Skip to main content
. 2023 Sep 1;12(9):512–521. doi: 10.1302/2046-3758.129.BJR-2023-0070.R2

Table III.

Performance assessment of all selected models on unforeseen test data.

Variable Neural network Gradient boosting LASSO Ridge Elastic net Random forest Logistic regression Pre-surgery PROM scores
Knee arthroplasty
EQ-5D-5L (n = 288) AUC (95% CI) 0.76 (0.7 to 0.81) 0.79 (0.74 to 0.84) 0.75 (0.69 to 0.8) 0.75 (0.69 to 0.81) 0.76 (0.7 to 0.81) 0.80 (0.74 to 0.85)* 0.74 (0.68 to 0.8) 0.76 (0.7 to 0.81)
EQ-VAS (n = 307), AUC (95% CI) 0.73 (0.67 to 0.78) 0.74 (0.69 to 0.8) 0.76 (0.71 to 0.82) 0.76 (0.7 to 0.81) 0.76 (0.71 to 0.82)* 0.73 (0.68 to 0.79) 0.76 (0.7 to 0.81) 0.75 (0.7 to 0.81)
KOOS-PS (n = 309), AUC (95% CI) 0.68 (0.62 to 0.75) 0.71 (0.64 to 0.77) 0.75 (0.69 to 0.81) 0.73 (0.67 to 0.79) 0.76 (0.7 to 0.82)* 0.69 (0.63 to 0.76) 0.76 (0.7 to 0.81) 0.74 (0.68 to 0.8)
Hip arthroplasty
EQ-5D-5L (n = 290), AUC (95% CI) 0.8 (0.75 to 0.86) 0.81 (0.76 to 0.86)* 0.81 (0.76 to 0.86) 0.8 (0.75 to 0.85) 0.81 (0.76 to 0.86) 0.81 (0.75 to 0.86) 0.81 (0.76 to 0.86) 0.79 (0.73 to 0.84)
EQ-VAS (n = 364), AUC (95% CI) 0.82 (0.78 to 0.86) 0.83 (0.79 to 0.87) 0.84 (0.8 to 0.88)* 0.84 (0.8 to 0.88) 0.84 (0.8 to 0.88) 0.84 (0.8 to 0.88) 0.84 (0.8 to 0.88) 0.8 (0.75 to 0.84)
HOOS-PS (n = 366), AUC (95% CI) 0.71 (0.65 to 0.76) 0.67 (0.62 to 0.72) 0.66 (0.61 to 0.72) 0.71 (0.66 to 0.76)* 0.71 (0.65 to 0.76) 0.64 (0.58 to 0.69) 0.67 (0.61 to 0.72) 0.58 (0.47 to 0.68)
*

Best-performing model (sometimes identified using further decimal digits than those shown in the table).