. Despite the growing interest in

applying tRNS in cognitive studies, there is little understanding of the neurophysiological

changes induced [18]. Mostly, tRNS studies that use an electroencephalogram (EEG) focus on

periodic brain activity, such as theta/beta ratio, for the predicted efficacy of electrical stimula-

tion on learning [19,20]. Considerable research has been done to investigate oscillatory

rhythms as potential electrophysiological predictors for cognitive or behavioral processing in

healthy and clinical populations [19,21,22]. However, explaining tRNS, as well as other neuro-

stimulation, efficacy by investigating the E/I has been overlooked, despite the emerging theo-

retical motivation [23].

Recently, the interest in electrophysiology has been expanded from this oscillatory (i.e.,

periodic or spectral power) perspective to include an aperiodic perspective, e.g., aperiodic

activity [1,24]. Aperiodic activity is shown in the EEG spectrum as a 1/f-like structure and is

dominant in the spectrum even when there is no periodic or oscillatory activity. The power of

aperiodic activity decreases exponentially with increasing frequency (see Fig 1A), which is

reflected as a negative slope in log–log space (see Fig 1B). In contrast to the previous assump-

tion that aperiodic activity reflects background noise in the EEG spectrum, accumulating evi-

dence points to the importance of aperiodic activity in understanding brain functions and

behavior. Also, periodic activity has been shown to be confounded due to misestimating spec-

tral power since participants vary in center frequencies if a predefined spectral range is applied

[25]. Therefore, Donoghue and colleagues [24] recommend to parameterize neural power

spectra by also analyzing the aperiodic activity in the spectrum. Aperiodic activity consists of

an aperiodic exponent that can be defined as x in a 1/fx function, which reflects the previously

mentioned negative slope in log–log space and, thus, the pattern of power across frequencies.

The exponent of aperiodic activity is thought to underlie the integration of underlying synaptic

currents [26], and a likely mechanism of changes in the aperiodic exponent has been linked to

the E/I of field potentials shown by EEG recordings [27,28]. A higher E/I relates to a lower ape-

riodic exponent and vice versa, and we therefore consider the exponent as a putative marker

for E/I. The power of inhibitory GABA currents leads to a rapid decay in the power spectrum

at higher frequencies, and, thus a steeper (negatively sloped) exponent (see Fig 1C). The oppo-

site happens for excitatory currents, where power is stable for lower frequencies and declines

more slowly for higher frequencies, which is shown in a flatter (closer to zero) exponent (see

Fig 1C). Shortly, the higher the E/I, the lower the exponent value (see Fig 1D).

Donoghue and colleagues [24] showed that decreased aperiodic activity (i.e., lower expo-

nent) in the EEG spectrum relates to flattening the power spectrum as seen in aging and that it

is also related to behavioral performance. Other developmental and clinical studies also indi-

cated that interindividual differences are important in aperiodic activity in health and disease

[29–32].

Recent MRS findings have linked better mathematical skills to higher E/I in young adults

and the reverse in younger participants [8]. Moreover, MRS-based E/I can predict future

mathematical reasoning [33]. It is unknown whether the E/I can be influenced by tRNS and if

this relates to better mathematical achievement. In the present study, we address this question

applying tRNS while participants solved arithmetic multiplications during a mathematical

learning paradigm. Furthermore, we manipulated the difficulty of the to-be acquired skill to

induce learning or overlearning. Based on previous studies, we defined learning as practicing a
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skill during performance improvement (i.e., before learning plateaus) and overlearning as the

point after performance improvement when a plateau has been reached [4]. Learning and

overlearning have been linked to an increase and a decrease in E/I, respectively, in an MRS

study [4].

We aimed to impact E/I directly using tRNS as well as indirectly by manipulating the level

of learning (learning/overlearning) to examine whether (1) tRNS will increase E/I as measured

by the aperiodic exponent; (2) the direction of change in the aperiodic exponent between pre-

and posttest depends on the learning condition: decreasing in the learning condition and

increasing in the overlearning condition; and (3) tRNS efficacy on a learning/overlearning task

depends on the individual baseline aperiodic exponent, i.e., the tRNS-induced reduction of the

aperiodic exponent differs across participants, depending on their baseline aperiodic exponent

(i.e., E/I levels) [23]. To do this, participants completed several multiplication problems by

answering in a time-sensitive microphone (see Fig 2A). They were allocated in either the

Fig 1. E/I and the aperiodic exponent. (A) A simplified overview of the difference between periodic and aperiodic activity in the EEG

power–frequency spectrum. (B) The aperiodic exponent in log–log space as shown in the EEG spectrum. (C) and (D) are adapted with

permission from Gao and colleagues [28], which show that high E/I is related to a flatter (closer to zero) aperiodic exponent and low E/I

(i.e., high inhibition) to a negatively steep exponent, compared to the LFP. EEG, electroencephalogram; E/I, excitation/inhibition; LFP,

local field potential.

https://doi.org/10.1371/journal.pbio.3002193.g001
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learning or overlearning condition (receiving sham or tRNS for 20 minutes) by means of a var-

iance minimization procedure (see Fig 2B). At the beginning and at the end of the experiment,

a resting state (rs)-EEG was measured of 8 minutes. The stimulation electrodes were placed

over F3 and F4 as determined with the international 10/20 system.

