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Summary

Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by neuropsychiatric 

and motor dysfunction. Microbiota-host interactions play an important role in HE pathogenesis. 

Therapies targeting microbial community composition and function have been explored for 

the treatment of HE. Prebiotics, probiotics and faecal microbiota transplant (FMT) have been 

used with the aim of increasing the abundance of potentially beneficial taxa, while antibiotics 

have been used to decrease the abundance of potentially harmful taxa. Other microbiome 

therapeutics, including postbiotics and absorbents, have been used to target microbial products. 

Microbiome-targeted therapies for HE have had some success, notably lactulose and rifaximin, 

with probiotics and FMT also showing promise. However, there remain several challenges to the 

effective application of microbiome therapeutics in HE, including the resilience of the microbiome 

to sustainable change and unpredictable clinical outcomes from microbiota alterations. Future 

work in this space should focus on rigorous trial design, microbiome therapy selection, and a 

personalised approach to HE.
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Introduction

Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by 

neuropsychiatric and motor dysfunction. Manifestations can range from subtle (minimal 
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HE) to severe (overt HE) and even coma. HE is associated with considerable patient and 

caregiver burden, decreased quality of life, and poor survival.1–3 HE therapeutics represent 

one of the clearest unmet needs in cirrhosis care, where at least 50% of patients on current 

optimal therapy have breakthrough episodes.

Emerging data closely link HE pathophysiology to the gut microbiome. The role of 

microbiota in HE therapeutics has undergone a revolution, shaped by several landmark 

trials and major advances in microbiology.4–12 Novel sequencing and analytic methods have 

enabled the field to move from simply cataloguing the gut ecosystem to understanding the 

complex interactions between gut microbiota members, and how they react to environmental 

factors and to therapies. In parallel, we now have results from new investigations on 

microbiome-targeted therapies for other gastrointestinal and neurological diseases, which 

influences our understanding of the potential for microbiome therapies in HE.

In this review, we will discuss the limitations of current therapies for HE and the potential 

for novel microbiome therapies to improve outcomes.

Pathogenesis of hepatic encephalopathy and potential therapeutic targets

In health, the host and microbiota are connected by a shared physical space (the 

gut), but also by a shared metabolism.13–15 There are numerous examples of the host 

supplying microbiota with life-sustaining nutrients, and separately the microbiota providing 

key metabolism services to the host. Key elements of protein, lipid, and carbohydrate 

metabolism are symbiotic between host and microbiota. One important example is that 

bacteria ferment non-digestible polysaccharides, from the host diet, and produce short-chain 

fatty acids (SCFAs). In turn, SCFAs are an essential energy source for host colonic 

epithelium – they increase intestinal epithelial production of tight junction proteins and 

mucin, both of which contribute to barrier function.16–18 Intestinal bacteria also play 

a central role in bile acid metabolism and separately in developing host epithelial 

immune responses, both of which have been associated with intestinal barrier function. 

Bacterial products are not universally beneficial to the host, a notable example being 

lipopolysaccharide (LPS). However, bacterial products are often not absorbed into the 

systemic circulation due to a robust intestinal barrier. Ammonia, a product of bacterial 

urea and protein metabolism, is detoxified via the urea cycle in the healthy liver, keeping 

circulating ammonia levels low.

In cirrhosis and HE, the shared metabolism between the host and microbiota is altered (Fig. 

1). SCFA-producing species, Anaerostipes caccae, Bacteroides eggerthii, and Clostridial 
species are depleted in patients with HE, who appear to have lower intestinal SCFA 

levels.19 Intestinal bile acid concentrations are reduced in cirrhosis, as is microbiota-induced 

bile acid metabolism.20–24 Finally, intestinal immune function is altered in advanced 

cirrhosis.25 These changes to the hostmicrobiota relationship influence intestinal barrier 

function and permeability, enhancing the translocation of neurotoxic factors. Investigations 

at the intersection of neurology and microbiology have identified several pathways that 

link microbiota to neuropsychiatric disease.26 Altered bile acid signalling may impact 

blood-brain-barrier permeability and neuroinflammation.27 In HE, ammonia was implicated 

early on as one such molecule with neurotoxic effects. In cirrhosis, portosystemic shunting 
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and impaired hepatic ammonia metabolism leads to increased serum ammonia levels, 

with additional contributions from renal and muscle sources.28 Ammonia is able to cross 

the blood-brain-barrier and enter astrocytes where it is converted to glutamine which 

acts as an osmole, causing astrocyte swelling, oxidative stress, cellular dysfunction and 

ultimately neurological deficits.29 Streptococcus salivarius has been identified as a gut 

bacterial species that produces ammonia and is more abundant in patients with minimal 

