Skip to main content
. 2023 Sep 1;12(9):512–521. doi: 10.1302/2046-3758.129.BJR-2023-0070.R2

Table IV.

Statistical difference analysis between different areas under the receiver operating characteristic curve of the best machine learning and non-machine learning method.

PROM Best ML model AUC Comparison 1 Comparison 2
Logistic regression (AUC) p-value* Pre-surgery PROM scores (AUC) p-value*
Knee arthroplasty
EQ-5D-5L RF 0.80 0.74 0.012 0.76 0.052
EQ-VAS Elastic net 0.76 0.76 0.401 0.75 0.519
KOOS-PS Elastic net 0.76 0.76 0.186 0.74 0.355
Hip arthroplasty
EQ-5D-5L GBM 0.81 0.81 0.745 0.79 0.242
EQ-VAS LASSO 0.84 0.84 0.597 0.80 0.034
HOOS-PS Ridge 0.71 0.67 0.017 0.58 0.011
*

p-value for statistical difference of the AUCs of the compared models.

Indicates statistical significance at the 10% level.

Indicates statistical significance at the 5% level.

§

Indicates statistical significance at the 1% level.

AUC, area under the curve; EQ-5D-5L, EuroQol five-dimension five-level questionnaire; GBM, gradient-boosting model; HOOS-PS, Hip disability and Osteoarthritis Outcome Score-Physical Function Short Form; KOOS-PS, Knee injury and Osteoarthritis Outcome Score-Physical Function Short Form; LASSO, least absolute shrinkage and selection operator; ML, machine learning; PROM, patient-reported outcome measure; RF, random forest; VAS, visual analogue scale.