Results

Efficacy of the learning and overlearning manipulation

Both groups were matched on baseline performance and aperiodic exponent (see Methods,

“Baseline matching”). To determine the efficacy of our learning and overlearning task manipu-

lation, the average learning slope (based on response times (RTs); [34]) was computed for all

participants who received sham stimulation (see Fig 3 and Fig A in S1 Text for individual

data). This allowed us to prevent confounding the effect of learning/overlearning with the

effect of active tRNS. For participants in the learning task, the slope showed a negative linear

gradient, whereas participants in the overlearning task showed a clear plateau of performance

improvement due to the repetition of presented stimuli. This indicated the efficacy of our task

design in manipulating learning and overlearning.

The impact of tRNS and learning on the aperiodic exponent

Then, we investigated the effects of tRNS and type of mathematical task (learning/overlearn-

ing) on the aperiodic exponent. The aperiodic exponent change was calculated by subtracting

the pre- from the post-aperiodic exponent, with positive values indicating an increase in the

exponent from pre- to post-learning/overlearning. We ran an ANCOVA with the factors task

(learning/overlearning) and stimulation (tRNS/sham), while controlling for the individual pla-

teau (as it may impact E/I; [4]) (see the calculation of the amount of learning in the Methods

Fig 2. A schematic overview of the task structure and experimental protocol. (A) First, a fixation screen was shown.

Subsequently, a multiplication was presented by voice recording through a headphone. Hereafter, participants were

shown a microphone symbol to indicate that they could say the answer into the microphone. This was followed by a

200-ms delay period. Lastly, participants indicated by clicking the left or right mousepad on the keyboard whether they

retrieved or calculated the answer. (B) First, a pre-rs-EEG was measured of 8 minutes. Subsequently, a training was

presented that contained 4 different multiplication problems. Based on baseline performance, participants either

completed the learning or the overlearning task. One block in both the learning and overlearning task consisted of 10

multiplications with 18 blocks, and 180 trials in total. Participants received 20 minutes, 1 mA tRNS during either the

learning or overlearning task or sham stimulation. Next, the transfer task was presented with new arithmetic problems

containing 10 multiplications repeated 3 times. The recall task contained the identical multiplications as either the

learning or the overlearning task and was repeated 3 times. Lastly, another post-rs-EEG measurement of 8 minutes was

assessed. (C) Placement of the stimulation electrodes over F3 and F4. EEG, electroencephalogram; rs, resting state;

tRNS, transcranial random noise stimulation.

https://doi.org/10.1371/journal.pbio.3002193.g002
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section). The main effect of stimulation was significant (F(1,67) = 6.63, p = .012, MSE = 1.20,

η2partial = .09). No significant main effects were found for task (F(1,67) = 0.26, p = .611, MSE =
0.04, η2partial = .005), and individual plateau (F(1,67) = 0.37, p = .540, MSE = 0.06, η2partial =

.01). Also, no interaction effect of stimulation X task was found (F(1,67) = 3.59, p = .062, MSE
= 0.65, η2partial = .05). We repeated the same analysis without controlling for the individual pla-

teau. This did not affect the results.

To further explain the significant effect of stimulation, we plotted the aperiodic exponent

change for each stimulation group separately (see Fig 4A and Fig B in S1 Text for individual

data). The aperiodic exponent change of participants who received tRNS (i.e., more excitation

induced) was lower (i.e., flatter) (M = −0.17, SEM = 0.07) after stimulation compared to those

who received sham stimulation (M = 0.08, SEM = 0.06). The topographies show a clear

decrease in the aperiodic exponent after tRNS opposed to sham stimulation for the anterior

Fig 3. Averaged learning curves of the median RTs of the learning or overlearning task of the sham stimulation.

The mean learning curve of the participants (n = 22) during learning shows a linear gradient as shown in purple. The

mean learning curve of the participants (n = 21) during overlearning (in green) shows a clear plateau of performance

improvement after approximately block 10, and faster RTs overall. Shading indicates 95% confidence intervals.

https://doi.org/10.1371/journal.pbio.3002193.g003

Fig 4. Changes in aperiodic exponent for active and sham tRNS and their associated topographies. (A) Participants who received active tRNS showed an increase in

E/I as indicated by the mean (±SEM) decreased aperiodic exponent (change: post-baseline exponent in μV2 Hz−1). Participants who received sham tRNS showed a mean

(±SEM) decrease in E/I as indicated by an increased exponent. *p< .05. (B) Topoplot illustrates the change in the aperiodic exponent for the sham (left) and active

tRNS (left and right respectively). For electrode Fz, a slight increase in the aperiodic exponent is observed as indicated with a lighter color for sham tRNS. For active

tRNS, there is a clear decrease in the aperiodic exponent after tRNS, as indicated with a darker color for electrode Fz and anterior electrodes. This observation supports

the notion of increased E/I following active compared to sham tRNS.

https://doi.org/10.1371/journal.pbio.3002193.g004
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electrodes, indicating an increased E/I (see Fig 4B). This corroborates with the excitatory

effects of tRNS, leading to a lower aperiodic exponent, which reflects a higher E/I. However, it

should be noted that in contrast to our expectations, type of task (learning/overlearning) did

not influence the aperiodic exponent change from pre to post.