HE than those without.30 Overt HE episodes are characterised by dramatic changes to gut 

microbiota composition, alongside changes in microbiota-mediated ammonia metabolism.31 

Systemic inflammation has also been established as a major contributing factor to HE 

pathogenesis,32,33 synergising with ammonia to enhance neurotoxicity via increased blood-

brain-barrier permeability and cerebral oxidative stress.34 Despite advances in recent 

decades, there are likely additional unidentified mediators influencing the relationship 

between the microbiota, intestinal barrier, and brain in HE.

Key point

Alterations in shared hostmicrobiota metabolism, intestinal permeability, and host 

immune response play a role in HE pathogenesis.

Given the role of microbiota-host interactions in the pathogenesis of HE, therapies targeting 

microbial community composition and function have been explored. A variety of approaches 

have been investigated, including directly targeting the microbiota – either by increasing the 

abundance of beneficial taxa or decreasing harmful taxa (Table 1). Other approaches have 

targeted the products of microbiota. Yet unstudied, future therapies may directly target host 

intestinal barrier function and immune regulation. Precision medicine may be on the horizon 

for HE, wherein therapies target specific host or microbiota deficits in a patient-specific 

fashion.

Microbe-targeted therapies: Increase potentially beneficial taxa

Prebiotics

Prebiotics are substrates selectively utilised by host microorganisms that confer a health 

benefit.35 Prebiotics are most often non-absorbable carbohydrates, able to be fermented by 

luminal bacteria.13 Fermentation of prebiotics leads to increased abundance of beneficial 

taxa that can utilise these substrates, produce SCFAs, and reduce pH in the intestinal 

lumen.36 Increased biomass of beneficial taxa reduces available nutrients for invading 

microbial pathogens.13 The reduced pH caused by prebiotics also inhibits pathogen growth. 

In vitro and human studies showed that prebiotics improve intestinal barrier function 

by stimulating mucus-producing goblet cells, augmenting tight junction assembly, and 

mitigating inflammation.37–40 Lactulose, a non-absorbable disaccharide and a prebiotic, is 

the primary therapy for HE. While the literature on its actions is not uniform, it appears 

that lactulose’s benefits in HE are mediated through changes in intestinal microbes, likely a 

result of its pH-lowering effect and positive pressure on beneficial taxa.

Lactulose is an effective treatment for HE. A Cochrane review including 38 randomised 

controlled trials of non-absorbable disaccharides demonstrated their beneficial effect on HE 
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(risk ratio 0.58; 95% CI 0.50–0.69).7 A more recent network meta-analysis of 25 trials 

found that when comparing lactulose, rifaximin, probiotics, and L-ornithine L-aspartate (an 

ammonia-lowering agent) for the treatment of minimal HE, lactulose was the only agent able 

to meet all 3 endpoints: reverse minimal HE, prevent overt HE, and improve quality of life.9 

However, many patients experience breakthrough overt HE episodes while on lactulose.41

Early culture-based studies demonstrated that lactulose promotes the growth of the 

beneficial taxa Lactobacillus and Bifidobacteria.42–44 Lactulose fermentation by these 

beneficial taxa requires increased bacterial amino acid synthesis using ammonia as the 

substrate, leading to reduced luminal ammonia concentrations.45–48 Increased amino acid 

synthesis with lactulose does not occur in germ-free rats, supporting the role of bacteria 

in this process.49 Lactulose transits through the small intestine largely unchanged and is 

fermented by colonic bacteria,28,50 leading to SCFA production and subsequent colonic 

acidification.44 In patients with minimal HE, lactulose decreases bacterial DNA in the 

serum and improves neurocognitive test scores, presumably through changes to bacterial 

composition and improved intestinal permeability – the latter of which may be a result of 

increased SCFA production.51 In the setting of colonic acidification from SCFAs, ammonia 

production from gram-negative bacteria decreases, likely reflecting diminished metabolic 

activity as well as growth inhibition of those bacteria.45 A recent multicentre study of 

lactulose for minimal HE found no significant change in microbial composition (using 

16S rRNA sequencing); however, those with a clinical response experienced a significant 

decrease in certain Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria relative to 

non-responders.52 Lactulose may reduce serum ammonia through additional mechanisms, 

including trapping ammonium ions in the colon.16,25,53 Novel prebiotics such as synthetic 

glycans, which are in development, appear to be more potent than lactulose in lowering 

ammonia production; further studies will be required to determine their efficacy in treating 