Because a frequentist approach makes it difficult to distinguish a true lack of effect (of task

on aperiodic exponent) from a lack of power to detect an effect, we reran the same ANCOVA

on the aperiodic exponent change using a Bayesian approach. Our results, as presented in

S1 Text, strengthen the conclusion that tRNS impacted the aperiodic exponent, while we

found no evidence of an effect of task. These findings match the idea that tRNS leads to higher

excitation and, therefore, a lower (i.e., flatter) aperiodic exponent and that this effect is inde-

pendent of learning/overlearning.

The aperiodic exponent moderates response times on a learning and

overlearning task

As shown in the previous paragraph, the aperiodic exponent was not influenced by the type of

task. To investigate if tRNS efficacy on a learning/overlearning task depends on the individual

baseline aperiodic exponent, we ran a Bayesian mixed effects model with the brms package to

predict RTs for each trial during the learning and overlearning task. Note that we also evalu-

ated the models for accuracy instead of RTs as dependent variable, but due to the emphasis on

RTs in cognitive skill acquisition [16,34,35] and participant instructions to avoid errors induc-

ing a high accuracy (see Methods, “Baseline ability task”), we only reported the accuracy results

in the Supporting information (see Table A in S1 Text).

Fixed effects entailed the aperiodic exponent at baseline, trial (1 to 180), task (learning/

overlearning), and stimulation (tRNS/sham). The model included a random intercept for trial

for all participants. Our effect of interest was the three-way tRNS X baseline aperiodic expo-

nent X task interaction over trials, and, therefore, we compared different models varying in

number of included interaction effects. Model comparisons were made by means of leave-one-

out (LOO) cross-validation, including a basic learning model that contained RTs as dependent

variable, and trial and task as fixed effects. As can be seen in Table B in S1 Text, the differences

in predictive performance between the different models are negligible (see also [36]). In other

words, the predictive value of the different interaction models on the data is very similar.

Therefore, we investigated the three-way interaction of tRNS X baseline aperiodic exponent X

task from the most complex model further, i.e., the model with the four-way interaction of

tRNS X baseline aperiodic exponent X task X trial. Inference regarding the effects was con-

ducted by inspecting the 95% highest posterior density (HPD) CrI of the posterior distribution

of the effect of interest. If the null value (i.e., zero) was not included in the interval, it means

there is a 95% chance or more that the effect exists, and there is more support for the alterna-

tive hypothesis. We dissected the interactions concerning the influence of stimulation and task

based on the exponent using the emmeans package with 95% HPD CrI [37]. See S1 Text for all

model comparisons, caterpillar plots, and the posterior predictive check for the most complex

model, Rhat = 1.

Table 1 shows the slope of the exponent between the two tasks (learning and overlearning)

and stimulation groups (tRNS and sham) for the best predicted model. It shows that partici-

pants with a high exponent (i.e., low excitation levels) who received tRNS improved signifi-

cantly in terms of lower RTs during the learning task (probability of direction (pd) = 98.96%).

There was no evidence that tRNS improved performance in the overlearning task

(pd = 50.11%). To check for spatial specificity, we replaced the exponent from Fz with the

exponent calculated over T8, as, to the best of our knowledge, this electrode has not been
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linked to mathematical learning (also see Fig 4B for topographical comparisons). The results

show no significant difference for all conditions, specifically for learning X tRNS X baseline

aperiodic exponent [−1.06, 0.66]. We also repeated the original model that includes the base-

line aperiodic exponent from Fz, but now we controlled for the baseline aperiodic exponent

from T8. The three-way interaction was still significant [−2.37, −0.16], further confirming the

spatial specificity.

Additionally, we checked the posterior distributions that captures the uncertainty sur-

rounding the magnitude of an effect. Typically, a posterior distribution higher or equal to 75%

(below or above zero) is chosen as a threshold to indicate that an effect is present. The choice

for a certain cutoff criterion depends on the potential risks and benefits of the intervention

[38], and in this context, it means that there is a 75% chance that the alternative hypothesis

(i.e., the presence of an effect) is true. Fig 5A shows that there is a 90% probability that tRNS

lowers median RTs on average during both tasks and thus improves performance (see Fig C in

S1 Text for all main effects). The most important effect is the three-way interaction between

tRNS X task X aperiodic exponent at baseline (see Fig 5B). Notably, the posterior probability

of the presence of a three-way interaction between tRNS X task X baseline aperiodic exponent

is 82% (see Fig 5B).

To understand the source of this three-way interaction, we dissected it by running the

model for learning and overlearning separately (see Fig 5C). For the learning task, the poste-

rior distribution for the interaction between stimulation and the baseline aperiodic exponent

was 91%. We therefore further dissected the model for sham and tRNS separately for the main

effect of the baseline aperiodic exponent in the learning task. We did not find a difference in

performance between those with low and high baseline aperiodic exponent in the sham condi-

tion (posterior distribution = 58%). However, when tRNS was applied, those with a high base-

line aperiodic exponent performed better, and those with a low exponent performed worse

(posterior distribution = 94%). In contrast, for the overlearning task, the posterior distribution

was 56%, indicating no support for an interaction between stimulation and baseline aperiodic

exponent in this task.

Sensations

No significant differences arose in terms of felt sensations between the tRNS and sham stimu-

lation group (for statistical details, see Table C in S1 Text). Also, no difference was found

between the groups in the impact of these sensations on their subjective performance.

Discussion

The aim of the present study was to impact E/I (measured by means of the aperiodic expo-

nent), both directly using tRNS and indirectly by manipulating the level of learning (learning/

Table 1. Output of the interaction contrasts between stimulation, task, and aperiodic exponent at baseline using the emtrends function (n = 75).

Task Stimulation Trend aperiodic exponent Lower and upper HPD

Learning Sham −0.36 [−1.30, 0.65]

Overlearning Sham 0.06 [−0.43, 0.56]

Learning tRNS −1.25 [−2.64, −0.11]

Overlearning tRNS −0.50 × 10−3 [−0.30, 0.27]

Note. The categorical variables task (learning = 0 and overlearning = 1) and stimulation (sham = 0 and tRNS = 1) with orthonormal coding.

HPD, highest posterior density; tRNS, transcranial random noise stimulation.

https://doi.org/10.1371/journal.pbio.3002193.t001
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overlearning). We found that the aperiodic exponent decreased after tRNS, indicating an

increased E/I. However, we found no effect of task manipulation on the aperiodic exponent,

which indicates that the degree of learning a skill did not affect the aperiodic exponent. Finally,

we found a three-way interaction: tRNS improved performance of participants with a low

baseline aperiodic exponent in the learning task, but there were no effects of tRNS or baseline

aperiodic exponent in the overlearning task.

Our finding that tRNS lowered the aperiodic exponent is in line with tRNS experiments in

animals showing a reduction of GABAergic activity due to the tRNS excitatory effects [10].

Our results, which were found using both frequentist and Bayesian approaches, show a

decreased aperiodic exponent after applying tRNS related to an increased E/I. This strengthens

the notion that delivering electrical random noise to the brain influences the electrophysiologi-

cal signal. So far, it has been assumed that tRNS works by enhancing a signal with a near-criti-

cal signal-to-noise ratio due to introducing noise in the system, described as the phenomenon

of stochastic resonance [39]. This allows the enhancement of otherwise weak neural signals,

and, therefore, an appropriate amount of noise can increase subthreshold signals. Previous

studies related this increased signal-to-noise ratio from tRNS to enhanced learning,

Fig 5. Posterior density of tRNS and the three-way interaction between tRNS, task, and baseline aperiodic exponent from the best fitted model. (A) The posterior

density of stimulation (tRNS) shows that 90% of the posterior distribution is below zero. Indicating that there is a 90% probability that tRNS lowers RTs during the

learning and overlearning task. (B) Posterior distribution of the three-way interaction between tRNS, task, and baseline aperiodic exponent that shows that there is a

82% probability of this interaction being present. (C) The left panel indicates the marginal effects of the learning task for low baseline aperiodic exponent values (mean

−1 SD) and high baseline aperiodic exponent values (mean +1 SD). Sham stimulation is indicated in red and tRNS in blue. The right panel indicates the same marginal

effects of the overlearning task. This plot shows that tRNS improved performance, but this was restricted to participants with a high baseline aperiodic exponent in the

learning task. No effect was found for participants with a low baseline aperiodic exponent in the learning task, and neither were there any beneficial effects of tRNS in

the overlearning task. 95% CrI are indicated. RT, response time; SD, standard deviation; tRNS, transcranial random noise stimulation.

https://doi.org/10.1371/journal.pbio.3002193.g005
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perception, and cognitive performance, which are related to stochastic resonance [12–17]. In

line with this theory, some studies show that participants with poor baseline ability show

greater beneficial effect compared to those with strong baseline ability [19,40], as is also the

case in our study. However, we should note that the mechanism of stochastic resonance is dif-

ficult, if not impossible, to prove in the human brain due to the complexity of biological pro-

cesses [39,41]. That said, a study from Battaglini and colleagues [42] showed that noise

induced by tRNS produces a stochastic resonance-like phenomenon in motion detection. The

authors speculate that the added noise acts on the sodium channels in the brain, causing a

weak depolarization of the cell membrane of the neurons, which increases cortical excitability.

However, they also point out the limitation that no electrophysiological signals were measured

to record cortical excitability. Our findings suggest a working mechanism of tRNS efficacy

related to E/I, which is a tangible and testable mechanism. Whether this mechanism is similar

(e.g., both optimal E/I and stochastic resonance are characterized by an inverted-U function;

[17,23,39]) or orthogonal to the stochastic resonance framework is a question for further

research.