HE.54

Probiotics

Probiotics are living microorganisms that, when administered in adequate amounts, confer a 

health benefit on the host.55 For decades there has been interest in using probiotics to treat 

HE, ranging from yogurts to probiotic powders and encapsulated probiotic strains.4,56–58 

There are 3 evidence-based mechanisms by which probiotics may improve HE: improving 

intestinal barrier function, immune modulation, and decreasing portal hypertension. First, 

probiotics in HE may enhance tight junction protein production or integrity, thus improving 

intestinal barrier function and reducing translocation of bacterial products into the systemic 

circulation. In a murine model of colitis, VSL#3 (a combination of 8 bacterial strains) 

and separately Escherichia coli (E. Coli) Nissle 1917 prevented an increase in intestinal 

permeability by maintaining tight junction expression and suppressing apoptosis.59,60 

Probiotics in rodent models of alcohol-related liver disease and non-alcoholic steatohepatitis 

were also found to reduce serum LPS levels and to increase tight junction expression.61–63 

Furthermore, a randomised trial of Lactobacillus GG in patients with minimal HE reduced 

serum LPS.4 Second, probiotics interact with the host intestinal epithelium, and have an 

established role in immune modulation.13,64 Systemic inflammation enhances the cerebral 

effect of ammonia and exacerbates HE symptoms.32,33 One trial of VSL#3 in patients 
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with recent overt HE found that the probiotic reduced serum cytokines (tumour necrosis 

factor [TNF]-α, interleukin (IL)-1β, and IL-6 levels) in the subgroup (24%) of patients 

who completed 24 weeks of follow-up.8 Part of the immune regulation provided by 

probiotics may be specific to neutrophil function. Chronic neutrophil activation may lead to 

neutrophil exhaustion in cirrhosis, leaving patients vulnerable to infection and poor survival. 

Infection is a very common precipitant of HE. Supplementation with a probiotic mixture of 

Bifidobacterium, Lactobacillus, and Lactococcus strains in patients with cirrhosis compared 

to placebo led to increased neutrophil production of reactive oxygen species, thus restoring 

neutrophil function58 – a benefit also seen in studies of Lactobacillus casei Shirota as 

well as with a probiotic mixture of Bifidobacterium, Lactobacillus, and Streptococcus.10,65 

Third, probiotics may reduce portal hypertension. One study found that VSL#3 decreased 

serum and hepatic vein TNF-α levels in patients with large oesophageal varices, and 

led to an additional reduction in hepatic venous pressure gradient beyond propranolol 

monotherapy.66 Probiotics additionally produce organic acids, antimicrobial compounds, 

and bile salt hydrolases – mechanisms that should be explored in future studies of probiotics 

for HE.13

Two recent large meta-analyses found that probiotics improve HE symptoms, reverse 

minimal HE, lead to fewer episodes of overt HE, and lower ammonia levels, though 

evidence is low to moderate quality as all but 2 trials are at high risk of bias.9,11 In 

addition, probiotics do not impact patient quality of life or mortality, and were not superior 

to lactulose for all outcomes. Clinical trial data on probiotics for HE is difficult to compare 

because each trial uses different probiotic strains.67 Furthermore, the low level of colony-

forming units in most commercial probiotic formulations limits optimism that probiotics are 

sufficient to overtake the resident microbial community structure of cirrhosis and HE.16

Key point

Potential targets for HE microbiome therapeutics include microbiota abundance, 

microbial products, intestinal barrier function, and host immune responses.

Bacterial genomes can be manipulated by modern genetic tools for therapeutic purposes.68 

SYNB1020 is an E. coli Nissle 1917 strain genetically engineered to convert ammonia to 

L-arginine.69 The engineered probiotic successfully reduced ammonia levels in preclinical 

studies and was well tolerated in a phase I study. However, according to reporting 

on ClinicalTrials.gov, SYNB1020 did not lower blood ammonia levels in patients with 

cirrhosis. This should not be taken as a failure of all engineered probiotics for HE; other 

engineered probiotics could impact different aspects of HE pathogenesis, including immune 

regulation or intestinal barrier integrity.