Contrary to our expectations, we did not find an effect of task manipulation (i.e., mathe-

matical learning/overlearning) on the aperiodic exponent. It is likely that the effect of our task

manipulation was not strong enough. Manipulation on the electrophysiological level by means

of tRNS is a more direct approach to target the aperiodic exponent and is likely to yield a

stronger neuronal effect than cognitive manipulation. This interpretation is in line with the

view that brain stimulation can amplify the cognitive and neural effects of otherwise purely

behavioral approaches [13,16,43]. While another potential explanation can be attributed to the

efficacy of our task manipulation paradigm, this is unlikely; participants in the learning task

did not reach a plateau of performance improvement, while participants who completed the

overlearning task clearly did show this plateau (see Fig 3). Another potential explanation is

that both mathematical learning and overlearning increase the aperiodic exponent (i.e., lower

E/I). This explanation is in line with our finding that the exponent increased for participants

in the sham stimulation group (see Fig 4). But this is in contrast to what Shibata and colleagues

found [4], who found that perceptual overlearning led to a reduction in E/I, possibly to protect

a newly formed memory trace from subsequent new information. An alternative explanation,

which we elaborate upon later, is that E/I measures based on EEG and MRS reflect different

aspects of E/I.

Previous studies have shown that the efficacy of tRNS depends on the individual baseline

cognitive ability or neural activity [19,40,44]. We have extended these findings by showing that

enhanced learning by tRNS is based on the participants’ baseline E/I. First, our results show

that the effect of tRNS is best explained when considering the moderating effects of baseline

aperiodic exponent and task manipulation. To illustrate, the posterior distribution of the

three-way interaction for the learning and overlearning data indicates the presence of such an

interaction effect. Stimulation improved performance for those with lower E/I (as reflected by

a higher aperiodic exponent). This effect was present only in the learning task. In the over-

learning task, tRNS had no effect. A possible explanation is that participants with low E/I levels

benefit more from tRNS compared to participants with high E/I but only when the task is diffi-

cult, indicating an optimum level depending on task difficulty [4,23]. This explanation fits also

with the stochastic resonance framework, which predicts nonbeneficial or even detrimental

effects when random noise is introduced to an already optimal system [41]. This reveals that

the baseline aperiodic exponent is an important predictor of tRNS efficacy. Thus, we found

that tRNS, an excitatory form of neurostimulation, as supported also by our results, is more

beneficial during the learning task (i.e., for low E/I participants) than during the overlearning

task.
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As mentioned previously, Shibata and colleagues [4] showed that overlearning relates to a

shift from increased E/I, which occurs in learning, to a reduced E/I. While we did not find

such a reduction, our results suggest that, in the learning task, those with higher E/I at baseline

will perform better than those with lower E/I, unless intervening with tRNS, and in the over-

learning task, stimulation is not dependent on E/I. These results suggest, similar to Shibata

and colleagues’ work, that E/I is involved in learning. However, our findings indicate that this

involvement may not only be due to E/I alterations related to learning but also to the partici-

pants’ E/I level at baseline.

While at the beginning of our project some of our predictions were rooted in studies that

used MRS-based E/I measures, our results, together with recent findings in the literature, sug-

gest that there are some discrepancies between EEG-based E/I and MRS-based E/I that must

be acknowledged and addressed in the future. First, some studies found that EEG-based E/I

increases with age [45,46], rather than a decrease as was found using MRS [8,47]. Second, our

lack of replication of the effect of learning (increased E/I change) and overlearning (decreased

E/I change) on E/I between before and after task manipulation [4] could be rooted in the dif-

ferent methodologies used to assess E/I. These discrepancies raise the question of whether E/I

measures based on EEG and MRS reflect different aspects of E/I. Indeed, MRS-based E/I mea-

sure is likely to reflect intra- or extracellular activity, while EEG-based E/I is based on extracel-

lular concentrations [48,49]. To tentatively examine whether MRS-based E/I and EEG-based

E/I reflect different aspects of E/I, the results are incidental, or if the two measures reflect a

shared variance of E/I, we used an independent data set that would allow us to assess the link

between E/I measures derived by MRS and EEG in 20 young adults during rest before the

intervention took place (see Fig D in S1 Text). We found that higher glutamate/GABA mea-

sured with MRS (i.e., higher E/I) was significantly associated with an increased aperiodic expo-

nent (i.e., lower E/I) over the left intraparietal sulcus (IPS). No relation was found for the left

middle frontal gyrus (MFG) (see Fig D in S1 Text). This shows that MRS and EEG may mea-

sure different aspects of E/I. These preliminary results highlight the need to further examine

the origin of E/I in MRS and EEG to progress our basic understanding as well as utilizing these

measures for clinical applications. It is worth mentioning that we consider the exponent as a

putative marker for E/I. Nevertheless, several studies have shown that the exponent of aperi-

odic activity is thought to underlie the integration of underlying synaptic currents and has

been linked to the E/I balance shown by EEG recordings [26–28]. Our results elucidate one of

the underlying mechanisms of tRNS in cognitive and electrophysiological studies, highlighting

the role of aperiodic activity, and, thus, E/I balance. This study indicates the important role of

baseline E/I in learning and tRNS efficacy. More specifically, participants with a higher aperi-

odic exponent (i.e., lower E/I) benefit more from tRNS during a learning task compared to

participants with a lower aperiodic exponent (i.e., higher E/I). The beneficial effect of tRNS

was only found during learning and not during overlearning. This new understanding has

important implications when considering to whom, when, and in the future what dose of

tRNS should be delivered, and increase the importance of a personalized neurostimulation

approach.

Methods

Ethics statement

The study complied with the standards set by the Declaration of Helsinki and approved by the

ethical advisory committee of the Faculty of Experimental Psychology at Oxford University

(Protocol Number: IDREC, C2-2014-033). Written informed consent was obtained from all

participants.
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Participants and ethical permission

One hundred and two right-handed participants participated in the study. None of the partici-

pants reported a history of psychiatric, neurological, or skin conditions, and all met the safety

criteria for tES participants. All volunteers were naïve to the aim of the study. We ensured that

all participants had no more than 1 cup of coffee or other sources of caffeine within 1 hour

before the start of the study. We excluded 7 participants who displayed an overall accuracy

below 70% in the learning (Sham = 4 and tRNS = 3) or the overlearning task (Sham = 1 and

tRNS = 1) as they were noncompliant with the task. Similarly, we excluded 4 participants

because they showed no arithmetic facts learning in the learning or overlearning (Sham = 2

and tRNS = 2) tasks, as indexed by the lack of a significant negative linear regression coeffi-

cient of RTs as a function of block. Five participants were excluded due to malfunction of the

software (Sham = 3 and tRNS = 2). For the electrophysiological analysis, 11 participants were

excluded due to artifacts during the pre- or post-rs-EEG recording (more than 25% of their

data were rejected) (see Table 2 for demographic data). The final sample (n = 75) was com-

posed of 22 participants in the sham-learning condition, 21 in the sham-overlearning condi-

tion, 16 in the tRNS-learning condition, and 16 in the tRNS-overlearning condition. We

excluded 3 participants (Sham = 3) from the frequentist and Bayesian ANCOVA analyses as

they were outliers on Cooks distance with RTs as outcome variable. For the brms models, we

removed outliers on trial level grouped by task using the median absolute value (mad) with a

threshold of 3 (9.00% trials were removed). The methods of this study are on Open Science

Framework (see https://osf.io/y4xar). However, the analyses (i.e., neuronal avalanches) pre-

sented in this preregistration did not yield significant results (see Fig E in S1 Text). We later

came across the work on the aperiodic exponent as a measure of E/I, which we used in this

study.

Baseline matching

We investigated whether the participants in the 4 conditions (i.e., sham-learning, tRNS-learn-

ing, sham-overlearning, and tRNS-overlearning) differed in median RTs and accuracy in the

baseline task. An univariate ANOVA with condition as between-participants factor showed no

significant differences for accuracy (F(3,98) = 1.73, p = .166). Subsequently, all incorrect

responses were removed from the baseline task (16% of all trials), and median RTs for each

participant were calculated. Another univariate ANOVA showed no significant differences for

median RTs (F(3,98) = .11, p = .951) at baseline between the different groups. Furthermore,

there were no differences between the groups regarding subjective levels of sleepiness before

the start of the experiment (F(3,98) = .58, p = .629). In addition, we ran an exploratory

Table 2. Demographic data of the stimulation conditions.

Final Sample (N = 75) Stimulation Conditions

Sham-Learning (n = 22) tRNS-Learning (n = 16) Sham-Overlearning (n = 21) tRNS-Overlearning

(n = 16)

M(SD) M(SD) M(SD) M(SD) M(SD) p*
Age (years) 23.40(4.27) 23.00(3.87) 25.00(5.54) 23.00(2.39) 24.17(5.33) .45

Aperiodic Baseline 1.43(0.45) 1.38(.53) 1.63(.49) 1.38(.29) 1.37(0.46) .29

Aperiodic Post 1.38(0.41) 1.39(.45) 1.32(0.21) 1.46(.50) 1.32(.41) .88

Sex 44 females:31 males 16 females:

6 males

7 females:

9 males

15 females

6 males

6 females:

10 males

*p-value of a between-groups ANOVA to compare stimulation groups.

https://doi.org/10.1371/journal.pbio.3002193.t002
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univariate ANOVA to determine if there were any differences regarding baseline aperiodic

activity values before applying tRNS. We found no significant differences between the groups

at baseline for aperiodic activity (F(3,71) = 1.25, p = .297) after outlier removal for the

ANCOVA. These results suggest similar baseline values across active and sham stimulation

groups.

Tasks

Baseline ability task. At the beginning of the session, participants solved 4 multiplication

problems to become familiar with the testing procedure. Afterwards, participants solved 10

new multiplication problems to evaluate their baseline ability (see Table L in S1 Text). Every

multiplication problem presented consisted of two-digit times one-digit operands with a two-

digit answer (e.g., 16 × 3 = 48). None of the one-digit operands involved the digits 0 or 1 to

minimize variations in difficulty. Furthermore, the two-digit operand was larger than 15 and

not a multiple of 10.

At the beginning of the task, participants pressed the spacebar when ready to solve an arith-

metic problem. Then, each trial started with a fixation screen (Fig 2A) after which a symbol of

a headphone set appeared in the middle of the screen, and the arithmetic problem was pre-

sented auditorily. A symbol of a microphone appeared immediately after the arithmetic prob-

lem, and participants could say aloud the response. A noise-sensitive microphone captured the

participant’s responses through a Chronos box (Science Plus Group). Lastly, the words

“Retrieve” and “Calculate” appeared on the left and right side of the screen. Participants indi-

cated whether they had used a retrieval or calculation strategy when solving the arithmetic

problem by pressing the left or right mouse button, respectively.