Faecal microbiota transplant

Faecal microbiota transplant (FMT) is the transfer of processed stool from a healthy donor 

to a recipient. Three small trials have investigated FMT for the treatment of HE, with 

early evidence suggesting a potential clinical benefit.5,6,70 All 3 trials enrolled patients 

with a history of overt HE on lactulose therapy and, in many cases, rifaximin. The first 
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trial randomised patients to standard of care vs. broad-spectrum antibiotics followed by a 

single FMT enema, and the second trial by the same study team (Bajaj et al.) randomised 

patients to 1 day of oral FMT capsules vs. placebo capsules.5,6 The FMT in both trials was 

derived from the same donor. The primary outcome of these 2 trials evaluated the safety 

of FMT and found no safety concerns, aside from a reversible and small increase in model 

for end-stage liver disease (MELD) score after broad-spectrum antibiotics. The patients 

who received antibiotics and an FMT enema improved on 2 validated cognitive tests and 

had fewer episodes of overt HE during long-term follow-up compared to the standard of 

care arm.5,71 Antibiotics were given prior to FMT to decrease host bacterial burden and to 

enable FMT colonisation,72–75 and were not given to the control group, limiting the ability 

to interpret the relative contributions of antibiotics and FMT to cognitive improvement. 

Lack of blinding also introduces observer bias. In the second trial by Bajaj et al., the 

patients who received oral FMT capsules improved in one cognitive test (EncephalApp, 

a version of the Stroop test) but not in another cognitive test (psychometric HE score).6 

There was no difference in overt HE episodes during follow-up of 5 months. The third 

pilot trial is our open-label trial of 5 doses of oral FMT capsules over 3 weeks. Preliminary 

results suggest improvement in the psychometric HE score but not in EncephalApp 1 

week after completing 5 days of oral FMT capsules (administered over 3 weeks).70 In this 

trial, FMT transmitted extended-spectrum beta-lactamase (ESBL)-producing E. coli to 1 

recipient, despite following FDA-approved donor screening protocols.76 Overall, the studies 

evaluating FMT for HE are small and designed to evaluate safety, not efficacy. Clinical 

efficacy outcomes were mixed, though there were some promising signals. A single dose of 

FMT from 1 donor was used in the 2 published trials, and it is possible that benefit may vary 

by donor and additional doses of FMT may be necessary.77 Larger trials powered to detect 

clinical improvement in HE using different FMT dosing strategies are needed.

There are several potential mechanisms by which FMT may impact the pathogenesis of 

HE: SCFA production, changes to microbiome community structure, bile acid metabolism, 

and reduced ammonia production (Fig. 2). Results of the Bajaj et al. FMT enema trial are 

difficult to interpret because of antibiotic use only in the FMT arm: changes in microbial 

diversity and taxa abundance changed primarily with antibiotic exposure, and returned to 

pre-antibiotic levels after FMT.5 However, there was a clear increase in Ruminococcaceae 
abundance from baseline to post-FMT. Ruminococcaceae was heavily enriched in the donor, 

and is known to produce SCFAs, which in turn impacts intestinal barrier function – a 

possible mechanism by which these FMT enemas improved clinical outcomes.5 However, 

this increase in Ruminococcaceae disappeared over long-term follow-up, despite ongoing 

improvement in HE clinical outcomes.71 In an elegant mouse study, the bacteria themselves 

and not a sterile supernatant led to cognitive improvement after FMT, suggesting that 

the benefits of FMT in HE are not simply a result of bacterial products but also the 

influence of the bacteria themselves, perhaps on microbiome community composition and 

function.78 In the second trial by Bajaj et al. of FMT for HE, oral FMT capsules did 

not change alpha diversity in stool samples, but did increase diversity of the duodenal 

mucosal microbiome, suggesting an impact in the proximal bowel.6 There was also an 

increase in duodenal Ruminococcaceae and Bifidobacteriacceae (generally beneficial taxa) 

and a decrease in Veillonellaceae after FMT capsules, though duodenal samples were not 
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studied in the control group so it is unknown if these changes may be due to natural 

fluctuation. In conjunction with these microbial changes, patients who received FMT had 

an increase in duodenal antimicrobial protein DefA5, increase in tight junction protein 

E-cadherin (CDH) expression, and a decrease in IL-6 expression. LPS-binding protein also 

decreased after FMT, suggesting that oral FMT capsules may change duodenal microbial 

community structure, influencing several aspects of small intestinal barrier function, and 

decreasing translocation of bacterial products.6 Correlation network analysis showed that 

certain taxa were linked with improved immunomodulatory milieu and cognitive test 

performance. Those taxa have also been associated with decreased inflammation and 

strengthened intestinal barrier function in patients with and without liver disease.79 Post 
hoc analysis also revealed an increase in secondary bile acids after FMT for HE.79 Patients 

with cirrhosis have a diminished ability to produce secondary bile acids, likely due to a 

relative reduction in Clostridial species. Secondary bile acids are associated with protection 

from pathogenic organisms and impact intestinal barrier function. Therefore, FMT may exert 

some of its therapeutic effect by influencing bile acid metabolism and, as a result, intestinal 

barrier function. Finally, the PROFIT trial, a placebo-controlled trial of jejunal FMT delivery 

in patients with cirrhosis (not all had prior HE) reported that FMT was associated with 

a reduction in serum ammonia levels through as yet unknown mechanisms.80,81 Thus, 

another potential mechanism by which FMT could help patients with HE is by ameliorating 

hyperammonaemia.

Synbiotics

Synbiotics are probiotics and prebiotics combined into a single therapy. The hope for 

such combined products is that prebiotics will enhance the efficacy of probiotics, though 

evidence of synergism is lacking.37 One small single-centre trial showed cognitive benefit 

and decreased serum ammonia with a synbiotic (Bifidobacterium longum and fructo-

oligosaccharide).82 In a trial of patients with minimal HE, both a synbiotic and a prebiotic 

alone reversed minimal HE in half of participants, with the symbiotic demonstrating no clear 

superiority over the prebiotic alone.83 Patients who received the synbiotic or prebiotic alone 

developed acidified faecal contents, decreased venous ammonia levels, serum LPS levels, 

and E. coli faecal abundance. The clinical benefits of synbiotics compared to prebiotics and 

probiotics used alone remains to be confirmed.

Microbe-targeted therapy: Decrease potentially harmful taxa

Antibiotics

Antibiotics have been proposed to treat HE, as a method to deplete intestinal taxa that 

produce neurotoxins (namely ammonia), increase intestinal permeability, and diminish host 

systemic immune responses. Certain antibiotics may selectively suppress harmful taxa, 

while allowing potentially beneficial taxa to survive and even proliferate. Rifaximin is 

approved in the United States and Europe to reduce the risk of recurrent overt HE. Several 

randomised controlled trials have found that rifaximin markedly reduces the risk of recurrent 

overt HE.41,84 Rifaximin also improves cognition and quality of life for patients with 

minimal HE.85,86 While the clinical benefits of rifaximin are undisputed, its mechanisms of 

action in HE are less clear and likely multifactorial.
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Rifaximin inhibits bacterial RNA synthesis and has broad-spectrum antimicrobial activity, 

notably for pathogenic bacteria like enterotoxigenic E. coli, Shigella, and Salmonella.87,88 

However, several small studies in patients with minimal HE suggest that rifaximin exerts 

little influence on microbial community composition.85,89–91 Since these studies used 16S 

rRNA amplicon sequencing methods, the effect of rifaximin on changes to subtaxa like 

species or strains may have been missed. Some effects from microbiome therapies are 

species and even strain specific.92 There are several reasons to suspect that rifaximin’s 

benefit in HE may be a result of relevant microbial composition changes. First, rifaximin 

changes the ratio of secondary to primary bile acids, which has implications for microbiota 

composition.89 Second, rifaximin has been shown in other populations to change microbial 

community abundance and structure. In a visceral hyperalgesia rat model, rifaximin 

decreased the total small bowel bacterial burden, increased Lactobacillus species, and 

decreased small bowel inflammation and permeability.93 In irritable bowel syndrome and 

Crohn’s colitis, rifaximin increased the abundance of Bifidobacterium and Faecalibacterium 
prausnitzii, known beneficial taxa, and increased production of SCFAs.94,95 While family- 

and genus-level changes have not been detected with rifaximin treatment for HE, species- 

and strain-level changes have yet to be explored.

Key point

Lactulose and rifaximin influence intestinal microbiota and have been used with success 

in HE, with early promise for probiotics and faecal microbiota transplant.

Rifaximin significantly lowers serum LPS levels in humans and animal models, which may 

be the result of changes in microbiome composition (i.e. less LPS produced) or a result of 

decreased LPS translocation across the intestinal barrier.85,89 Rifaximin decreases cytokine 

expression and intestinal inflammation, and simultaneously increases tight junction protein 

expression – all of which contribute to barrier function.89,96–98 Rifaximin reduces adherence 

of bacteria to the gut wall and decreases bacterial virulence, both of which are potential 

mechanisms by which it reduces translocation.99–101 Rifaximin also influences bacterial 

metabolism. Bajaj and colleagues found that 8 weeks of treatment with rifaximin led to an 

increase in bacterial carbohydrate and lipid metabolism, resulting in an increase in patients’ 