Participants were instructed to wear a headphone to cancel out any surrounding noise and

to speak clearly and loudly in the microphone without mumbling or clearing the throat (e.g.,

saying “eh-em,” which would be registered as a response). Lastly, participants were informed

that there was no time limit for answering, and they were urged to avoid errors.

Learning and overlearning condition

In total, 180 multiplication problems were administered in both the overlearning and the

learning condition (see Table M in S1 Text). The structure of the tasks was identical to the

baseline task (see Fig 2A). Both conditions consisted of 18 blocks, comprised of the same num-

ber of trials and were presented in a fixed order. After 3 blocks, participants had a 1-minute

break. Therefore, in the learning condition, a subset of 10 problems was presented once in

each block. In the overlearning condition, a subset of 5 problems was selected, which was pre-

sented twice in each block (i.e., less information to learn in comparison to the learning condi-

tion). This manipulation allowed us to use the same task and duration yet influencing the stage

of learning that the participants reached. The design was based on a small pilot study (n = 4) in

which 6 multiplication problems were repeated 4 times. A plateau in performance improve-

ment was visible after block 4.

Transcranial random noise stimulation

TRNS was applied over the bilateral dorsolateral prefrontal (DLPFC; F3 and F4) cortices, as

defined by the international 10/20 system for EEG recording (see Fig 2C). Based on previous

neuroimaging and tRNS experiments, we targeted these frontal areas due to its involvement in

the early phases of mathematical learning, rather than other brain regions such as the parietal

cortex [16,50,51]. These findings are in line with non-mathematical studies in the field of cog-

nitive learning [52]. Two Pistim Ag/AgCl electrodes were used with a 1-cm radius and a
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surface area of 3.14 cm2 each. A current was delivered through these electrodes in the form of

high frequency noise (100 to 500 Hz) by a multichannel transcranial current stimulator (Star-

stim 8 device, Neuroelectrics, Barcelona). The impedances of the Pistim electrodes were held

at<10 kΩ and intensity of the current was 1 mA peak-to-peak, which has been shown to be

safe and painless [14,53]. Duration of the stimulation was set to 20 minutes after onset of the

task for the stimulation condition and 30 seconds for the sham condition with a 15-second

ramp-up and a 15-second ramp-down. This provided the initial skin sensations experienced

during stimulation. Both the participants and the experimenter were blinded to the stimula-

tion condition. After completing the experiment, all participants filled out a questionnaire in

which they were asked whether they felt any sensations during stimulation (i.e., itchiness, pain,

burning, warmth/heat, pinching, iron taste, and fatigue) and if these sensations affected their

performance. Unfortunately, due to an experimental error, we did not ask them whether they

think they received sham or active stimulation. A follow-up study that used the same parame-

ters and a similar paradigm to this one [54], on a similar population, participants in both

groups reported being in the stimulation condition at approximately the same rate (sham:

78%; active tRNS: 79%; χ(1) = 0.03, p = 1). This independent data is supported by our data,

which did not find differences in sensations between both groups (see Results section).

Electrophysiological data

Rs-EEG recordings were made before baseline allocation and at the end of the experiment as

stated in our preregistration (see Fig 2B). Electrophysiological data were obtained with 32 Ag/

AgCl electrodes according to the international 10/20 EEG system using the wireless ENOBIO

32 sensor system (Neuroelectrics, Barcelona) at 500 Hz with no online filters. Note that we also

recorded rs-EEG from the 2 stimulation NG Pistim Ag/AgCl electrodes (F3 and F4). The

impedances of the electrodes were held below 5 kΩ. The ground consisted of the active com-

mon mode sense (CMS) and passive driven right leg (DRL) electrode, which were positioned

on the right mastoid and connected by adhesive electrodes. Both the pre-rs-EEG and the post-

rs-EEG had a duration of 8 minutes, in which the participants had their eyes open while watch-

ing a fixation point in the middle of the screen in order to avoid mental and muscular activity.

Data preprocessing. EEG data were preprocessed using EEGlab toolbox (v14.1.0) [55] in

Matlab software (R2020b). A high-pass filter of 0.1 Hz was applied to minimize slow drifts,

and a notch filter at 50 Hz was applied to minimize line noise interference with the signal, and

any data recorded before the presentation of the fixation point were removed. Every data file

was manually checked, and high-amplitude artifacts due to muscle movement, sweating, or

electrode malfunction were rejected. After preprocessing, independent component analysis

(ICA) was performed to remove stereotyped artifacts such as eye movements (e.g., blinks),

heart rate activity, and muscular activity. A maximum of 6 components per data file were

removed, and a maximum of 5 bad channels were interpolated. EEG segments that contained

artifacts that could not be removed by ICA were visually inspected and rejected from the anal-

ysis [56]. If more than 25% of the rs-EEG data were rejected after preprocessing and ICA, data

of the participant were discarded from analysis.