serum long-chain and unsaturated fatty acid levels.85 Some of these fatty acids have been 

shown to increase in the brain with probiotic supplementation and are capable of improving 

cognitive processes like learning and memory.92 Finally, data are mixed with regards to 

rifaximin’s impact on ammonia levels;89,101–103 however, one notable study of germ-free 

mice found a bacteria-independent mechanism by which rifaximin could reduce intestinal 

ammonia production: via intestinal glutaminase.89 Overall, available evidence suggests 

that rifaximin may enhance intestinal barrier function, ameliorate microbiome-induced 

inflammatory dysregulation, decrease translocation of bacterial products, and influence gut 

bacterial metabolism in a way that may improve cognitive function.

To date, no antibiotics have demonstrated superior or even comparable efficacy and safety to 

rifaximin for HE.104–108 Rifaximin’s minimal systemic absorption accounts for its excellent 

tolerability and safety profile.109–111 With regards to efficacy, rifaximin may selectively 

Bloom et al. Page 8

J Hepatol. Author manuscript; available in PMC 2023 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deplete harmful taxa while allowing beneficial taxa to survive and increase metabolic 

activities compared to other antibiotics tested for HE.

Bacteriophages

Bacteriophages are viruses which specifically target bacteria. The potential impact of 

bacteriophages in hepatology was recently highlighted when a bacteriophage was used 

to target and eliminate cytolysin-producing Enterococcus faecalis, a species playing a 

key pathogenic role in alcohol-associated hepatitis.112 Bajaj and colleagues have recently 

demonstrated that bacteriophage abundance varies by MELD score, HE status, and HE 

treatment status, though bacterial composition seemed more relevant to clinical outcomes 

than bacteriophage composition.113 In particular, phages for Streptococcal species seemed 

the most influenced by disease severity and rifaximin therapy, which is notable given that 

many of those species are urease-producing and therefore ammonia-generating.

Therapy targeting microbial products

Postbiotics

Postbiotics is a term used to describe bioactive products of beneficial bacteria. SCFAs 

are the main postbiotics of interest in HE. SCFAs are produced by bacterial fermentation 

of non-digestible polysaccharides; they are an essential energy source for the colonic 

epithelium and contribute to barrier function.17 They also prime the intestinal epithelium 

to respond to bacterial products, induce tolerance to commensals, and regulate immune 

responses.25,114–116

Advanced liver disease and HE are associated with reduced intestinal SCFA levels.19 In 

a study of hepatic vein and peripheral blood sampled during transjugular intrahepatic 

portosystemic shunt placement, a moderate inverse correlation between butyrate and 

MELD score in both blood sources was observed. Stool SCFA content is also inversely 

related to MELD score.19 SCFAs have not been directly tested as a treatment for HE. 

The most common way to experimentally increase SCFAs in the intestinal lumen is by 

encouraging growth of bacterial species that produce SCFAs, usually with prebiotics. Not 

all SCFA types and delivery modalities have the same or even desirable effects.17,18,117–121 

For example, butyrogenic bacteria are associated with steroid-refractory graft-versus-host 

disease, possibly through butyrate-induced inhibition of colonic stem cells.122 Further 

research is needed to better understand which SCFAs are beneficial for HE and the best 

administration strategy.

Absorbents

For the last decade there has been interest in ingestible devices which can absorb undesirable 

substances in the gut lumen, thus limiting their intestinal absorption.53 AST-120 is one 

such device: a carbon bead with pores small enough to bind microscopic molecules, 

including ammonia. AST-120 was able to decrease serum ammonia concentrations and 

reduce brain oedema in a rat model; however, it did not produce clinical benefit in patients 

with HE.123,124 Yaq-001, another absorbent carbon bead, is able to absorb larger molecules 

including LPS. It appears that Yaq-001 had a myriad of effects in a rat model: reduced LPS 
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levels, markers of liver and systemic inflammation, portal hypertension, and HE, and altered 

the microbiome.53 Unfortunately, the phase I trial of Yaq-001 had to be halted due to the 

COVID-19 pandemic and results are not yet available.125 Despite these challenges, there is 

still optimism around methods that remove potentially toxic bacterial products in the gut 

lumen.