Aperiodic activity computation. The rs-EEG data of the remaining participants were

separated in 2-second segments with an overlap of 1 second and windowed with a Hann win-

dow, using the Welch’s method. Subsequently, data were transformed into the frequency

domain via fast Fourier transformation (FFT). The FFT was exported from Matlab and impor-

tant in Python (v.3.7.0; [57]) and subsequently analyzed with the FOOOF package (v 1.0.0;

[24]) over the 1- to 40-Hz range. This package allows for the decomposition between periodic

and aperiodic components of the FFT. The exponent was calculated for the midline frontal
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electrode Fz (which is the electrode we focused on in our preregistration), which is the closest

to the stimulation electrodes F3 and F4. This is motivated by previous studies that have shown

that Fz has been repeatedly involved in processes that are related to mathematical learning or

other types of learning [58,59]. We acknowledge that the frontal electrodes are prone to muscle

artifacts. However, we removed this typical noise with ICA and manually double-checked for

the presence of artifacts. The following FOOOFGroup settings were used: peak_width_limits

= [1,8], max_n_peaks = 5, with no knee fitted to the data. Fig F in S1 Text shows the raw expo-

nent values together with the goodness of fit and the error of the fit for both the baseline values

(R2 = .96, error = .11) and the post-measurement values (R2 = .96, error = .11). Additionally,

we have plotted the averaged power spectra for the 4 different conditions at baseline as shown

in Fig G in S1 Text. We also created topoplots for the sham and active tRNS condition to visu-

alize the change in the aperiodic exponent and compare electrode Fz with a control electrode

T8 (see Fig 4B). We would like to acknowledge a point raised by an anonymous reviewer

about the theoretical validity of the link between the aperiodic exponent and the E/I balance.

We would like to point out that the study by Gao and colleagues found this link in the 30- to

70-Hz range using local field potential (LFP) and electrocorticography (ECoG) data, while

making no claims about other frequency ranges such as the approximately 1- to 40-Hz range

that is frequently studied in cognition [29,45,60]. However, a more recent study [27] that used

computational modeling, animal data, optogenetics, and, more importantly, human EEG data

in the 5- to 20-Hz/5- to 45-Hz range showed a similar result as [28], thus showing that the

exponent can provide a valid measure of the E/I balance.

Experimental design and satistical analyses

First, participants completed the Stanford sleepiness scale (SSS), which is an introspective mea-

sure of subjective sleepiness and the Multidimensional Mood Questionnaire (MDBF), to assess

alertness, good–bad mood, tiredness, calmness, and restlessness.

Then, participants completed an rs-EEG pre-measurement of 8 minutes where they were

informed to sit as still as possible (see Fig 2B). Then, a training was presented that consisted of

4 different arithmetic multiplications. Hereafter, the baseline task was started and a variance

minimization procedure (based on response times) followed the baseline task in a double-

blind fashion to determine which participants would be allocated to which group (see https://

osf.io/y4xar for a detailed explanation of this procedure). This procedure is superior to ran-

dom assignment for assigning participants to groups before an intervention [61], as it results

in better matching. The stimulation started together with the learning or the overlearning task.

Subsequently, the participants completed a transfer task and, lastly, a recall task. The effect of

stimulation on transfer and recall is of different theoretical interest, but the effect of E/I is.

However, E/I did not show an effect on transfer and recall (see Tables D-K in S1 Text), but

there was an effect of tRNS. More information about the procedure of these tasks, which is

beyond the scope of the present manuscript, can be found on https://osf.io/y4xar. At the end

of the behavioral tasks, an 8-minute rs-EEG measurement was recorded.

Behavioral data cleaning. We excluded responses below 200 ms due to possible noises

picked up by the microphone or mumbling of the participant (0.89% for the baseline task,

2.74% for the learning task, and 7.07% for the overlearning task). We also excluded wrong

responses from the baseline ability task (16.32%), the learning task (10.65%), and the over-

learning task (7.70%). We calculated the median RTs for each participant in the baseline task

and in each block of the learning and overlearning tasks.

Calculation of the amount of learning: Plateau of performance improvement. A pla-

teau in performance improvement was computed following the next procedure: The
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distribution of RTs from the first block was compared to the distribution of RTs from the next

block using the Wilcoxon test. When no significant difference was found in RTs between the

actual block and the remaining blocks, the actual block was considered as the plateau point.

Therefore, the plateau point is a number between 2 and 18 and an earlier plateau point indi-

cates a higher amount of overlearning.

Statistical analyses. All numerical independent variables were standardized to avoid mul-

ticollinearity issues. All inferential statistics reported in the present study were obtained with

RStudio version 4.1.1 using the the wilcox.test function for the Mann–Whitney U test, the

chisq.test for the chi-squared test, the aov function for ANCOVA and Univariate ANOVA, the

lm function for the exploratory regression, and the brms package for the Bayesian mixed effect

models [62], which are robust to normality violation and can deal with complex models. We

used the open-source project JASP to run the Bayesian ANCOVA (Version 0.14.1.0; [63]). We

originally used glmer for our analysis, but due to model complexity, we revert to brms. All

Bayesian models were ran with 4,000 iterations (2,000 for warm-up), 4 chains each, 16 cores.

Additionally, orthonormal contrast coding was used to reliably dissect interactions with the

emmeans package. Due the right skewness of the response times, the shifted lognormal family

was used. Also, all continuous independent variables were centered.
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