Challenges

One major obstacle to the effective use of microbiome-targeted therapies for HE is the 

resilience of the human adult microbiome. The human microbiome is constantly exposed 

to external challenges including the diet, medications, and numerous host factors, but it has 

an incredible ability to restore its equilibrium after perturbation – even if that microbial 

community structure is associated with disease.126 It is possible that the disease state (in 

this case, cirrhosis) exerts constant pressure on the microbiome, promoting overgrowth 

of potentially harmful taxa while limiting colonisation of beneficial taxa. In contrast to 

Clostridioides difficile (C. difficile) colitis, microbiome therapies for HE will likely need to 

be administered as recurrent courses or continuously instead of as a single short course.

Another related challenge in using microbiome-based therapeutics is that the gut-liver 

ecosystem is saturated with connections.126 Every functional pathway in the gut and liver 

involves numerous interconnected components such that if one element changes, there are 

likely many compensatory mechanisms. Thus, an impact on one microbiome component can 

have unpredicted ripple effects or no effect at all.

One challenge with antibiotics as a therapy for HE is the potential to promote multi-drug 

resistance. The prevalence of multi-drug resistant bacteria has grown considerably in 

patients with cirrhosis in the last decade, from 29% of infections to 38% in a large European 

cohort.127 In a study of 77 patients with cirrhosis starting prophylaxis for spontaneous 

bacterial peritonitis, nearly 50% carried multi-drug resistant organisms prior to antibiotic 

initiation, and at 180 days of prophylaxis this prevalence increased to 74%.128 Rifaximin, 

the best validated antibiotic for HE, does not appear to induce bacterial resistance and 

actually has bactericidal activity against many multi-drug resistant bacteria.91,129 However, 

as we continue to use antibiotics to treat HE, we must increasingly keep in mind the problem 

of resistance and balance benefit-to-harm.

FMT is associated with its own specific set of challenges (Fig. 3). The central limitation 

of FMT is an inherent lack of certainty about what is administered. FMT originates from 

the stool of a healthy individual, and as such there will be changes over time within the 

same donor and across donors.130 Despite extensive testing outlined by FDA-approved 

protocols, FMT has recently led to infections by ESBL-producing E. coli, Shigatoxin-

producing E. coli, and enteropathogenic E. coli.76,131,132 In all cases, donor stool was 

extensively screened for pathogens and in some cases for the ultimate infectious culprit, 

thus highlighting the challenges in identifying pathogens in FMT material. In at least one 

of these cases, the antimicrobial resistance patterns differed between the FMT E. coli and 

the recipient’s E. coli, despite genetic testing confirming they were identical strains.76 The 

presence of divergent antibiograms with clonal bacteria raises the question of whether prior 
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FMT studies have underestimated the risk of infection related to FMT. While FMT has 

been reported to be safe in numerous studies, there remains some risk of infection.133 In 

the COVID-19 era, potentially infectious SARS-CoV-2 is present in the stool of infected 

individuals134 and may be transmitted from asymptomatic carriers. While potential donors 

could be screened by symptoms and nasopharyngeal swab, those measures do not have 

perfect sensitivity and no stool-based SARS-CoV-2 test has been approved for clinical 

use.135,136 Furthermore, some studies suggest that virus shedding in stool may outlast virus 

detection in nasopharyngeal swabs.137 As the list of required donor tests appropriately grows 

in length, the practical limitations of FMT also grow. Prior to COVID-19 and some recent 

additions to testing, the cost of finding a suitable FMT donor was estimated at $15,190.138 

There are other logistical challenges with using FMT to treat HE including identification 

of appropriate donors, standardisation of the product, and sustainability of supply. There 

remain significant unanswered scientific questions as well. Each trial of FMT for HE or 

cirrhosis has used a different route, quantity and timing of FMT administration. At this 

time, we do not know the best FMT dosing regimen or whether patients will require repeat 

dosing. In addition, the ideal donor for FMT has not been defined. Studies outside of C. 
difficile infection, in ulcerative colitis for example, have found that only 1 in 6 donors 

achieve desired clinical endpoints.139,140 Given the uncertainty around the mechanism of 

FMT in treating HE, it is hard to determine criteria for the ideal donor. Optimal donor 

selection may require analysis of microbiota function and not just composition. Finally, 

most FMT is aerobically prepared, and thus anaerobes are not administered. Anaerobically 

prepared FMT was found to induce remission in patients with ulcerative colitis, after several 

failed trials with aerobically prepared FMT, suggesting a potential therapeutic benefit of 

the anaerobic components.141 Many probiotics, such as Faecalibacterium prausnitzi, are lost 

with aerobic stool processing and preserved with anaerobic processing.142 Therefore, there 

may be benefits to anaerobically prepared FMT in HE, beyond what has been found with 

aerobic preparations.

Key point

Future research on microbiome-targeted therapies for HE should focus on patient and 

primary outcome selection, microbiome therapy selection, and a personalised therapeutic 

approach based on baseline enterotype and other patient factors.

Future directions

Microbiome-targeted therapies for HE have had some success, namely lactulose and 

rifaximin, with early promise for probiotics and FMT. Despite available therapies, many 

patients with HE suffer from persistent symptoms and many are unable to tolerate lactulose. 

Future work in this space should focus on trial design, microbiome therapy selection, and a 

personalised approach to HE (Table 2).

Future trials should be designed to target the highest-need populations as well as focus 

on clinically relevant primary outcomes. Trials should be designed with a translational 

component, to allow for gaps in our mechanistic knowledge to be closed. Practices of 
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rigorous and reproducible research should be applied, including those which minimise bias 

and achieve sufficient power to assess clinical efficacy. Microbiome therapy selection is also 

critical. Microbiome therapies have varying impact throughout the intestines and colon. For 

example, an FMT enema impacts the distal colon while orally administered FMT capsules 

have a more dispersed effect. Further studies are needed to identify which segment of the 

bowel has the most impaired barrier function in cirrhosis and is most responsible for HE, 

as well as the impact of microbiome therapies on intestinal permeability.143 Additional 

studies on FMT including larger cohorts are needed to determine efficacy, ideal dosing 

regimen, favourable donor characteristics, benefit of anaerobic preparation, duration of 

benefit, and predictors of response. Living biotherapeutic products with a larger biomass 

than traditional commercial probiotics and with known metabolic effects (similar to FMT) 

are being studied in C. difficile infection and inflammatory bowel disease. The therapies 

that produce metabolites known to be deficient in patients with HE, such as SCFAs and 

secondary bile acids, should be trialled for HE. Finally, the efficacy of each microbiome 

therapy may depend on a patient’s existing microbiome community, or enterotype. A 

personalised approach to microbiome therapy, based on baseline community structure and 

function, may yield the most clinical success.
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Fig. 1. The pathogenic mechanisms of hepatic encephalopathy.
Changes to SCFAs, secondary bile acid, tight junction protein, and mucus production 

contribute to increased intestinal permeability. Intestinal bacterial products, including 

ammonia and LPS, are able to traverse the epithelial membrane and bypass the liver 

due to hepatic dysfunction and portosystemic shunting. They enter systemic circulation 

and reach the brain, where ammonia enters astrocytes and leads to neurotoxicity. LPS, 

lipopolysaccharide; SCFAs, short-chain fatty acids.
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Fig. 2. Faecal microbiota transplant for hepatic encephalopathy: From bench to bedside.
Faecal microbiota transplant has multiple potential therapeutic mechanisms in HE, including 

several which improve intestinal barrier function: increasing SCFA, secondary bile acid, 

tight junction protein, and antimicrobial peptide production. By changing microbial 

community structure, ammonia and endotoxin production and translocation decreases. At 

the bedside, several small trials have suggested improved cognition and fewer overt HE 

episodes with faecal microbiota transplant. HE, hepatic encephalopathy; SCFA, short-chain 

fatty acid.
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Fig. 3. The strengths, challenges, weaknesses, and future directions of faecal microbiota 
transplant for hepatic encephalopathy.
FMT, faecal microbiota transplant; HE, hepatic encephalopathy.
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Table 2

Future directions of microbiome-targeted therapies for hepatic encephalopathy.

Future directions

Trial design

Patient selection: target specific groups in need of more effective and/or better tolerated intervention (e.g. at high risk of 
developing recurrent overt HE, or those who do not tolerate lactulose)
Primary outcome selection: clinically important primary outcomes such as overt HE, cognitive function, quality of life, or 
other patient-reported outcomes (microbiome changes may be included as secondary outcome)
Translational component: explore mechanism within clinical trials
High rigour: minimise bias through blinding, randomisation ± risk stratification; meet enrolment target to achieve adequate 
power for trial

Microbiome 
therapy selection

Target gut segment: match route of administration to optimal gut segment (upper vs. lower intestine) for that mechanism
Living biotherapeutics: select probiotic consortium with biological actions with potential to reverse HE, determine optimal 
dose and duration, assess need for antibiotic priming to ensure grafting
Faecal microbiota transplant: determine characteristics of ideal donor, optimal dose regimen and preparation

Personalised 
approach

Patient enterotype: determine baseline microbiome characteristics to match appropriate microbiome therapy
Biomarkers of response: identify other biomarkers predictive of response to microbiome therapies

HE, hepatic encephalopathy.
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